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1 Introduction

DuMux aims to be a generic framework for the simulation of multiphase fluid flow and transport
processes in porous media using continuum mechanical approaches. At the same time, DuMux aims
to deliver top-notch computational performance, high flexibility, a sound software architecture and
the ability to run on anything from single processor systems to highly parallel supercomputers with
specialized hardware architectures.

The means to achieve these somewhat contradictory goals are the thorough use of object oriented
design in conjunction with template programming. These requirements call for C++ as the implemen-
tation language.

One of the more complex issues when dealing with parallel continuum models is managing the grids
used for the spatial discretization of the physical model. To date, no generic and efficient approach
exists for all possible cases, so DuMux is build on top of DUNE, the Distributed and Unified Numerics
Environment [8]. DUNE provides a generic interface to many existing grid management libraries such
as UG [12], ALUGrid [3, 2] and a few more. DUNE also extensively uses template programming in
order to achieve minimal overhead when accessing the underlying grid libraries1.

Figure 1.1: A high-level overview of DUNE’s design is available on the project’s web site [8].

DUNE’s grid interface is independent of the spatial dimension of the underlying grid. For this
purpose, it uses the concept of co-dimensional entities. Roughly speaking, an entity of co-dimension
0 constitutes a cell, co-dimension 1 entities are faces between cells, co-dimension 1 are edges, and so
on until co-dimension n which are the cell’s vertices. The DUNE grid interface generally assumes that
all entities are convex polytopes, which means that it must be possible to express each entity as the
convex hull of a set of vertices. For the sake of efficiency, all entities are further expressed in terms of
so-called reference elements which are transformed to the actual spatial incarnation within the grid by
a so-called geometry function. Here, a reference element for an entity can be thought of as a prototype
for the actual grid entity. For example, if we used a grid which applied hexahedrons as cells, the

1In fact, the performance penalty resulting from the use of DUNE’s grid interface is usually negligible [6].
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1 Introduction

reference element for each cell would be the unit cube [0, 1]3 and the geometry function would scale
and translate the cube so that it matches the grid’s cell. For a more thorough description of DUNE’s
grid definition, see [4].

In addition to the grid interface, DUNE also provides quite a few additional modules, of which the
dune-localfunctions and dune-istl modules are the most relevant in the context of this handbook.
dune-localfunctions provides a set of generic finite element shape functions, while dune-istl is the
Iterative Solver Template Library and provides generic, highly optimized linear algebra routines for
solving the generated systems.

DuMux comes in form of an additional module dumux. It depends on the DUNE core modules
dune-common, dune-grid, dune-istl, and on dune-localfunctions. The main intention of DuMux

is to provide a framework for an easy and efficient implementation of new physical models for porous
media flow problems, ranging from problem formulation and the selection of spatial and temporal
discretization schemes as well as nonlinear solvers, to general concepts for model coupling. Moreover,
DuMux includes ready to use numerical models and a few example applications.
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2 Getting started

First, we briefly describe the installation procedure. Then we provide a quick start guide for the first
DuMux experience.

2.1 Quick Installation of DuMux

This only provides one quick way of installing DuMux. You should have a recent working Linux
environment, no DUNE core modules should be installed. If you need more information, have DUNE
already installed, please have a look at the detailed installation instructions in Section 2.3.

2.1.1 Obtaining the Code with the Script checkout-dumux

The shell-script checkout-dumux facilitates setting up a DUNE/DuMux directory tree. It is available
after obtaining a download link via http://www.dumux.org/download/. For example the second line
below will check out the required DUNE modules and dumux, dumux-devel and the external folder,
which contains some useful external software and libraries. Again, joeuser needs to be replaced by
the actual user name.

$ checkout -dumux -h # show help ,

$ checkout -dumux -gme -u joeuser -p password -d DUMUX

Be aware that you cannot get dumux-devel or the external libraries from dumux-external unless
you have an GitLab account with the right privileges.

If you want to install DUNE and DuMux without the help of checkout-dumux script a complete
installation guide can be found in chapter 2.3.

2.1.2 Build of DUNE and DuMux

Building of DUNE and DuMux is done by the command-line script dunecontrol as described in DUNE
Installation Notes1. More details about the build-system can be found in the DUNE buildsystem
documentation2. If something fails during the execution of dunecontrol feel free to report it to the
DUNE or DuMux developer mailing list, but also try to include error details.

It is possible to compile DuMux with nearly no explicit options to the build system. However,
for the successful compilation of DUNE and DuMux, it is currently necessary to pass the option
-fno-strict-aliasing to the C++ compiler, which is done here via a command-line argument to
dunecontrol:

1https://www.dune-project.org/doc/installation/
2https://www.dune-project.org/buildsystem/
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2 Getting started

$ # make sure you are in the directory DUNE -Root

$ ./dune -common/bin/dunecontrol --configure -opts="CXXFLAGS=-fno -strict -

aliasing" --use -cmake all

Too many options can make life hard. That’s why usually option files are being used together with
dunecontrol and its sub-tools. Larger sets of options are kept in them. If you are going to compile
with options suited for debugging the code, the following can be a starting point:

$ # make sure you are in the directory DUNE -Root

$ cp dumux/debug.opts my-debug.opts # create a personal version

$ gedit my-debug.opts # optional editing the options file

$ ./dune -common/bin/dunecontrol --opts=my-debug.opts --use -cmake all

More optimized code, which is typically not usable for standard debugging tasks, can be produced
by

$ cp dumux/optim.opts my-optim.opts

$ ./dune -common/bin/dunecontrol --opts=my-optim.opts --use -cmake all

Sometimes it is necessary to have additional options which are specific to a package set of an
operating system or sometimes you have your own preferences. Feel free to work with your own set of
options, which may evolve over time. The option files above are to be understood more as a starting
point for setting up an own customization than as something which is fixed. The use of external
libraries can make it necessary to add quite many options in an option file. It can be helpful to give
your customized option file its own name, as done above. One avoids confusing it with the option files
which came out of the distribution.

2.2 Quick Start Guide: The First Run of a Test Application

The previous section showed how to install and compile DuMux. This chapter shall give a very brief
introduction how to run a first test application and how to visualize the first output files. A more
detailed explanations can be found in the tutorials in the following chapter.
All executables are compiled in the build subdirectories of DuMux. If not given differently in the
input files, this is build-cmake as default.

1. Go to the directory build-cmake/test. There, various test application folders can be found.
Let us consider as example porousmediumflow/2p/implicit/test box2p:

2. Enter the folder porousmediumflow/2p/implicit. Type make test box2p in order to compile
the application test box2p. To run the simulation, type
./test box2p -parameterFile ./test box2p.input

into the console. The parameter -parameterFile specifies that all important parameters (like
first timestep size, end of simulation and location of the grid file) can be found in a text file in
the same directory with the name test box2p.input.
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2 Getting started

3. The simulation starts and produces some .vtu output files and also a .pvd file. The .pvd file can
be used to examine time series and summarizes the .vtu files. It is possible to stop a running
application by pressing <Ctrl><c>.

4. You can display the results using the visualization tool ParaView (or alternatively VisIt). Just
type paraview in the console and open the .pvd file. On the left hand side, you can choose the
desired parameter to be displayed.

2.3 Detailed Installation Instructions

In this section about the installation of DuMux it is assumed that you work with a Linux or Apple
OS X operating system and that you are familiar with the use of a command line shell. Installation
means that you unpack DUNE together with DuMux in a certain directory. Then, you compile it in
that directory tree in which you do the further work, too. You also should know how to install new
software packages or you should have a person on hand who can give you assistance with that. In
section 2.3.1 we list some prerequisites for running DUNE and DuMux. Please check in said paragraph
whether you can fulfill them. In addition, section 2.3.4 provides some details on optional libraries and
modules.

In a technical sense DuMux is a module of DUNE. Thus, the installation procedure of DuMux is the
same as that of DUNE. Details regarding the installation of DUNE are provided on the DUNE website
[8]. If you are interested in more details about the build system that is used, they can be found in the
DUNE buildsystem documentation3 and CMake’s documentation4.

All DUNE modules, including DuMux, get extracted into a common directory, as it is done in an
ordinary DUNE installation. We refer to that directory abstractly as DUNE root directory or, in
short, as DUNE-Root. If it is used as directory’s path of a shell command it is typed as DUNE-Root.
For the real DUNE root directory on your file system any valid directory name can be chosen.

Source code files for each DUNE module are contained in their own subdirectory within DUNE-
Root. We name this directory of a certain module module root directory or module-root-directory

if it is a directory path, e. g. for the module dumux these names are dumux root directory respective
dumux-root-directory. The real directory names for the modules can be chosen arbitrarily. In this
manual they are the same as the module name or the module name extended by a version number
suffix. The name of each DUNE module is defined in the file dune.module, which is in the root
directory of the respective module. This should not be changed by the user.

After extracting the source code for all relevant DUNE modules, including DuMux, DUNE has to
be built by the shell-command dunecontrol which is part of the DUNE build system.

2.3.1 Prerequisites

A reasonable recent C++ compiler (g++ (4.9), clang++ (3.5), or Intels ICC), CMake (version 2.8.12
or newer) and their dependencies are required. For prerequisite software packages to install see [8].

The building of included documentation like this handbook requires LATEX and auxiliary tools
bibtex. One usually chooses a LATEX distribution like texlive for this purpose. It is possible to
switch off the building of the documentation by setting the switch --disable-documentation in the

3https://www.dune-project.org/buildsystem/
4https://cmake.org/documentation/

7

https://www.dune-project.org/buildsystem/
https://cmake.org/documentation/


2 Getting started

CONFIGURE FLAGS of the building options, see Chapter 2.1.2. Additional parts of documentation are
contained within the source code files as special formatted comments. Extracting them can be done
using doxygen, cf. Section 2.3.3.

Depending on whether you are going to use external libraries and modules for additional DUNE
features, additional software packages may be required. Some hints on that are given in Section 2.3.4.

Git clients must be installed to download modules from Git repositories.

2.3.2 Obtaining Source Code for DUNE and DuMux

As stated above, the DuMux release and trunk (developer tree) are based on the most recent DUNE
release 2.4, comprising the core modules dune-common, dune-geometry, dune-grid, dune-istl and dune-
localfunctions. For working with DuMux, these modules are required. The external module dune-
PDELab is recommended and required for several DuMux features.

