A Fast FPGA Implementation of a General
Purpose Neuron

Valentina Salapura, Michael Gschwind, Oliver Maischberger
{vanja, mike,oliver} @ulsivie.tuwien.ac.al

Institut fur Technische Informatik
Technische Universitat Wien
Treitlstrafie 3-182-2
A-1040 Wien
AUSTRIA

Abstract. The implementation of larger digital neural networks has not
been possible due to the real-estate requirements of single neurons. We
present an expandable digital architecture which allows fast and space-
efficient computation of the sum of weighted inputs, providing an efficient
implementation base for large neural networks. The actual digital cir-
cuitry is simple and highly regular, thus allowing very efficient space us-
age of fine grained FPGAs. We take advantage of the re-programmability
of the devices to automatically generate new custom hardware for each
topology of the neural network.

1 Introduction

As conventional computer hardware is not optimized for simulating neural net-
works, several hardware implementations for neural networks have been sug-
gested ([MS88], [MOPU93], [vDISTI3]). One of the major constraints on hard-
ware implementations of neural nets is the amount of circuitry required to per-
form the multiplication of each input by its corresponding weight and their
subsequent addition:

ni (21, ..., Tm,) = a; g wji *xzj |,

1<j<m;

where z; are the input signals, w;; the weights and a; the activation function.
The space efficiency problem is especially acute in digital designs, where
parallel multipliers and adders are extremely expensive in terms of circuitry
[CB92]. An equivalent bit serial architecture reduces this complexity at the cost
of net performance, but still tends to result in large and complex overall designs.
We decided to use field-programmable gate arrays (FPGAs) to develop a
prototype of our net [Xil93]. FPGAs can be reprogrammed easily, thus allowing
different design choices to be evaluated in a short time. This design methodol-
ogy also enabled us to keep overall system cost at a minimum. Previous neural
network designs using FPGAs have shown how space efficiency can be achieved

[vDJISTI3], [GSMY94], [Sal94]. The neuron design proposed in this paper makes
a compromise between space efficiency and performance.

We have developed a set of tools to achieve complete automatization of
the design flow, from the network architecture definition phase and training
phase to the finished hardware implementation. The network architecture is
user-definable, allowing the implementation of any network topology. The cho-
sen network topology is described in an input file. Tools automatically translate
the network’s description into a corresponding net list which is downloaded into
hardware. Network training is performed off-chip, reducing real estate consump-
tion for two reasons:

— No hardware is necessary to conduct the training phase.

— Instead of general purpose operational units, specialized instances can be
generated. These require less hardware, as they do not have to handle all
cases. This applies especially to the multiplication unit, which is expensive in
area consumption terms. Also, smaller ROMs can be used instead of RAMs
for storing the weights.

As construction and training of the neural net occurs only once in an appli-
cation’s lifetime, namely at its beginning, this off-chip training scheme does not
present a limitation to a net’s functionality. Our choice of FPGAs as implemen-
tation technology proved beneficial in this respect, as for each application the
best matching architecture can be chosen, trained on the workstation and then
down-loaded to the FPGA for operational use.

2 Related Work

The digital hardware implementations presented in literature vary from bit-
stream implementations, through bit-serial and mixed parallel-serial implemen-
tations to fast, fully parallel implementations.

The pulse-stream encoding scheme for representing values is used in an ana-
log implementation by Murray and Smith [MS88]. They perform space-efficient
multiplication of the input signal with the synoptic weight by intersecting it with
a high-frequency chopping signal.

van Daalen et al. [vDJST93] present a bit-stream stochastic approach. They
represent values v in the range [—1, 1] by stochastic bit-streams in which the
probability that a bit is set is (v + 1)/2. Their input representation and ar-
chitecture restrict this approach to fully interconnected feed-forward nets. The
non-linear behavior of this approach requires that new training methods be de-
veloped.

In [GSM94], we propose another bit-stream approach. Digital chopping and
encoding values v from the range [0,1] by a bit stream where the probability
that a bit is set is v are used. Using this encoding, an extremely space efficient
implementation of the multiplication can be achieved. In this design, only 22
CLBs [Xil93] are required to implement a neuron. This method enables the

construction of any network architecture, but constrains applications to those
with binary threshold units.

The approach in [Sal94] is based on the idea to represent the inputs and
synaptic weights of a neuron as delta encoded binary sequences. For hardware
implementation delta arithmetic units are used which employ only one-bit full
adders and D flip-flops. The performance of the design is improved and some
real-estate savings are achieved. The design can be used for assembling of feed-
forward and recursive nets.

