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Abstract
This paper discusses the implementation of Hopfield

neural networks for solving constraint satisfaction
problems using Field Programmable Gate Arrays
(FPGAs). It discusses techniques for formulating such
problems as discrete neural networks, and then it
describes the N-Queen problem using this formulation. A
prototype implementation of the a number of different N-
Queen problems is described and results are presented
that illustrate that a speedup of up to 3 orders of
magnitude is possible using current FPGAs devices

1. Introduction
Many practical optimisation problems from business

and industry can be formulated as standard mathematical
programming problems using binary decision variables.
Solution of these problems requires the use of heuristics
or approximate algorithms due to the NP-hard nature of
their complexity. Neural networks were proposed to solve
such problems in 1985 [1], but the field has been plagued
with problems of poor solution qualit y and inabilit y to
guarantee feasible final solutions [15]. These initial
problems have now been overcome. Techniques have
been proposed to help the Hopfield neural network
escape from local minima of its energy function, and
suitable construction of that energy function has been
shown to guarantee the feasibilit y of solutions [16].
Using these improvements, neural network results have
been obtained which compete effectively (and even
outperform) other popular heuristics such as simulated
annealing.

While most of the literature has focused on using
Hopfield networks to solve the famous Travelli ng
Salesman Problem, a range of practical problems have
also been solved with neural networks [16][14]. The
solutions to these problems were obtained by simulating
the behaviour of the Hopfield neural network (designed
to be implemented in electrical hardware) on a

conventional computer. However, while the algorithms
generate good solutions, the computation times are
extremely slow. If neural networks are to be applied
routinely to practical problems, then the execution time
must be reduced.

There are a number of ways of accelerating the
execution of the network algorithms, ranging from the
use of high end parallel supercomputers, through to
hardware implementations of the networks themselves
using custom computing machines (CCMs). CCMs are
attractive, because they have the potential to provide
cheap high speed platforms for neural network based
algorithms. However, until recently the cost of producing
specific hardware has been high and the process error
prone.

Recently, the advent of high density field
programmable gate arrays (FPGAs), in combination with
new synthesis tools, have made it relatively easy to
produce programmable custom machines without
building specific hardware. FPGA based CCMs can
provide high performance on certain problems,
demonstrating speedups of orders of magnitude over
conventional machines [1][2][5]. There is great potential
to apply these techniques to neural network based
algorithms, however, research must be conducted to
determine the appropriate methods.

This paper aims to demonstrate the potential of a
custom computer based on FPGA technology for solving
a classical constraint satisfaction problem: the N-Queen
problem. The Hopfield neural network will be briefly
described, and we will show how the N-Queen problem
can be mapped onto the architecture. The issues involved
in designing the custom computer will be discussed.
Finall y results will be presented which compare the
computation times for the custom computer against the
simulation of the Hopfield network run on a high end
workstation. In this way, the speed-up can be
determined.



2. Hopfield Neural Networks
Hopfield neural networks [8][9] are a biologically

inspired mathematical tool which can be used to solve
difficult optimisation problems.  Their advantage over
more traditional optimisation techniques lies in their
potential for rapid computational power when
implemented in electronic hardware, and the inherent
parallelism of the network.

There are two types of Hopfield networks, discrete and
continuous models, which permit different values for
neuron states. Biological modelling of the human brain
is attempted by utilising a fully inter-connected system of
N neurons. Neuron i has internal state ui and output

level vi  (which can be either binary valued in the

discrete model or real valued bounded by 0 and 1 in the
continuous model).  The internal state ui  incorporates a

bias current (or negative threshold) denoted by Ii , and

the weighted sums of outputs from all other neurons.
The weights, which determine the strength of the
connections from neuron i to j, are given by Tij  . The

relationship between the internal state of a neuron and its
output level is detemined by an activation function
g ui( ) . The nature of this activation function depends on

whether the Hopfield network is discrete or continuous.
Commonly,
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is used for the continuous model, where τ  is a
parameter used to control the slope (or gain) of the
activation function. For discrete Hopfield networks, the
activation function is usually a discrete threshold
function:
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The neurons update themselves (either sequentially or
in parallel) according to the following rule:
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and in doing so, the network of neurons will converge
to a local minimum of the following energy function over
time:
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provided the weights are symmetric Tij = Tji.

If neurons are updated in parallel (or synchronously)
then the possibility of convergence to a two-cycle exists.
Both of the network states which comprise the two-cycle
will be local minima of the energy function however. The
discrete model has an advantage over the continuous
model in terms of the number of updates required to
converge to a local minimum. For this reason, and others
related to hardware constraints which will be discussed
later in this paper, we have chosen to use a discrete
Hopfield network for solving the N-Queen problem. We
have also chosen to update the neurons in a parallel
operation rather than sequentially since it is our ultimate
intention to solve large scale problems as rapidly as
possible. Parallel implementation involves calculating all
of the u updates then all of the v updates, as opposed to
the sequential update which calculate the u and v update
for each neuron one at a time.