Two possibilities exist to get the source code of DUNE and DuMux. Firstly, DUNE and DuMux can
be downloaded as tar files from the respective DUNE and DuMux website. They have to be extracted
as described in the next paragraph. Secondly, a method to obtain the most recent source code (or,
more generally, any of its previous revisions) by direct access to the software repositories of the revision
control system is described in the subsequent part.

However, if a user does not want to use the most recent version, certain version tags or branches
(i. e. special names) are means of the software revision control system to provide access to different
versions of the software.

Obtaining the software by installing tar files The slightly old-fashionedly named tape-archive-file,
shortly named tar file or tarball, is a common file format for distributing collections of files contained
within these archives. The extraction from the tar files is done as follows: Download the tarballs from
the respective DUNE (version 2.4.1) and DuMux websites to a certain folder in your file system. Create
the DUNE root directory, named dune in the example below. Then extract the content of the tar files,
e. g. with the command-line program tar. This can be achieved by the following shell commands.
Replace path to tarball with the directory name where the downloaded files are actually located.
After extraction, the actual name of the dumux root directory is dumux-2.11 (or whatever version you
downloaded).

$ mkdir dune

$ cd dune

$ tar xzvf path_to_tarball_of/dune -common -2 .4 .1.tar.gz

$ tar xzvf path_to_tarball_of/dune -geometry -2 .4 .1.tar.gz

$ tar xzvf path_to_tarball_of/dune -grid -2 .4 .1.tar.gz

$ tar xzvf path_to_tarball_of/dune -istl -2 .4 .1.tar.gz

$ tar xzvf path_to_tarball_of/dune -localfunctions -2 .4 .1.tar.gz

$ tar xzvf path_to_tarball_of/dune -pdelab -2 .0 .0.tar.gz

$ tar xzvf path_to_tarball_of/dune -typetree-2.4 .1.tar.gz

$ tar xzvf path_to_tarball_of/dumux -2 .9.tar.gz

Furthermore, if you wish to install the optional DUNE Grid-Howto which provides a tutorial on the
Dune grid interface, act similar.
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2 Getting started

Obtaining DUNE and DuMux from software repositories Direct access to a software revision control
system for downloading code can be of advantage later on. It is easier to keep up with code changes
and to receive important bug fixes.DUNE and DuMux use Git for their software repositories. To access
them a Git client is needed.

In the technical language of Git, cloning a certain software version means nothing more then fetching
a local copy from the software repository and laying it out in the file system. In addition to the
software, some more files for the use of the software revision control system itself are created. If you
have developer access to DuMux, it is also possible to do the opposite, i. e. to load up a modified
revision of software into the software repository. This is usually termed as commit and push.

The installation procedure is done as follows: Create a DUNE root directory, named e.g. DUNE-ROOT
in the lines below. Then, enter the previously created directory and check out the desired modules.
As you see below, the check-out uses two different servers for getting the sources, one for DUNE and
one for DuMux. The DUNE modules of the stable 2.4 release branch are checked out as described on
the DUNE website [8]:

$ mkdir DUNE -ROOT

$ cd DUNE -ROOT

$ git clone -b releases/2 .4 https :// gitlab.dune -project.org/core/dune -common.

git

$ git clone -b releases/2 .4 https :// gitlab.dune -project.org/core/dune -

geometry.git

$ git clone -b releases/2 .4 https :// gitlab.dune -project.org/core/dune -grid.

git

$ git clone -b releases/2 .4 https :// gitlab.dune -project.org/core/dune -istl.

git

$ git clone -b releases/2 .4 https :// gitlab.dune -project.org/core/dune -

localfunctions.git

$ git clone -b releases/2 .3 https :// gitlab.dune -project.org/PDELab/dune -

typetree.git

$ git clone -b releases/2 .0 https :// gitlab.dune -project.org/PDELab/dune -

pdelab.git

The newest and maybe unstable developments are also provided in these repositories and can be
found in the master branch. Please check the DUNE website [8] for further information. We always
try to keep up with the latest developments of DUNE. However, the current DuMux release is based on
the stable 2.4 release and it might not compile without further adaptations using the newest versions
of DUNE.

Furthermore, if you wish to install the optional DUNE Grid-Howto which provides a tutorial on the
Dune grid interface, act similar.

The dumux module is checked out as described below (see also the DuMux website: http://www.

dumux.org/). Its file tree has to be created in the DUNE-Root directory, where the DUNE modules
have also been checked out to. Subsequently, the next command is executed there, too. The dumux
root directory is called dumux here.

$ # make sure you are in DUNE -Root

$ git clone https ://git.iws.uni -stuttgart.de/dumux -repositories/dumux.git
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Patching DUNE or external libraries Patching of DUNE modules in order to work together with
DuMux can be necessary for several reasons. Software like a compiler or even a standard library
changes at times. But, for example, a certain release of a software component that we depend on, may
not reflect that change and thus it has to be modified. In the dynamic developing process of software
which depends on other modules it is not always feasible to adapt everything to the most recent version
of each module. They may fix problems with a certain module of a certain release without introducing
too much structural change.

DuMux contains patches and documentation about their usage and application within the directory
dumux/patches. Please check the README file in that directory for recent information. In general, a
patch can be applied as follows (the exact command or the used parameters may be slightly different).
We include here an example of a patching dune-grid.

$ # make sure you are in DUNE -Root

$ cd dune -grid

$ patch -p0 < ../ dumux/patches/grid -2 .3 .1.patch

It can be removed by

$ path -p0 -R < ../ dumux/patches/grid -2 .3 .1.patch

The checkout-dumux script also applies patches, if not explicitly requested not to do so.

Hints for DuMux-Developers If you also want to actively participate in the development of DuMux,
you can allways send patches to the Mailing list.

To get more involved, you can apply either for full developer access or for developer access on certain
parts of DuMux. Granted developer access means that you are allowed to commit own code and that
you can access the dumux-devel module. This enhances dumux by providing maybe unstable code
from the developer group.

2.3.3 Building Documentation

Doxygen

Doxygen documentation is done by especially formatted comments integrated in the source code,
which can get extracted by the program doxygen. Beside extracting these comments, doxygen builds
up a web-browsable code structure documentation like class hierarchy of code displayed as graphs, see
http://www.stack.nl/~dimitri/doxygen/.

The Doxygen documentation of a module can be built, if doxygen is installed, by running dunecontrol,
entering the build-*directory, and execute make doc. Then point your web browser to the file
MODULE BUILD DIRECTORY/doc/doxygen/html/index.html to read the generated documentation. This
should also work for other DUNE modules.

Handbook

To build the DuMux handbook go into the build-directory and run make doc or make 0 dumux-handbook pdf.
The pdf can then be found in MODULE BUILD DIRECTORY/doc/handbook/0 dumux-handbook.pdf.
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2.3.4 External Libraries and Modules

The libraries described below provide additional functionality but are not generally required to run
DuMux. If you are going to use an external library check the information provided on the DUNE
website5. If you are going to use an external DUNE module the website on external modules6 can be
helpful.

Installing an external library can require additional libraries which are also used by DUNE. For
some libraries, such as BLAS or MPI, multiple versions can be installed on the system. Make sure
that it uses the same library as DUNE when configuring the external library.

Some of the libraries are then compiled within that directory and are not installed in a different
place, but DUNE may need to know their location. Thus, one may have to refer to them as options for
dunecontrol, for example via the options file my-debug.opts. Make sure you compile the required
external libraries before you run dunecontrol.

An easy way to install some of the libraries and modules given below is the installexternal.sh

script located in bin. The script has to be called from your DUNE root directory.

List of External Libraries and Modules

In the following list, you can find some external modules and external libraries, and some more libraries
and tools which are prerequisites for their use.

• dune-ALUGrid: Grid library, comes as a DUNE module. The parallel version needs also a
graph partitioner, such as ParMETIS. Download: https://gitlab.dune-project.org/extensions/
dune-alugrid

• dune-foamgrid: External grid module. One- and two-dimensional grids in a physical space
of arbitrary dimension; non-manifold grids, growth, element paramterizations, and movable ver-
tices. This makes FoamGrid the grid data structure of choice for simulating structures such
as foams, discrete fracture networks, or network flow problems. Download: https://gitlab.

dune-project.org/extensions/dune-foamgrid

• DUNE-multidomaingrid and DUNE-multidomain: External modules which offer a meta
grid that has different sub-domains. Each sub-domain can have a local operator that is coupled
by a coupling condition. They are used for multi-physics approaches or domain decomposition
methods. Download: https://github.com/smuething/dune-multidomaingrid and https:

//github.com/smuething/dune-multidomain

• DUNE-PDELab: External module to write more easily discretizations. PDELab provides
a sound number of discretizations like FEM or discontinuous Galerkin methods. Download:
https://gitlab.dune-project.org/pdelab/dune-pdelab

• PARDISO: External library for solving linear equations. The package PARDISO is a thread-
safe, high-performance, robust, memory efficient and easy to use software for solving large sparse
symmetric and asymmetric linear systems of equations on shared memory multiprocessors. The

5DUNE: External libraries, https://www.dune-project.org/doc/external-libraries/
6DUNE: External modules, https://www.dune-project.org/groups/external/
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precompiled binary can be downloaded after personal registration from the PARDISO website:
http://www.pardiso-project.org

• SuperLU: External library for solving linear equations. SuperLU is a general purpose library
for the direct solution of large, sparse, non-symmetric systems of linear equations. Download:
http://crd.lbl.gov/~xiaoye/SuperLU

• UMFPack: External library for solving linear equeations. It is part of SuiteSparse.

• UG: External library for use as grid. UG is a toolbox for unstructured grids, released under
GPL. To build UG the tools lex/yacc or the GNU variants of flex/bison must be provided.
Download: https://gitlab.dune-project.org/staging/dune-uggrid

The following are dependencies of some of the used libraries. You will need them depending on
which modules of DUNE and which external libraries you use.

• MPI: The parallel version of DUNE and also some of the external dependencies need MPI when
they are going to be built for parallel computing. OpenMPI and MPICH in a recent version have
been reported to work.