GANGLION [CB92] is a fast implementation of a simple three layer feed
forward net. The implementation is highly parallel achieving performance of 20
million decisions per second. This approach needs 640 to 784 CLBs per neuron,
making this implementation extremely real estate intensive.

3 The Neuron

Each processing unit computes a weighted sum of its inputs plus a bias value
assigned to that unit, applies an activation function, and takes the result as its
current state. The unit performs the multiplication of 8 bit unsigned inputs by
8 bit signed integer weights forming a 16 bit signed product. The eight products
and a 16 bit signed unit-specific bias are accumulated into a 20 bit result. The
final result is computed by applying an arbitrary activation function. This pro-
cess scales the 20 bit intermediate result stored in the accumulator to an 8 bit
value (see figure 1).

We use the fact that multiplication is commutative, and instead of multiply-
ing the input values with the weight, we multiply the (signed) weight with the
(positive) input values. Thus, multiplication is reduced to multiplying a signed
value by an unsigned value. This can be implemented using fewer logic gates.

Multiplication is performed by using the well-know shift and add algorithm.
The first synapse weight is loaded into the 16 bit shift register from the weight
ROM, and the synapse input in the 8 bit shift register. Then, the shift and add
multiplication algorithm is performed, using a 20 bit accumulator.

After eight iterations, the first multiplication w;; * z; has been processed.
To process the next neuron input, the input and weight values for the next
multiplication are loaded into their respective shift registers and the process
starts over. At the same time, the accumulator is used for implementing the
accumulation of the multiplication result and adding the results of all eight
multiplications.

After the result Zlgjgmi wj; * ¥; has been computed, the activation func-
tion is applied to this intermediate result. Depending on the complexity of the
activation function, this can take 0 or more cycles. This activation function also
scales the intermediate result to an unsigned 8 bit output value. This output
value 1is either the final result or fed to a next layer neuron.

As the constructed unit can have at most eight inputs and as the multipli-
cation of one input requires eight cycles, a new computation cycle is started
every 64 cycles (plus the time used for computing the activation function). This

10 1112 13 14 15 16 17

IRRRRERE

w multiplexer 8:1 Véecla?\?t
3r 8]
PE

16 bit shift register

16
8 bit shift register p
update 20 bit accumulator
reset
20
activation
function
8]
(0]

Fig. 1. Schematic diagram of a neuron.

condition is checked by a global counter, and distributed to all neurons. Upon
receiving this signal, the neurons will latch their input state into an output
register, load the bias into the accumulator and start a new computation.

51 CLBs are used for implementing the base neuron. Depending on the com-
plexity of the activation function used, additional CLBs may be necessary to
implement look-up tables or other logic. The ppr tool [Xil92] reports the follow-
ing design data for a single neuron:

Packed CLBs 51
FG Function Generators 102
H Function Generators 16
Flip Flops 44
Equivalent “Gate Array” Gates|1458

4 The Overall Network Architecture

The design of the neurons is such that any neural architecture can be assembled
from single neurons. Users can choose an optimal interconnection pattern for

their specific application, as these interconnections are performed using FPGA
routing. This neuron design can be used to implement a wide range of different
models of neural networks whose units have binary or continuous input and unit
state, and with various activation functions, from hard-limiter to sigmoid. The
implementation of both feed-forward networks and recursive networks [Hop82],
[Koh90] is possible.

Any network can be implemented using the proposed units. The design in-
cludes a global synchronization unit which generates control signals distributed
to the whole network. Figure 2 shows a feed-forward network with four neurons

in the input layer, four neurons in the hidden layer and two neurons in the output
layer.

Inputl
Input2
Input3
Input4

1011121314151617 1011121314151617 1011121314151617 W [1011121314151617

w W w
!!iPE update !n H”iPE update !n H”iPE update !h —| update |o
L] i i i

1011121314151617 1011121314151617 1011121314151617 W {1011121314151617

w w w
PE PE PE e
‘!7 update !n ‘!7 update !n ’7 update !n [update
i L]

|o

W [1011121314151617 W [1011121314151617 w
. . | Sync
update update update
Y lo i o
T T T
Outputl |
Output2

Fig. 2. Example architecture: a feed-forward network with ten neurons.

Several neurons can be placed on one FPGA. The exact number of neurons
fitting on one FPGA depends on the exact FPGA type and the complexity
of the activation function. By using multiple FPGAs, arbitrarily large, complex
neural nets can be designed cheaply and efficiently. Having neurons as indivisible
functional units allows absolute freedom in choosing any topology required.