Hopfield and Tank [7] showed that if a 0-1
optimisation problem can be expressed in terms of an
energy function of the form given by (4), then a Hopfield
network can be used to find locally optimal solutions of
the energy function. This may translate to local
minimum solutions of the optimisation problem.
Typically, the network energy function is made
equivalent to the objective function of the optimisation
problem, while the constraints of the problem are
included in the energy function as penalty terms. The
network parameters can then be inferred by comparison
with the standard energy function given by (4).  The
weights of the network, Tij, are then the coefficients of
the quadratic term, ViVj, and the external bias currents,
Ii, for each neuron i, are the coefficients of the linear
terms Vi in the chosen energy function. The network can
be initialised by setting the activity level Vi of each
neuron to an unbiased state. Updating the network
according to equation (3) will then allow a minimum
energy state to be attained, since the energy level never
increases during state transitions. The derivation of the
weights and external biases for the N-Queen problem are
provided in the following section.

3. The N-Queen problem
The N-Queen problem is a classical constraint

satisfaction problem, whose goal is to place N Queens on
an NxN chess board in mutually non-attacking positions.
Since a Queen can only attack horizontally, vertically
and diagonally, the constraints can be stated as:
• there can be only one Queen in each row
• there can be only one Queen in each column
• there can be only one Queen in each diagonal

(ascending and descending).
Suppose we define a binary decision variable:
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There are several ways of combining all of these
constraints in an objective function as penalty terms, and
one such function is:
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The first two terms ensure that the rows and columns
sum to one, while the final term counts the cost of
Queens on each diagonal. The value of this function is
exactly zero for a non-attacking solution, and will be
greater if some of the constraints are not satisfied. The
values of A, B and C are selected to balance the relative
importance of each constraint, and we have fixed these to
unity.

Expanding and rearranging this objective function so
that it is expressed as the sum of a linear component and
a quadratic components yields:
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where δ ij  is the Kronecker-delta symbol equivalent

to unity only if i=j (and is zero otherwise).

Comparing this expansion to the standard Hopfield
network energy function (4), and noting the double
subscript for this N Queen formulation, the weights and
external biases can be read off as:
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4. Implementation using FPGAs

4.1 Architecture
There have been many architectures proposed for the

implementation of neural networks over the years,
including both digital [10][11][6][3][4] and analogue
circuits [12][13][17]. Most of these have concentrated on
a hardware implementation of the neuron evaluation
function, which consists of computing a number of
matrix-vector products. Thus, these systems involve the
parallel and pipelined executions of a number of multiply
operations together with a reduction sum operator. A
small amount of work has been focused on the training
aspects of networks, which can be extremely time
consuming.

The work described in this paper differs from general
neural networks in three important ways. First, the
weights are small and can be represented using small
integers. This means that the hardware responsible for
the accumulation can be optimised for small integer
values. This not only reduces the size of the arithmetic
units, but also reduces the carry propagation delays.
Second, the neuron values are restricted to 0 or 1, rather
than general fixed or floating point numbers.
Consequently, the vector product becomes a set of
conditional additions without the need to perform any
multiplication operations. Multiplier units normally
consume large amounts of logic, thus the savings here
are dramatic. Third, because we are implementing a
Hopfield network, the interconnection between neurons
is fixed and dictated by the nature of the constraints in
the problem. This means that it can be wired into the
implementation, which is particularly relevant for FPGA
based machines. This not only reduces the amount of
interconnection hardware required, but also reduces the
time spent accumulating the input values to a neuron.

The architecture chosen for this work consists of a set
of neurons, as described by the VHDL code in Figure 1,
which are then interconnected when the weights are non-
zero as shown in Figure 2. Thus, neurons which have



zero weights between them are not connected, limiti ng
the number of inputs to a neuron to O(n) instead of
O(N2), where N is the number of neurons in the system.

Whilst the code for each neuron is identical, each one is
specified with a different Weight_array , and thus
the hardware generated for each will be slightly different.

entity neuron_unit is
generic ( Ws : Weight_array:= (-1,-1,-1,0,-1,-2,-1,-1,-1,-1,-1,0,0,-1,0,-1); --weights
    Iij  : in Weight_integer := 1;       -- constant external input to neuron
    Uij_ init  : in U_integer := 0);      -- startup value for U
port ( clk : in std_logic; -- clock
    enable : in std_logic; -- active high clock enable
    reset : in std_logic; -- active high reset
    Xs : in X_array; -- n*n 1D vector of all neuron Xs
    Xij  : out std_logic); -- neuron output X, '1' if this neuron fires
end neuron_unit;

architecture rtl of neuron_unit is
  signal deltaU : U_integer;
  signal Uij : U_integer;
begin
b1: block
begin
p1: process(Xs) -- compute the weighted sum of neuron's inputs
variable Wsum : U_integer;

begin
Wsum := Iij; -- Iij is external input
rows _and_cols: for n in 1 to Cnum_neurons loop
if (Xs(n) = '1') then