• BLAS: SuperLU makes use of BLAS. Thus install GotoBLAS2, ATLAS, non-optimized BLAS
or BLAS provided by a chip manufacturer. Take care that the installation scripts select the
intended version of BLAS.

• METIS and ParMETIS: This are dependencies of ALUGrid and can be used with UG, if run
in parallel.

• Compilers: Beside g++, DUNE can be built with Clang from the LLVM project and Intel C++

compiler. C and Fortran compilers are needed for some external libraries. As code of different
compilers is linked together they have to be be compatible with each other.
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3 Tutorial

In DuMux two sorts of models are implemented: implicit models and sequential models. In the
implicit models a flow system is described by a system of strongly coupled equations, which can be for
example mass balance equations for phases, mass balance equations for components or energy balance
equations. In contrast, a sequential model consists of a pressure equation, which is iteratively coupled
to a saturation equation, concentration equations, energy balance equations, etc.

Examples for different kinds of both, implicit and sequential models, are isothermal two-phase
models, isothermal two-phase two-component models, non-isothermal two-phase models, and non-
isothermal two-phase two-component models.

The following two sections demonstrate solving problems using an implicit model 3.1 and a sequential
model 3.2. An isothermal two-phase system (two fluid phases, one solid phase) will be considered.

3.1 Solving a Problem Using a Fully-Implicit Model

The process of setting up a problem using DuMux can be roughly divided into four parts:

1. A suitable model has to be chosen.

2. The geometry of the problem and correspondingly a grid have to be defined.

3. Material properties and constitutive relationships have to be selected.

4. Boundary conditions and initial conditions have to be specified.

The problem being solved in this tutorial is illustrated in Figure 3.1. A rectangular domain with
no-flow boundaries on the top and on the bottom, which is initially saturated with oil, is considered.
Water infiltrates from the left side into the domain and replaces the oil. Gravity effects are neglected
here.

y

x

no flow

no flow

water oil

pwinitial
= 2 · 105 Pa

Sninitial
= 1

pw = 2 · 105 Pa

Sn = 0

qw = 0 kg/m2s

qn = 3 · 10−2 kg/m2s

Figure 3.1: Geometry of the tutorial problem with initial and boundary conditions.

13



3 Tutorial

The solved equations are the mass balances of water and oil:

∂(φSw %w)

∂t
−∇ ·

(
%w

krw
µw

K ∇pw
)
− qw = 0 (3.1)

∂(φSo %o)

∂t
−∇ ·

(
%o
kro
µo

K ∇po
)
− qo = 0 (3.2)

3.1.1 The Main File

Listing 1 shows the main application file tutorial/tutorial implicit.cc for the implicit two-phase
model. This file has to be compiled and executed in order to solve the problem described above.

Listing 1 (File tutorial/tutorial implicit.cc)

24 #include <config.h>

25 #include "tutorialproblem_implicit.hh"

26 #include <dumux/common/start.hh>

27

28 //! Prints a usage/help message if something goes wrong or the user asks for help

29 void usage(const char *progName , const std:: string &errorMsg)

30 {

31 std::cout

32 << "\nUsage: " << progName << " [options ]\n";

33 if (errorMsg.size() > 0)

34 std::cout << errorMsg << "\n";

35 std::cout

36 << "\n"

37 << "The list of mandatory arguments for this program is:\n"

38 << "\t-TEnd The end of the simulation [s]\n"

39 << "\t-DtInitial The initial timestep size [s]\n"

40 << "\t-Grid.UpperRight The x-/y-coordinates of the grid’s upper -right corner [m]\n"

41 << "\t-Grid.Cells The grid’s x-/y-resolution\n"

42 << "\n";

43 }

44

45 int main(int argc , char** argv)

46 {

47 typedef TTAG(TutorialProblemImplicit) TypeTag;

48 return Dumux ::start <TypeTag >(argc , argv , usage);

49 }

From line 24 to line 26 the required headers are included.
At line 47 the type tag of the problem, which is going to be simulated, is specified. All other data

types can be retrieved via the DuMux property system and only depend on this single type tag. For
a more thorough introduction to the DuMux property system, see chapter 5.4.

After this, the default startup routine Dumux::start() is called on line 48. This function deals
with parsing the command line arguments, reading the parameter file, setting up the infrastructure
necessary for DUNE, loading the grid, and starting the simulation. Required parameters for the
start of the simulation, such as the initial time-step size, the simulation time or details of the grid,
can be either specified by command line arguments of the form (-ParameterName ParameterValue),
in the file specified by the -ParameterFile argument, or if the latter is not specified, in the file
tutorial implicit.input. If a parameter is specified on the command line as well as in the parameter
file, the values provided in the command line have precedence. Listing 2 shows the default parameter
file for the tutorial problem.
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Listing 2 (File tutorial/tutorial implicit.input)

1 [TimeManager]

2 TEnd = 500000 # duration of the simulation [s]

3 DtInitial = 10 # initial time step size [s]

4

5 [Grid]

6 UpperRight = 300 60 # x-/y- coordinates of the upper -right corner of the grid [m]

7 Cells = 100 1 # x-/y- resolution of the grid

To provide an error message, the usage message which is displayed to the user if the simulation is
called incorrectly, is printed via the custom function which is defined on line 29 in the main file. In
this function the usage message is customized to the problem at hand. This means that at least the
necessary parameters are listed here.

3.1.2 The Problem Class

When solving a problem using DuMux, the most important file is the so-called problem file as shown
in listing 3.

Listing 3 (File tutorial/tutorialproblem implicit.hh)

24 #ifndef DUMUX_TUTORIAL_PROBLEM_IMPLICIT_HH // guardian macro

25 #define DUMUX_TUTORIAL_PROBLEM_IMPLICIT_HH // guardian macro

26

27 // The numerical model

28 #include <dumux/porousmediumflow/2p/implicit/model.hh >

29

30 // The base porous media box problem

31 #include <dumux/porousmediumflow/implicit/problem.hh>

32

33 // Spatially dependent parameters

34 #include "tutorialspatialparams_implicit.hh"

35

36 // The components that are used

37 #include <dumux/material/components/h2o.hh>

38 #include <dumux/material/components/lnapl.hh >

39

40 namespace Dumux{

41 // Forward declaration of the problem class

42 template <class TypeTag >

43 class TutorialProblemImplicit;

44

45 namespace Properties {

46 // Create a new type tag for the problem

47 NEW_TYPE_TAG(TutorialProblemImplicit , INHERITS_FROM(BoxTwoP , TutorialSpatialParamsImplicit));

48

49 // Set the "Problem" property

50 SET_PROP(TutorialProblemImplicit , Problem)

51 { typedef TutorialProblemImplicit <TypeTag > type ;};

52

53 // Set grid and the grid creator to be used

54 #if HAVE_DUNE_ALUGRID

55 SET_TYPE_PROP(TutorialProblemImplicit , Grid , Dune::ALUGrid </* dim=*/2, 2, Dune::cube , Dune::

nonconforming >);

56 #elif HAVE_UG

57 SET_TYPE_PROP(TutorialProblemImplicit , Grid , Dune::UGGrid <2 >);

58 #else

59 SET_TYPE_PROP(TutorialProblemImplicit , Grid , Dune::YaspGrid <2>);

60 #endif // HAVE_DUNE_ALUGRID
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61

62 // Set the wetting phase

63 SET_PROP(TutorialProblemImplicit , WettingPhase)

64 {

65 private: typedef typename GET_PROP_TYPE(TypeTag , Scalar) Scalar;

66 public: typedef FluidSystems :: LiquidPhase <Scalar , H2O<Scalar > > type;

67 };

68

69 // Set the non -wetting phase

70 SET_PROP(TutorialProblemImplicit , NonwettingPhase)

71 {

72 private: typedef typename GET_PROP_TYPE(TypeTag , Scalar) Scalar;

73 public: typedef FluidSystems :: LiquidPhase <Scalar , LNAPL <Scalar > > type;

74 };

75

76 SET_TYPE_PROP(TutorialProblemImplicit , FluidSystem , TwoPImmiscibleFluidSystem <TypeTag >);

77 // Disable gravity

78 SET_BOOL_PROP(TutorialProblemImplicit , ProblemEnableGravity , false);

79 }

80

81 /*!

82 * \ingroup TwoPBoxModel

83 *

84 * \brief Tutorial problem for a fully coupled twophase box model.

85 */

86 template <class TypeTag >

87 class TutorialProblemImplicit : public ImplicitPorousMediaProblem <TypeTag >

88 {

89 typedef ImplicitPorousMediaProblem <TypeTag > ParentType;

90 typedef typename GET_PROP_TYPE(TypeTag , Scalar) Scalar;

91 typedef typename GET_PROP_TYPE(TypeTag , GridView) GridView;

92

93 // Grid dimension

94 enum { dim = GridView ::dimension ,

95 dimWorld = GridView :: dimensionworld

96 };

97

98 // Types from DUNE -Grid

99 typedef typename GridView :: template Codim <0 >::Entity Element;

100 typedef typename GridView :: template Codim <dim >:: Entity Vertex;

101 typedef typename GridView :: Intersection Intersection;

102 typedef Dune:: FieldVector <Scalar , dimWorld > GlobalPosition;

103

104 // Dumux specific types

105 typedef typename GET_PROP_TYPE(TypeTag , TimeManager) TimeManager;

106 typedef typename GET_PROP_TYPE(TypeTag , Indices) Indices;

107 typedef typename GET_PROP_TYPE(TypeTag , PrimaryVariables) PrimaryVariables;

108 typedef typename GET_PROP_TYPE(TypeTag , BoundaryTypes) BoundaryTypes;

109 typedef typename GET_PROP_TYPE(TypeTag , FVElementGeometry) FVElementGeometry;

110

111 public:

112 TutorialProblemImplicit(TimeManager &timeManager ,

113 const GridView &gridView)

114 : ParentType(timeManager , gridView)

115 , eps_(3e-6)

116 {

117 #if !( HAVE_DUNE_ALUGRID || HAVE_UG)

118 std::cout << "If you want to use simplices instead of cubes , install and use dune -ALUGrid

or UGGrid." << std::endl;

119 #endif // !( HAVE_DUNE_ALUGRID || HAVE_UG)

120 }

121

122 //! Specifies the problem name. This is used as a prefix for files
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123 //! generated by the simulation .