5 Automation of the Design Process

To design a network for a new application, a new network topology is selected.
On this network, the training process is performed, yielding a set of new weights
and biases. These new connections, weights and biases have to be mapped to the

logic of the LCAs. Embedding these parameters into the LCAs alters the routing
within the LCAs. To customize the base LCA design for each new application, we
have developed tools that enable the fully automation of the designing process.
The arbitrarily network topology with trained weights is described in an input
file. Complete translation into LCAs and design optimization is then performed
automatically, entirely invisible to the user.

I1

I2

SONO 0

I1 GND GND GND GND GND GND GHND
126 0 0 0 0 O O O

SON1 0

I2 GND GND GND GND GND GND GND
126 0 0 0 0 O O O

S1NO 192

SONO SON1 GND GND GND GND GND GND
63 63 0 0 O O O O

S2NO0 64

SONO SON1 GND GND GND GND GND GND
63 63 -126 0 0 O O O

S2NO0

o= a2 a2 a2 H+HH

Fig. 3. Example input file: a feed-forward network with four neurons.

The input file contains all parameters needed. For illustration, a simple input
file is shown in figure 3. It describes a small network with two inputs, two neurons
in the first, one neuron in the second and third layers and one output. At the
beginning of the file inputs are specified (denoted with I), assigning a name to
every input. Then, the neurons are described. The order of neurons in the file
is irrelevant. Every neuron is defined with four parameters. Firstly, a name is
assigned to every unit. Then, the bias value assigned to the unit is given. After
that, the connections are specified: for each of the eight neuron inputs, the name
of the input to the network or the name of the unit with which to connect is
given. If an input of the unit is unused, it is connected to GND. Finally, the
corresponding weights (signed integers) are given. At the end of the file, the list
of the outputs is defined, containing the names of the units whose output should
be used as outputs of the network.

After the network has been defined and trained, our tool set generates a
configuration net list for the FPGA board. The configuration bit-stream is used
to initialize the Xilinx FPGAs. Figure 4 shows the phase model for the design
of a neural net from training to hardware operation.

success

simulation trained hardware test
training net design phase

Fig. 4. Phase model of net development

6 Conclusion

We propose a space-efficient, fast neural network design which can support any
network topology. Starting from an optimized, freely interconnectable neuron,
various neural network models can be implemented.

The simplicity of the proposed neuron design allows for the massive repli-
cation of neurons to build complex neural nets. FPGAs are used as hardware
platform, facilitating the implementation of arbitrary network architectures and
the use of an off-chip training scheme.

Tools have been developed to completely automate the design flow from
the network architecture definition phase and training to the final hardware
implementation.

References

[CB92] Charles E. Cox and W. Ekkehard Blanz. GANGLION - a fast field-
programmable gate array implementation of a connectionist classifier. IEEE
Journal of Solid-State Circuits, 27(3):288-299, March 1992.

[GSM94] Michael Gschwind, Valentina Salapura, and Oliver Maischberger. Space
efficient neural net implementation. In Proc. of the Second International
ACM/SIGDA Workshop on Field-Programmable Gate Arrays, Berkeley,
CA, February 1994. ACM.

[Hop82] John J. Hopfield. Neural networks and physical systems with emergent col-
lective computational abilities. In Proceedings of the Academy of Sciences
USA, volume 79, pages 2554-2558, April 1982.

[Koh90] Teuvo Kohomen. The self-organizing map. Proceedings of the IEEE,
78(9):1464-1480, September 1990.

[MOPU93] Michele Marchesi, Gianni Orlando, Francesco Piazza, and Aurelio Uncini.
Fast neural networks without multipliers. IFEFE Transactions on Neural
Networks, 4(1):53-62, January 1993.

[MS88] Alan F. Murray and Anthony V. W. Smith. Asynchronous VLSI neural
networks using pulse-stream arithmetic. IFEE Journal of Solid-State Cir-
cuits, 23(3):688-697, March 1988.

[Sal94] Valentina Salapura. Neural networks using bit stream arithmetic: A space
efficient implementation. In Proceedings of the IEEF International Sympo-
stum on Circuits and Systems, London, UK, June 1994.

[vDJST93] Max van Daalen, Peter Jeavons, and John Shawe-Taylor. A stochastic
neural architecture that exploits dynamically reconfigurable FPGAs. In
IEEE Workshop on FPGAs for Custom Computing Machines, Napa, CA,
April 1993. IEEE CS Press.

[Xil92] Xilinx. XACT Reference Guide. Xilinx, San Jose, CA, October 1992.

[Xi193] Xilinx. The Programmable Logic Data Book. Xilinx, San Jose, CA, 1993.

This article was processed using the INTpX macro package with LLNCS style