Wsum := Wsum + Ws(n); -- conditional summing of weights
end if;
end loop rows_and_cols;
deltaU <= Wsum; -- variable to signal for use outside process

end process p1;
p2: process( clk,reset) -- latch in new U value

begin
if (reset = '1') then Uij <= Uij_init; -- setup of initial pattern
elsif ( clk'event and clk = '1') then
if (enable = '1') then Uij <= Uij + deltaU; -- signal Uij is registered

        end if;
      end if;
    end process p2;

    Xij <= '1' when Uij > 0 else '0'; -- threshold for firing
end block b1;
end rtl;

Figure 1 - VHDL code for one neuron with default weights.

4.2 Implementation
The consequence of the issues discussed in

the previous section means that it is possible to
implement the neural network using FPGA
devices. FPGAs, li ke the Xili nx family of parts,
consist of a number of Configurable Logic
Blocks (CLBs) connected using a hierarchical,
bus based, wiring scheme. The neurons and their

interconnections are specified in VHDL, which
is synthesised and simulated using Exemplar
Logic's Galil eo and V-System tools.  Since all
the weights are known at synthesis time, the
synthesis tool's optimisation features are
exploited to automaticall y remove any additions
involving zero-valued weights.  Xili nx's XACT
Step software is used for FPGA mapping and
routing.  Our hardware platform, an Aptix AP4
reconfigurable logic board, routes the neuron
outputs either to an array of LEDs or back to a
host workstation for display. The AP4 board
contains up to 16 XC4010 devices connected by
4 Aptix programmable switches (called FPICs).
Using this configuration, it is possible to
download a design consisting of up to 160,000
gates.

The use of VHDL has a number of
advantages over conventional hardware design

Σ Σ Σ

Σ Σ Σ

Σ Σ Σ

Figure 2 – Interconnection Architecture



techniques li ke schematic capture. First, its high
level syntax is not very different from
conventional imperative programming
languages, thus the design effort is not
significantly different from writing a software
simulation of a neural network. This is an
important design consideration when
considering the development cost of application
specific hardware. Second, the VHDL software
supports extensive optimisations, thus the
performance of the underlying hardware is
optimised for each neuron depending on the
weights on its inputs. Finall y, the VHDL
compiler analyses the domain of the variables
and generates optimal hardware without any
further user interaction. For example, if the
range of a variable is limited to the values from
0 to 3, then the data path used to transmit and
manipulate the variable will be automaticall y
constrained to 2 bits.

5. Performance Results
We have performed experiments using three

different problems, 4 queens, 6 queens and 8
queens, named problems 1, 2 and 3. Two
different software simulations were developed,
both in C.  The first uses a conventional loop
structure which means that all i nputs to a
neuron are considered in the accumulation, even
if the weight on the input is zero. However, the
code is optimised for the 0-1 neuron output
values, and thus it contains a conditional
addition operation rather than a multiply. The
main problem with this code is that it considers
all possible inputs unli ke the hardware
architecture, and thus a comparison may seem
unfair. Consequently, we developed another set
of programs which unrolled the loops and
removed all unnecessary addition operations.
This code resembles the structure of the
hardware solution, however, has the
disadvantage that it does not use loops, and thus
large problems do not fit in the instruction
cache. The software was run an a Sun Ultra
Sparc I workstation running at 140 MHz.

Graph 1 shows the relative performance of
the 3 schemes, and Graph 2 shows the speedup
of the hardware over each of  the software
approaches. In this case the hardware has been
optimised for a Xili nx 4020EPG223-1 device.
The results indicate that it is possible to gain
between 2 and 3 orders of magnitude speedup,
which is significant.

6. Conclusions

The aim of this work was to establi sh whether
it was possible to achieve a reasonable speedup
by implementing FPGA based Hopfield neural
networks for some simple constraint satisfaction
problems. The results are significant – our
initial implementation using standard Xili nx
FPGAs yielded 2-3 orders of magnitude speedup
over a Sun UltraSparc workstation.

The main problem with the work to date is
that the problems are both unrealisticall y small
and simplistic. We have built real hardware for
the 8 queens problem, but this requires 4
XC4020 devices (each of 20,000 gates)
interconnected using an Aptix FPIC switch.
Thus, larger more reali stic problems will require
more, or larger, FPGAs. Fortunately, a number
of companies are currently developing larger
devices, including the Xili nx Virtex series
which will contain around 1 milli on gates.
Further, the constraints on the N-Queen problem
are simpler than those found in many real world
scheduling applications. Thus, it is not clear
whether we will be able to optimise the neuron
structure for more complex problems since the
weights matrix may not contain as many zero
elements. We are currently investigating a more
complex planning problem to gain further
insight into this problem. In the mean time, the
current results are extremely promising.

Graph 1 - Time to process 4, 6 and 8 Queens problems
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