124 std:: string name() const

125 { return "tutorial_implicit"; }

126

127 //! Returns true if a restart file should be written.

128 bool shouldWriteRestartFile () const

129 { return false; }

130

131 //! Returns true if the current solution should be written to disk

132 //! as a VTK file

133 bool shouldWriteOutput () const

134 {

135 return

136 (this ->timeManager ().timeStepIndex () > 0

137 && (this ->timeManager ().timeStepIndex () % 1 == 0));

138 }

139

140 //! Returns the temperature within a finite volume. We use constant

141 //! 10 degrees Celsius.

142 Scalar temperature () const

143 { return 283.1 5; }

144

145 //! Specifies which kind of boundary condition should be used for

146 //! which equation for a finite volume on the boundary.

147 void boundaryTypes(BoundaryTypes &bcTypes , const Vertex &vertex) const

148 {

149 const GlobalPosition &globalPos = vertex.geometry ().center ();

150 if (globalPos[0] < eps_) // Dirichlet conditions on left boundary

151 bcTypes.setAllDirichlet ();

152 else // neuman for the remaining boundaries

153 bcTypes.setAllNeumann ();

154

155 }

156

157 //! Evaluates the Dirichlet boundary conditions for a finite volume

158 //! on the grid boundary. Here , the ’values ’ parameter stores

159 //! primary variables.

160 void dirichlet(PrimaryVariables &values , const Vertex &vertex) const

161 {

162 values[Indices ::pwIdx] = 200 .0 e3 ; // 200 kPa = 2 bar

163 values[Indices ::snIdx] = 0.0 ; // 0 % oil saturation on left boundary

164 }

165

166 //! Evaluates the boundary conditions for a Neumann boundary

167 //! segment. Here , the ’values ’ parameter stores the mass flux in

168 //! [kg/(m^2 * s)] in normal direction of each phase. Negative

169 //! values mean influx.

170 void neumann(PrimaryVariables &values ,

171 const Element &element ,

172 const FVElementGeometry &fvGeometry ,

173 const Intersection &intersection ,

174 int scvIdx ,

175 int boundaryFaceIdx) const

176 {

177 const GlobalPosition &globalPos =

178 fvGeometry.boundaryFace[boundaryFaceIdx ]. ipGlobal;

179 Scalar right = this ->bBoxMax ()[0];

180 // extraction of oil on the right boundary for approx. 1. e6 seconds

181 if (globalPos[0] > right - eps_) {

182 // oil outflux of 30 g/(m * s) on the right boundary.

183 values[Indices :: contiWEqIdx] = 0;

184 values[Indices :: contiNEqIdx] = 3e-2;

185 } else {
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186 // no -flow on the remaining Neumann - boundaries .

187 values[Indices :: contiWEqIdx] = 0;

188 values[Indices :: contiNEqIdx] = 0;

189 }

190 }

191

192 //! Evaluates the initial value for a control volume. For this

193 //! method , the ’values ’ parameter stores primary variables .

194 void initial(PrimaryVariables &values ,

195 const Element &element ,

196 const FVElementGeometry &fvGeometry ,

197 int scvIdx) const

198 {

199 values[Indices ::pwIdx] = 200 .0 e3 ; // 200 kPa = 2 bar

200 values[Indices ::snIdx] = 1.0 ;

201 }

202

203 //! Evaluates the source term for all phases within a given

204 //! sub -control -volume. In this case , the ’values ’ parameter

205 //! stores the rate mass generated or annihilated per volume unit

206 //! in [kg / (m^3 * s)]. Positive values mean that mass is created.

207 void source(PrimaryVariables &values ,

208 const Element &element ,

209 const FVElementGeometry &fvGeometry ,

210 int scvIdx) const

211 {

212 values[Indices :: contiWEqIdx] = 0 .0;

213 values[Indices :: contiNEqIdx ]= 0.0;

214 }

215

216 private:

217 // small epsilon value

218 Scalar eps_;

219 };

220 }

221

222 #endif

First, a new type tag is created for the problem in line 47. In this case, the new type tag inherits
all properties from the BoxTwoP type tag, which means that for this problem the two-phase box model
is chosen as discretization scheme. Further, it inherits from the spatial parameters type tag, which
is defined in line 44 of the problem-dependent spatial parameters file. On line 50, a problem class
is attached to the new type tag, while the grid which is going to be used is defined in line 54 – in
this case that is Dune::YaspGrid. Since there’s no uniform mechanism to allocate grids in DUNE,
DuMux features the concept of grid creators. In this case the generic CubeGridCreator which creates
a structured hexahedron grid of a specified size and resolution. For this grid creator the physical
domain of the grid is specified via the run-time parameters Grid.UpperRight and Grid.Cells. These
parameters can be specified via the command-line or in a parameter file.

Next, the appropriate fluid system, which specifies the thermodynamic relations of the fluid phases,
has to be chosen. By default, the two-phase model uses the TwoPImmiscibleFluidSystem, which
assumes immiscibility of the phases, but requires the components used for the wetting and non-wetting
phases to be explicitly set. In this case, liquid water which uses the relations from IAPWS’97 [10] is
chosen as the wetting phase on line 66 and liquid oil is chosen as the non-wetting phase on line 73.
The last property, which is set in line 78, tells the model not to use gravity.

Parameters which are specific to a physical set-up to be simulated, such as boundary and initial
conditions, source terms or temperature within the domain, and which are required to solve the
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differential equations of the models are specified via a problem class. This class should be derived from
ImplicitPorousMediaProblem as done in line 87.

The problem class always has at least five methods:

• A method boundaryTypes() specifying the type of boundary conditions at each vertex.

• A method dirichlet() specifying the actual values for the Dirichlet conditions at each
Dirichlet vertex.

• A method neumann() specifying the actual values for the Neumann conditions, which are usually
evaluated at the integration points of the Neumann boundary faces.

• A method for source or sink terms called source(), usually evaluated at the center of a control
volume.

• A method called initial() for specifying the initial conditions at each vertex.

For the definition of the boundary condition types and of the values of the Dirichlet boundaries,
two parameters are available:

bcTypes/values: A vector which stores the result of the method. What the values in this vector
mean is dependent on the method: For dirichlet(), values contains the actual values of the
primary variables, for boundaryTypes(), bcTypes contains the boundary condition types. It has
as many entries as the model has primary variables / equations. For the typical case, in which all
equations have the same boundary condition type at a certain position, there are two methods
that set the appropriate conditions for all primary variables / equations: setAllDirichlet()

and setAllNeumann().

vertex: The boundary condition and the Dirichlet values are specified for a vertex, which represents
a sub-control volume in the box discretization. This inhibits the specification of two different
boundary condition types for one equation at one sub-control volume. Be aware that the second
parameter is a Dune grid entity with the co-dimension dim.

To ensure that no boundaries are undefined, a small safeguard value eps is usually added when
comparing spatial coordinates. The left boundary is hence not detected by checking, if the first
coordinate of the global position is equal to zero, but by testing whether it is smaller than a very small
value eps .

Methods for box models which make statements about boundary segments of the grid (such as
neumann()) are called with six arguments:

values: A vector neumann(), in which the mass fluxes per area unit over the boundary segment are
specified.

element: The element of the grid where the boundary segment is located.

fvGeometry: The finite-volume geometry induced on the finite element by the box scheme.

intersection: The Intersection of the boundary segment as given by the grid.

scvIdx: The index of the sub-control volume in fvGeometry which is assigned to the boundary segment.
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boundaryFaceIdx: The index of the boundary face in fvGeometry which represents the boundary
segment.

Similarly, the initial() and source() methods specify properties of control volumes and thus only
get values, element, fvGeometry and scvIdx as arguments.

In addition to these five methods, there might be some model-specific methods. If the isother-
mal two-phase model is used, this includes for example a temperature() method which returns
the temperature in Kelvin of the fluids and the rock matrix in the domain. This temperature is
then used by the model to calculate fluid properties which possibly depend on it, e.g. density. The
bBoxMax() (“max imum coordinated of the grid’s bounding box”) method is used here to determine
the extend of the physical domain. It returns a vector with the maximum values of each global coor-
dinate of the grid. This method and the analogous bBoxMin() method are provided by the base class
Dumux::BoxProblem<TypeTag>.

3.1.3 Defining Fluid Properties

The DuMux distribution includes some common substances which can be used out of the box. The
properties of the pure substances (such as the components nitrogen, water, or the pseudo-component
air) are provided by header files located in the folder dumux/material/components.

Most often, when two or more components are considered, fluid interactions such as solubility effects
come into play and properties of mixtures such as density or enthalpy are of interest. These interactions
are defined by fluid systems, which are located in dumux/material/fluidsystems. A more thorough
overview of the DuMux fluid framework can be found at http://www.dumux.org/doxygen-stable/

html-2.11/modules.php

3.1.4 Defining Spatially Dependent Parameters

In DuMux, many properties of the porous medium can depend on the spatial location. Such properties
are the intrinsic permeability, the parameters of the capillary pressure and the relative permeability,
the porosity, the heat capacity as well as the heat conductivity. Such parameters are defined using a
so-called spatial parameters class.

If the box discretization is used, the spatial parameters class should be derived from the base class
Dumux::BoxSpatialParams<TypeTag>. Listing 4 shows the file
tutorialspatialparams_implicit.hh:

Listing 4 (File tutorial/tutorialspatialparams implicit.hh)

25 #ifndef DUMUX_TUTORIAL_SPATIAL_PARAMS_IMPLICIT_HH

26 #define DUMUX_TUTORIAL_SPATIAL_PARAMS_IMPLICIT_HH

27

28 // include parent spatialparameters

29 #include <dumux/material/spatialparams/implicit.hh>

30

31 // include material laws

32 #include <dumux/material/fluidmatrixinteractions/2p/regularizedbrookscorey.hh >

33 #include <dumux/material/fluidmatrixinteractions/2p/efftoabslaw.hh>

34 #include <dumux/material/fluidmatrixinteractions/2p/linearmaterial.hh>

35

36 namespace Dumux {

37 // forward declaration

38 template <class TypeTag >
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39 class TutorialSpatialParamsImplicit;

40

41 namespace Properties

42 {

43 // The spatial parameters TypeTag

44 NEW_TYPE_TAG(TutorialSpatialParamsImplicit);

45

46 // Set the spatial parameters

47 SET_TYPE_PROP(TutorialSpatialParamsImplicit , SpatialParams ,

48 TutorialSpatialParamsImplicit <TypeTag >);

49

50 // Set the material law

51 SET_PROP(TutorialSpatialParamsImplicit , MaterialLaw)

52 {

53 private:

54 // material law typedefs

55 typedef typename GET_PROP_TYPE(TypeTag , Scalar) Scalar;

56 // select material law to be used

57 typedef RegularizedBrooksCorey <Scalar > RawMaterialLaw;

58 public:

59 // adapter for absolute law

60 typedef EffToAbsLaw <RawMaterialLaw > type;

61 };

62 }

63

64 /*!

65 * \ingroup TwoPBoxModel

66 *

67 * \brief The spatial parameters for the fully coupled tutorial problem

68 * which uses the twophase box model.

69 */

70 template <class TypeTag >

71 class TutorialSpatialParamsImplicit: public ImplicitSpatialParams <TypeTag >

72 {

73 // Get informations for current implementation via property system

74 typedef typename GET_PROP_TYPE(TypeTag , Grid) Grid;

75 typedef typename GET_PROP_TYPE(TypeTag , GridView) GridView;

76 typedef typename GET_PROP_TYPE(TypeTag , Scalar) Scalar;

77 enum

78 {

79 dim = Grid:: dimension

80 };

81

82 // Get object types for function arguments

83 typedef typename GET_PROP_TYPE(TypeTag , FVElementGeometry) FVElementGeometry;

84 typedef typename Grid:: Traits :: template Codim <0 >::Entity Element;

85

86 public:

87 // get material law from property system

88 typedef typename GET_PROP_TYPE(TypeTag , MaterialLaw) MaterialLaw;

89 // determine appropriate parameters depending on selected materialLaw

90 typedef typename MaterialLaw :: Params MaterialLawParams;

91

92 /*! Intrinsic permeability tensor K \f$[m^2]\f$ depending

93 * on the position in the domain

94 *

95 * \param element The finite volume element

96 * \param fvGeometry The finite -volume geometry in the box scheme

97 * \param scvIdx The local vertex index

98 *

99 * Alternatively , the function intrinsicPermeabilityAtPos (const GlobalPosition & globalPos )

100 * could be defined , where globalPos is the vector including the global coordinates

101 * of the finite volume.
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102 */

103 const Dune:: FieldMatrix <Scalar , dim , dim > &intrinsicPermeability(const Element &element ,

104 const FVElementGeometry &fvGeometry ,

105 const int scvIdx) const

106 { return K_; }

107

108 /*! Defines the porosity \f$[-]\f$ of the porous medium depending

109 * on the position in the domain

110 *

111 * \param element The finite volume element

112 * \param fvGeometry The finite -volume geometry in the box scheme

113 * \param scvIdx The local vertex index

114 *

115 * Alternatively , the function porosityAtPos (const GlobalPosition & globalPos)

116 * could be defined , where globalPos is the vector including the global coordinates

117 * of the finite volume.

118 */

119 Scalar porosity(const Element &element ,

120 const FVElementGeometry &fvGeometry ,

121 const int scvIdx) const

122 { return 0 .2; }

123

124 /*! Returns the parameter object for the material law (i.e. Brooks -Corey)

125 * depending on the position in the domain

126 *

127 * \param element The finite volume element

128 * \param fvGeometry The finite -volume geometry in the box scheme

129 * \param scvIdx The local vertex index

130 *

131 * Alternatively , the function materialLawParamsAtPos (const GlobalPosition & globalPos )

132 * could be defined , where globalPos is the vector including the global coordinates

133 * of the finite volume.

134 */

135 const MaterialLawParams& materialLawParams(const Element &element ,

136 const FVElementGeometry &fvGeometry ,

137 const int scvIdx) const

138 {

139 return materialParams_;

140 }

141

142 // constructor

143 TutorialSpatialParamsImplicit(const GridView& gridView) :

144 ImplicitSpatialParams <TypeTag >( gridView),

145 K_(0)

146 {

147 // set main diagonal entries of the permeability tensor to a value

148 // setting to one value means: isotropic , homogeneous

149 for (int i = 0; i < dim; i++)

150 K_[i][i] = 1e-7;

151

152 // set residual saturations

153 materialParams_.setSwr(0.0);

154 materialParams_.setSnr(0.0);

155

156 // parameters of Brooks & Corey Law

157 materialParams_.setPe(500.0);

158 materialParams_.setLambda(2);

159 }

160

161 private:

162 Dune:: FieldMatrix <Scalar , dim , dim > K_;

163 // Object that holds the values/ parameters of the selected material law.

164 MaterialLawParams materialParams_;
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165 };

166 } // end namespace

167 #endif

First, the spatial parameters type tag is created on line 44. The type tag for the problem is then
derived from it. The DuMux properties defined on the type tag for the spatial parameters are, for
example, the spatial parameters class itself (line 48) or the capillary pressure/relative permeability rela-
tions1 which ought to be used by the simulation (line 57 ). DuMux provides several material laws in the
folder dumux/material/fluidmatrixinteractions. The selected one – here it is a relation according
to a regularized version of Brooks & Corey – is included in line 32. After the selection, an adapter
class is specified in line 60 to translate between effective and absolute saturations. Like this, residual
saturations can be specified in a generic way. As only the employed material law knows the names
of the parameters which it requires, it provides a parameter class RegularizedBrooksCoreyParams

which has the type Params and which is defined in line 90. In this case, the spatial parameters only
require a single set of parameters which means that it only requires a single material parameter object
as can be seen in line 164.

In line 103, a method returning the intrinsic permeability is specified. As can be seen, the method
has to be called with three arguments:

element: Just like for the problem itself, this parameter describes the considered element by means
of a DUNE entity. Elements provide information about their geometry and position and can be
mapped to a global index.

fvGeometry: It holds information about the finite-volume geometry of the element induced by the box
method.

scvIdx: This is the index of the sub-control volume of the element which is considered. It is equivalent
to the local index of the vertex which corresponds to the considered control volume in the element.

The intrinsic permeability is usually a tensor. Thus the method returns a dim× dim-matrix, where
dim is the dimension of the grid.

The method porosity() defined in line 119 is called with the same arguments as intrinsicPermeability()
and returns a scalar value for porosity dependent on the position in the domain.

Next, the method materialLawParams(), defined in line 135, returns the materialParams_ object
that is applied at the specified position. Although in this case only one object is returned, in general,
the problem may be heterogeneous, which necessitates returning different objects at different positions
in space. While the selection of the type of this object was already explained (line 32), some specific
parameter values of the used material law, such as the Brooks & Corey parameters, are still needed.
This is done in the constructor at line 153. Depending on the type of the materialLaw object,
the set-methods might be different than those given in this example. The name of the access /
set functions as well as the rest of the implementation of the material description can be found in
dumux/material/fluidmatrixinteractions/2p.

3.1.5 Exercises

The following exercises will give you the opportunity to learn how you can change soil parameters,
boundary conditions, run-time parameters and fluid properties in DuMux. Possible solutions to these

1Taken together, the capillary pressure and the relative permeability relations are called material law.
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exercises are given in the tutorial folder in the sub-folder solutions implicit as .diff files. In these
files only the lines that are different from the original file are listed. They can be opened using the
program kompare, simply type kompare SOLUTIONFILE into the terminal.

Exercise 1

For Exercise 1 you have to make only some small changes in the tutorial files.

a) Running the Program
To get an impression what the results should look like you can compile and run the orig-
inal version of the implicit tutorial model by typing make tutorial implicit followed by
./tutorial implicit. Note, that the time-step size is automatically adapted during the simu-
lation. For the visualization of the results using ParaView, please refer to section 2.2.

b) Changing the Model Domain and the Boundary Conditions
Change the size of the model domain so that you get a rectangle with edge lengths of x = 400 m
and y = 500 m and with discretization lengths of ∆x = 20 m and ∆y = 20 m. For this you have
to edit the parameter file (tutorial implicit.input) and run the program again.
Note, that you do not have to recompile the program if you make changes to the parameter file.

Change the boundary conditions in the file tutorialproblem implicit.hh so that water enters
from the bottom and oil is extracted from the top boundary. The right and the left boundary
should be closed for water and oil fluxes.
The Neumannn Boundary conditions are multiplied by the normal (pointing outwards), so an
influx is negative, an outflux always positive. Such information can easily be found in the
documentation of the functions (also look into base classes). Compile the main file by typing
make tutorial implicit and run the model as explained above.

c) Changing the Shape of the Discrete Elements
In order to complete this exercise you need an external grid manager capable of handling simplex
grids, like ALUGrid or UGGrid. If this is not the case, please skip this exercise. Change the types
of elements used for discretizing the domain. In line 54 of the problem file the grid is chosen. For
ALUGrid you have to change the ALUGrid type in line 55 from Dune::cube to Dune::simplex.
The shape of the employed elements can be visualized in ParaView by choosing Surface with

Edges.

d) Changing Fluids
Now you can change the fluids. Use DNAPL instead of Oil and Brine instead of Water. To do
that, you have to select different components via the property system in the problem file:

a) Brine: Brine is thermodynamically very similar to pure water but also considers a fixed
amount of salt in the liquid phase. Hence, the class Dumux::Brine uses a pure water
class, such as Dumux::H2O<Scalar>, as a second template argument after the data type
<Scalar>, i.e. Dumux::Brine<Scalar, Dumux::H2O<Scalar>>. The file is located in the
folder dumux/material/components/. Try to include the file and select the component as
the wetting phase via the property system.
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b) DNAPL: Now let’s include a DNAPL (dense non-aqueous phase liquid) which is located in
the folder dumux/material/components/. Try to include the file and select the component
as the non-wetting phase via the property system.

If you want to take a closer look on how the fluid classes are defined and which substances are
already available please browse through the files in the directory /dumux/material/components

and read the doxygen documentation http://www.dumux.org/doxygen-stable/html-2.11/

modules.php.

e) Use a Full-Fledged Fluid System
DuMux usually describes fluid mixtures via fluid systems, see also chapter ??. In order to include
a fluid system, you first have to comment out lines 63 to 74 in the problem file. If you use eclipse,
this can easily be done by pressing Ctrl + Shift + 7 – the same as to cancel the comment later
on.
Now include the file fluidsystems/h2oair.hh in the material folder, and set a type property
FluidSystem (see line 76) with the appropriate type, which is either:
Dumux::FluidSystems::H2OAir<typename GET PROP TYPE(TypeTag, Scalar)>

or in the DuMux tongue
Dumux::H2OAirFluidSystem<TypeTag>

However, this is a rather complicated fluid system which considers mixtures of components and
also uses tabulated components that need to be initialized – i.e. the tables need to be filled with
values. The initialization of the fluid system is normally done in the constructor of the problem
by calling GET PROP TYPE(TypeTag, FluidSystem)::init();. Remember that the constructor
function always has the same name as the respective class, i.e. TutorialProblemImplicit(..).
As water flow replacing a gas is much faster, test your simulation only until 2000 seconds and
start with a time-step of 1 second.
Please reverse the changes made in this part of the exercise, as we will continue to use immiscible
phases from here on and hence do not need a complex fluid system.

f) Changing Constitutive Relations
Use an unregularized linear law with an entry pressure of pe = 0.0 Pa and maximal capillary
pressure of e.g. pcmax = 2000.0 Pa instead of using a regularized Brooks-Corey law for the
relative permeability and for the capillary pressure saturation relationship. To do that you
have to change the material law property (line 57) in tutorialspatialparams implicit.hh.
Exchange the RegularizedBrooksCorey material law with the LinearMaterial law type in
the private section of the property definition. You can find the material laws in the folder
dumux/material/fluidmatrixinteractions. The necessary parameters of the linear law and
the respective set-functions can be found in the file
dumux/material/fluidmatrixinteractions/2p/linearmaterialparams.hh.
Call the set-functions from the constructor of the tutorialspatialparams implicit.hh.

g) Heterogeneities
Set up a model domain with the soil properties given in Figure 3.2. Adjust the boundary
conditions so that water is again flowing from the left to the right of the domain. You can use
the fluids of exercise 1b.
Hint: The current position of the control volume can be obtained using element.geometry()

.corner(scvIdx), which returns a vector of the global coordinates of the current position.
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600 m

300 m K = 10−8 m2

φ = 0.15
K = 10−9 m2

φ = 0.3

Figure 3.2: Exercise 1g: Set-up of a model domain with a heterogeneity. Grid spacing: ∆x = 20 m
∆y = 20 m.

When does the front cross the material border? In ParaView, the animation view (View →
Animation View) is a convenient way to get a rough feeling of the time-step sizes.

Exercise 2

For this exercise you should create a new problem file analogous to the file tutorialproblem implicit.hh

(e.g. with the name ex2 tutorialproblem implicit.hh and new spatial parameters ex2 tutorial

spatialparams implicit.hh, just like tutorialspatialparams implicit.hh.
The new files should contain the definition of new classes with names that relate to the file name,

such as Ex2TutorialProblemImplicit. Make sure that you also adjust the guardian macros in lines
24 and 25 in the header files (e.g. change DUMUX TUTORIALPROBLEM IMPLICIT HH to
DUMUX EX2 TUTORIALPROBLEM IMPLICIT HH). Include the new problem file in tutorial implicit.cc.
Besides adjusting the guardian macros, the new problem file should define and use a new type tag
for the problem as well as a new problem class e.g. Ex2TutorialProblemImplicit. The type tag
definition has to be adjusted in tutorial implicit.cc too (see line 47). Similarly adjust your new
spatial parameters file. If you are using Eclipse there is a very helpful function called Refactor which
you can use to change all similar variables or types in your current file in one go. Just place the cursor
at the variable or type you want to change and use the Refactor → Rename functionality. Make sure
to assign your newly defined spatial parameter class to the SpatialParams property for the new type
tag.

After this, change the run-time parameters so that they match the domain described by figure 3.3.
Adapt the problem class so that the boundary conditions are consistent with figure 3.4. Initially, the
domain is fully saturated with water and the pressure is pw = 5× 105 Pa. Oil infiltrates from the left
side. Create a grid with 20 cells in x-direction and 10 cells in y-direction. The simulation time should
be set to 106 s with an initial time-step size of 100 s. Then, you can compile the program.

• Increase the simulation time to e.g. 4 × 107 s. Investigate the saturation: Is the value range
reasonable?

• What happens if you increase the resolution of the grid?
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50 m

100 m

20 m

15 m

50 m 25 m

K = 10−7 m2

φ = 0.2

Brooks-Corey Law

λ = 1.8, pe = 1000 Pa

K = 10−9 m2

φ = 0.15

Brooks-Corey Law

λ = 2, pe = 1500 Pa

Figure 3.3: Set-up of the model domain and the soil parameters

no flow

no flow

qn = 0

qw = 2 · 10−4 kg/m2s

Sn = 1

pw = 5 · 105 Pa

Figure 3.4: Boundary Conditions

Exercise 3: Parameter File Input

As you have experienced, compilation takes quite some time. Therefore, DuMux provides a simple
method to read in parameters at run-time via parameter input files.

In the code, parameters can be read via the macro GET RUNTIME PARAM(TypeTag, Scalar, MyWonderful

Group.MyWonderfulParameter);. In this exercise we will explore the possibilities of the parameter
file. For this we take a look at the file ex3 tutorial implicit.input in the solutions implicit

folder. Besides the parameters which you already used in the parameter file above, there are parameters
which can be used to control the Newton and the Linear solver (groups: Newton and LinearSolver).
Run-time parameters used in the problem or spatial parameters classes can also be set with the
respective group names (Problem and SpatialParams) in the parameter file. For the latter param-
eters to be included in the program they have to be assigned in the problem or spatial parame-
ters constructor. This can be done as shown in the files ex3 tutorialproblem implicit.diff and
ex3 tutorialspatialparams implicit.diff in the solutions implicit folder. Add some (for ex-
ample Newton.MaxSteps and Problem.EnableGravity) to the parameter file tutorial implicit.input

and observe what happens if they are modified.
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Exercise 4: Create a New Component

Create a new file for the benzene component called benzene.hh and implement a new component. (You
may get a hint by looking at existing components in the directory /dumux/material/components).
Use benzene as a new fluid and run the model of Exercise 2 with water and benzene. Benzene has a
density of 889.51 kg/m3 and a viscosity of 0.00112 Pa s.

Exercise 5: Time Dependent Boundary Conditions

In this exercise we want to investigate the influence of time dependent boundary conditions. For this,
redo the steps of exercise 2 and create a new problem and spatial parameters file.

After this, change the run-time parameters so that they match the domain described by figure 3.5.
Adapt the problem class so that the boundary conditions are consistent with figure 3.6. Here you
can see the time dependence of the nonwetting saturation, where water infiltrates only during 105 s
and 4 · 105 s. To implement these time dependencies you need the actual time tn+1 = tn + ∆t and
the endtime of the simulation. For this you can use the methods this->timeManager().time(),
this->timeManager().timeStepSize() and this->timeManager().endTime().

Initially, the domain is fully saturated with oil and the pressure is pw = 2×105 Pa. Water infiltrates
from the left side. Create a grid with 100 cells in x-direction and 10 cells in y-direction. The simulation
time should be set to 5 ·105 s with an initial time-step size of 10 s. To avoid too big time-step sizes you
should set the parameter MaxTimeStepSize for the group TimeManager (in your input file) to 1000 s.
Then, you can compile the program.

50 m

100 m no flow

no flow

qn = 1 · 10−3 kg/m2s

qw = 0

Sn(t)

pw = 2 · 105 Pa

K = 10−7 m2

φ = 0.2

Brooks-Corey Law

λ = 2, pe = 500 Pa

Figure 3.5: Set-up of the model domain and the soil parameters

• Open ParaView and plot the values of Sn at time 5 · 105 s over the x-axis.
(Filter->Data Analysis->Plot Over Line)

• What happens without any time-step restriction?
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Sn

time [s]

1

0
1 · 105 4 · 105 5 · 105

1− sin
(
π time−105

3·105

)

Figure 3.6: Time Dependent Boundary Conditions
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3.2 Solving a problem using a Sequential Model

The process of solving a problem using DuMux can be roughly divided into four parts:

a) The geometry of the problem and correspondingly a grid have to be defined.

b) Material properties and constitutive relationships have to be defined.

c) Boundary conditions as well as initial conditions have to be defined.

d) A suitable model has to be chosen.

In contrast to the last section, we now apply a sequential solution procedure, a so-called IMPET
(IM plicit Pressure Explicit T ransport) algorithm. This means that the pressure equation is first
solved using an implicit method. The resulting velocities are then used to solve a transport equation
explicitly.
In this tutorial, pure fluid phases are solved with a finite volume discretization of both pressure- and
transport step. Primary variables, according to default settings of the model, are the pressure and the
saturation of the wetting phase.

The problem which is solved in this tutorial is illustrated in figure 3.7. A rectangular domain with
no flow boundaries on the top and at the bottom, which is initially saturated with oil, is considered.
Water infiltrates from the left side into the domain. Gravity effects are neglected.

y

x

no flow

no flow

water oil

pwinitial
= 2 · 105 Pa

Swinitial
= 0

pw = 2 · 105 Pa

Sw = 1

qw = 0 kg/m2s

qn = 3 · 10−2 kg/m2s

Figure 3.7: Geometry of the tutorial problem with initial and boundary conditions.

Listing 5 shows how the main file, which has to be executed, has to be set up, if the problem
described above is to be solved using a sequential model. This main file can be found in the directory
/tutorial of the stable part of DuMux.

Listing 5 (File tutorial/tutorial sequential.cc)

24 #include <config.h>

25

26 #include "tutorialproblem_sequential.hh"

27 #include <dumux/common/start.hh>

28

29 //! Prints a usage/help message if something goes wrong or the user asks for help

30 void usage(const char *progName , const std:: string &errorMsg)

31 {

32 std::cout

33 << "\nUsage: " << progName << " [options ]\n";

34 if (errorMsg.size() > 0)

35 std::cout << errorMsg << "\n";

36 std::cout
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37 << "\n"

38 << "The list of mandatory arguments for this program is:\n"

39 << "\t-TEnd The end of the simulation [s]\n"

40 << "\t-DtInitial The initial timestep size [s]\n"

41 << "\t-Grid.UpperRight The x-/y-coordinates of the grid’s upper -right corner [m]\n"

42 << "\t-Grid.Cells The grid’s x-/y-resolution\n"

43 << "\n";

44 }

45

46

47 // //////////////////////

48 // the main function

49 // //////////////////////

50 int main(int argc , char** argv)

51 {

52 typedef TTAG(TutorialProblemSequential) TypeTag;

53 return Dumux ::start <TypeTag >(argc , argv , usage);

54 }

First, from line 24 to line 27 the DUNE and DuMux files containing essential functions and classes
are included.

At line 52 the type tag of the problem which is going to be simulated is set. All other data types
can be retrieved by the DuMux property system and only depend on this single type tag. For an
introduction to the property system, see section 5.4.

After this DuMux’ default startup routine Dumux::start() is called in line 53. This function deals
with parsing the command line arguments, reading the parameter file, setting up the infrastructure nec-
essary for DUNE, loading the grid, and starting the simulation. All parameters can be either specified
by command line arguments of the form (-ParameterName ParameterValue), in the file specified by
the -parameterFile argument, or if the latter is not specified, in the file tutorial sequential.input.
If a parameter is specified on the command line as well as in the parameter file, the values provided in
the command line have precedence. Listing 6 shows the default parameter file for the tutorial problem.

Listing 6 (File tutorial/tutorial sequential.input)

1 [TimeManager]

2 TEnd = 100000 # duration of the simulation [s]

3 DtInitial = 10 # initial time step size [s]

4

5 [Grid]

6 UpperRight = 300 60 # x-/y- coordinate of the upper -right corner of the grid [m]

7 Cells = 100 1 # x-/y- resolution of the grid

To provide an error message, the usage message which is displayed to the user if the simulation
is called incorrectly, is printed via the custom function which is defined on line 30. In this function
the usage message is customized to the problem at hand. This means that at least the necessary
parameters are listed here.

3.2.1 The Problem Class

When solving a problem using DuMux, the most important file is the so-called problem file as shown
in listing 7 of tutorialproblem sequential.hh.

Listing 7 (File tutorial/tutorialproblem sequential.hh)
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24 #ifndef DUMUX_TUTORIALPROBLEM_SEQUENTIAL_HH // guardian macro

25 #define DUMUX_TUTORIALPROBLEM_SEQUENTIAL_HH // guardian macro

26

27 // dumux 2p- sequential environment

28 #include <dumux/porousmediumflow/2p/sequential/diffusion/cellcentered/pressureproperties.hh >

29 #include <dumux/porousmediumflow/2p/sequential/transport/cellcentered/properties.hh>

30 #include <dumux/porousmediumflow/2p/sequential/impes/problem.hh >

31

32 // assign parameters dependent on space (e.g. spatial parameters )

33 #include "tutorialspatialparams_sequential.hh"

34

35 // include cfl - criterion after coats: more suitable if the problem is not advection dominated

36 #include <dumux/porousmediumflow/2p/sequential/transport/cellcentered/evalcflfluxcoats.hh>

37

38 // the components that are used

39 #include <dumux/material/components/h2o.hh>

40 #include <dumux/material/components/lnapl.hh >

41

42 namespace Dumux

43 {

44

45 template <class TypeTag >

46 class TutorialProblemSequential;

47

48 // ////////

49 // Specify the properties for the lens problem

50 // ////////

51 namespace Properties

52 {

53 // create a new type tag for the problem

54 NEW_TYPE_TAG(TutorialProblemSequential , INHERITS_FROM(FVPressureTwoP , FVTransportTwoP ,

IMPESTwoP ,

55 TutorialSpatialParamsSequential));

56

57 // Set the problem property

58 SET_PROP(TutorialProblemSequential , Problem)

59 {

60 typedef TutorialProblemSequential <TypeTag > type;

61 };

62

63 // Set the grid type

64 SET_TYPE_PROP(TutorialProblemSequential , Grid , Dune::YaspGrid <2 >);

65

66 // Set the wetting phase

67 SET_PROP(TutorialProblemSequential , WettingPhase)

68 {

69 private:

70 typedef typename GET_PROP_TYPE(TypeTag , Scalar) Scalar;

71 public:

72 typedef FluidSystems :: LiquidPhase <Scalar , H2O<Scalar > > type;

73 };

74

75 // Set the non -wetting phase

76 SET_PROP(TutorialProblemSequential , NonwettingPhase)

77 {

78 private:

79 typedef typename GET_PROP_TYPE(TypeTag , Scalar) Scalar;

80 public:

81 typedef FluidSystems :: LiquidPhase <Scalar , LNAPL <Scalar > > type;

82 };

83

84 SET_TYPE_PROP(TutorialProblemSequential , EvalCflFluxFunction , EvalCflFluxCoats <TypeTag >);

85 SET_SCALAR_PROP(TutorialProblemSequential , ImpetCFLFactor , 0.95);
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86

87 // Disable gravity

88 SET_BOOL_PROP(TutorialProblemSequential , ProblemEnableGravity , false);

89 }

90

91 /*! \ingroup SequentialProblems

92 * @brief Problem class for the sequential tutorial

93 */

94 template <class TypeTag >

95 class TutorialProblemSequential: public IMPESProblem2P<TypeTag >

96 {

97 typedef IMPESProblem2P<TypeTag > ParentType;

98 typedef typename GET_PROP_TYPE(TypeTag , GridView) GridView;

99 typedef typename GET_PROP_TYPE(TypeTag , TimeManager) TimeManager;

100 typedef typename GET_PROP_TYPE(TypeTag , Indices) Indices;

101

102 typedef typename GET_PROP_TYPE(TypeTag , BoundaryTypes) BoundaryTypes;

103 typedef typename GET_PROP(TypeTag , SolutionTypes) SolutionTypes;

104 typedef typename SolutionTypes :: PrimaryVariables PrimaryVariables;

105

106 enum

107 {

108 dimWorld = GridView :: dimensionworld

109 };

110

111 enum

112 {

113 wPhaseIdx = Indices ::wPhaseIdx ,

114 nPhaseIdx = Indices ::nPhaseIdx ,

115 pwIdx = Indices ::pwIdx ,

116 swIdx = Indices ::swIdx ,

117 pressEqIdx = Indices :: pressureEqIdx ,

118 satEqIdx = Indices :: satEqIdx

119 };

120

121 typedef typename GET_PROP_TYPE(TypeTag , Scalar) Scalar;

122

123 typedef typename GridView :: Traits :: template Codim <0 >::Entity Element;

124 typedef typename GridView :: Intersection Intersection;

125 typedef Dune:: FieldVector <Scalar , dimWorld > GlobalPosition;

126

127 public:

128 TutorialProblemSequential(TimeManager &timeManager , const GridView &gridView)

129 : ParentType(timeManager , gridView), eps_(1e-6)

130 {

131 // write only every 10th time step to output file

132 this ->setOutputInterval(10);

133 }

134

135 //! The problem name.

136 /*! This is used as a prefix for files generated by the simulation .

137 */

138 std:: string name() const

139 {

140 return "tutorial_sequential";

141 }

142

143 //! Returns true if a restart file should be written.

144 /* The default behaviour is to write no restart file.

145 */

146 bool shouldWriteRestartFile () const

147 {

148 return false;
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149 }

150

151 //! Returns the temperature within the domain at position globalPos .

152 /*! This problem assumes a temperature of 10 degrees Celsius.

153 *

154 * \param element The finite volume element

155 *

156 * Alternatively , the function temperatureAtPos (const GlobalPosition & globalPos) could be

157 * defined , where globalPos is the vector including the global coordinates of the finite

volume.

158 */

159 Scalar temperature(const Element& element) const

160 {

161 return 273 .15 + 10; // -> 10 Â◦C
162 }

163

164 //! Returns a constant pressure to enter material laws at position globalPos.

165 /* For incrompressible simulations , a constant pressure is necessary

166 * to enter the material laws to gain a constant density etc. In the compressible

167 * case , the pressure is used for the initialization of material laws.

168 *

169 * \param element The finite volume element

170 *

171 * Alternatively , the function referencePressureAtPos (const GlobalPosition & globalPos)

could be

172 * defined , where globalPos is the vector including the global coordinates of the finite

volume.

173 */

174 Scalar referencePressure(const Element& element) const

175 {

176 return 2e5 ;

177 }

178

179 //! Source of mass \f$ [\ frac{kg}{m^3 \cdot s}] \f$ of a finite volume.

180 /*! Evaluate the source term for all phases within a given

181 * volume.

182 *

183 * \param values Includes sources for the two phases

184 * \param element The finite volume element

185 *

186 * The method returns the mass generated (positive) or

187 * annihilated (negative) per volume unit.

188 *

189 * Alternatively , the function sourceAtPos ( PrimaryVariables &values , const GlobalPosition &

globalPos )

190 * could be defined , where globalPos is the vector including the global coordinates of the

finite volume.

191 */

192 void source(PrimaryVariables &values , const Element& element) const

193 {

194 values = 0;

195 }

196

197 //! Type of boundary conditions at position globalPos .

198 /*! Defines the type the boundary condition for the pressure equation ,

199 * either pressure (dirichlet ) or flux (neumann),

200 * and for the transport equation ,

201 * either saturation (dirichlet ) or flux (neumann).

202 *

203 * \param bcTypes Includes the types of boundary conditions

204 * \param globalPos The position of the center of the finite volume

205 *

206 * Alternatively , the function boundaryTypes ( PrimaryVariables &values , const Intersection &
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207 * intersection ) could be defined , where intersection is the boundary intersection .

208 */

209 void boundaryTypesAtPos(BoundaryTypes &bcTypes , const GlobalPosition& globalPos) const

210 {

211 if (globalPos[0] < this ->bBoxMin ()[0] + eps_)

212 {

213 bcTypes.setDirichlet(pwIdx);

214 bcTypes.setDirichlet(swIdx);

215 // bcTypes. setAllDirichlet (); // alternative if the same BC is used for all

primary variables

216 }

217 // all other boundaries

218 else

219 {

220 bcTypes.setNeumann(pressEqIdx);

221 bcTypes.setNeumann(satEqIdx);

222 // bcTypes. setAllNeumann (); // alternative if the same BC is used for all

equations

223 }

224 }

225 //! Value for dirichlet boundary condition at position globalPos.

226 /*! In case of a dirichlet BC for the pressure equation the pressure \f$ [Pa] \f$ , and for

227 * the transport equation the saturation [-] have to be defined on boundaries .

228 *

229 * \param values Values of primary variables at the boundary

230 * \param intersection The boundary intersection

231 *

232 * Alternatively , the function dirichletAtPos ( PrimaryVariables &values , const

GlobalPosition & globalPos)

233 * could be defined , where globalPos is the vector including the global coordinates of the

finite volume.

234 */

235 void dirichlet(PrimaryVariables &values , const Intersection& intersection) const

236 {

237 values[pwIdx] = 2e5 ;

238 values[swIdx] = 1.0 ;

239 }

240 //! Value for neumann boundary condition \f$ [\ frac{kg}{m^3 \cdot s}] \f$ at position

globalPos .

241 /*! In case of a neumann boundary condition , the flux of matter

242 * is returned as a vector.

243 *

244 * \param values Boundary flux values for the different phases

245 * \param globalPos The position of the center of the finite volume

246 *

247 * Alternatively , the function neumann( PrimaryVariables &values , const Intersection &

intersection ) could be defined ,

248 * where intersection is the boundary intersection .

249 */

250 void neumannAtPos(PrimaryVariables &values , const GlobalPosition& globalPos) const

251 {

252 values = 0;

253 if (globalPos[0] > this ->bBoxMax ()[0] - eps_)

254 {

255 values[nPhaseIdx] = 3e-2;

256 }

257 }

258 //! Initial condition at position globalPos.

259 /*! Only initial values for saturation have to be given!

260 *

261 * \param values Values of primary variables

262 * \param element The finite volume element

263 *
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264 * Alternatively , the function initialAtPos ( PrimaryVariables &values , const GlobalPosition

& globalPos )

265 * could be defined , where globalPos is the vector including the global coordinates of the

finite volume.

266 */

267 void initial(PrimaryVariables &values ,

268 const Element &element) const

269 {

270 values = 0;

271 }

272

273 private:

274 const Scalar eps_;

275 };

276 } // end namespace

277

278 #endif

First, both DUNE grid handlers and the sequential model of DuMux have to be included. Then, a
new type tag is created for the problem in line 55. In this case, the new type tag inherits all properties
defined for the SequentialTwoP type tag, which means that for this problem the two-phase sequential
approach is chosen as discretization scheme (defined via the include in line 30). On line 58, a problem
class is attached to the new type tag, while the grid which is going to be used is defined in line 64 –
in this case an YaspGrid is created. Since there’s no uniform mechanism to allocate grids in DUNE,
DuMux features the concept of grid creators. In this case the generic CubeGridCreator which creates
a structured hexahedron grid of a specified size and resolution. For this grid creator the physical
domain of the grid is specified via the run-time parameters Grid.UpperRight and Grid.Cells. These
parameters can be specified via the command-line or in a parameter file. For more information about
the DUNE grid interface, the different grid types that are supported and the generation of different
grids, consult chapter 5.5 of this document and the Dune Grid Interface HOWTO [8].

Next, we select the material of the simulation: In the case of a pure two-phase model, each phase
is a bulk fluid, and the complex (compositional) fluidsystems do not need to be used. However, they
can be used (see exercise 1 4). Instead, we use a simplified fluidsystem container that provides classes
for liquid and gas phases, line 67 to 82. These are linked to the appropriate chemical species in line 72
and 81. For all parameters that depend on space, such as the properties of the soil, the specific spatial
parameters for the problem of interest are specified in line 47.

Now we arrive at some model parameters of the applied two-phase sequential model. First, in line
84 a flux function for the evaluation of the cfl-criterion is defined. This is optional as there exists also
a default flux function. The choice depends on the problem which has to be solved. For cases which
are not advection dominated the one chosen here is more reasonable. Line 85 assigns the CFL-factor
to be used in the simulation run, which scales the time-step size (kind of security factor). The last
property in line 88 is optional and tells the model not to use gravity.

After all necessary information is written into the property system and its namespace is closed in
line 89, the problem class is defined in line 95. As its property, the problem class itself is also derived
from a parent, IMPESProblem2P. The class constructor (line 129) is able to hold two vectors, which is
not needed in this tutorial.

Beside the definition of the boundary and initial conditions (discussed in subsection 3.1.2 from
4th paragraph on page 18), the problem class also contains general information about the current
simulation. First, the name used by the VTK-writer to generate output is defined in the method of
line 138, and line 146 indicates whether restart files are written. As sequential schemes usually feature
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small time-steps, it can be usefull to set an output interval larger than 1. The respective function is
called in line 132, which gets the output interval as argument.

The following methods all have in common that they may be dependent on space. Hence, they
all have either an element or an intersection as their function argument: Both are DUNE en-
tities, depending on whether the parameter of the method is defined in an element, such as initial
values, or on an intersection, such as a boundary condition. As it may be sufficient to return val-
ues only based on a position, DuMux models can also access functions in the problem with the form
...AtPos(GlobalPosition& globalPos), without an DUNE entity, as one can see in line 209.

There are the methods for general parameters, source- or sinkterms, boundary conditions (lines
209 to 250) and initial values for the transported quantity in line 268. For more information on the
functions, consult the documentation in the code.

3.2.2 The Definition of the Parameters that are Dependent on Space

Listing 8 shows the file tutorialspatialparams_sequential.hh:

Listing 8 (File tutorial/tutorialspatialparams sequential.hh)

24 #ifndef DUMUX_TUTORIAL_SPATIAL_PARAMS_SEQUENTIAL_HH

25 #define DUMUX_TUTORIAL_SPATIAL_PARAMS_SEQUENTIAL_HH

26

27

28 #include <dumux/material/spatialparams/fv.hh >

29 #include <dumux/material/fluidmatrixinteractions/2p/linearmaterial.hh>

30 #include <dumux/material/fluidmatrixinteractions/2p/regularizedbrookscorey.hh >

31 #include <dumux/material/fluidmatrixinteractions/2p/efftoabslaw.hh>

32

33 namespace Dumux

34 {

35

36 // forward declaration

37 template <class TypeTag >

38 class TutorialSpatialParamsSequential;

39

40 namespace Properties

41 {

42 // The spatial parameters TypeTag

43 NEW_TYPE_TAG(TutorialSpatialParamsSequential);

44

45 // Set the spatial parameters

46 SET_TYPE_PROP(TutorialSpatialParamsSequential , SpatialParams ,

47 TutorialSpatialParamsSequential <TypeTag >);

48

49 // Set the material law

50 SET_PROP(TutorialSpatialParamsSequential , MaterialLaw)

51 {

52 private:

53 // material law typedefs

54 typedef typename GET_PROP_TYPE(TypeTag , Scalar) Scalar;

55 typedef RegularizedBrooksCorey <Scalar > RawMaterialLaw;

56 public:

57 typedef EffToAbsLaw <RawMaterialLaw > type;

58 };

59 }

60

61 //! Definition of the spatial parameters for the sequential tutorial

62

63 template <class TypeTag >
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64 class TutorialSpatialParamsSequential: public FVSpatialParams <TypeTag >

65 {

66 typedef FVSpatialParams <TypeTag > ParentType;

67 typedef typename GET_PROP_TYPE(TypeTag , Grid) Grid;

68 typedef typename GET_PROP_TYPE(TypeTag , GridView) GridView;

69 typedef typename GET_PROP_TYPE(TypeTag , Scalar) Scalar;

70 typedef typename Grid::ctype CoordScalar;

71

72 enum

73 {dim=Grid::dimension , dimWorld=Grid:: dimensionworld };

74 typedef typename Grid:: Traits :: template Codim <0 >::Entity Element;

75

76 typedef Dune:: FieldVector <CoordScalar , dimWorld > GlobalPosition;

77 typedef Dune:: FieldMatrix <Scalar ,dim ,dim > FieldMatrix;

78

79 public:

80 typedef typename GET_PROP_TYPE(TypeTag , MaterialLaw) MaterialLaw;

81 typedef typename MaterialLaw :: Params MaterialLawParams;

82

83 //! Intrinsic permeability tensor K \f$[m^2]\f$ depending

84 /*! on the position in the domain

85 *

86 * \param element The finite volume element

87 *

88 * Alternatively , the function intrinsicPermeabilityAtPos (const GlobalPosition & globalPos )

could be

89 * defined , where globalPos is the vector including the global coordinates of the finite

volume.

90 */

91 const FieldMatrix& intrinsicPermeability (const Element& element) const

92 {

93 return K_;

94 }

95

96 //! Define the porosity \f$[-]\f$ of the porous medium depending

97 /*! on the position in the domain

98 *

99 * \param element The finite volume element

100 *

101 * Alternatively , the function porosityAtPos (const GlobalPosition & globalPos) could be

102 * defined , where globalPos is the vector including the global coordinates of the finite

volume.

103 */

104 double porosity(const Element& element) const

105 {

106 return 0.2 ;

107 }

108

109 /*! Return the parameter object for the material law (i.e. Brooks -Corey)

110 * depending on the position in the domain

111 *

112 * \param element The finite volume element

113 *

114 * Alternatively , the function materialLawParamsAtPos (const GlobalPosition & globalPos )

115 * could be defined , where globalPos is the vector including the global coordinates of

116 * the finite volume.

117 */

118 const MaterialLawParams& materialLawParams(const Element &element) const

119 {

120 return materialLawParams_;

121 }

122

123 //! Constructor
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124 TutorialSpatialParamsSequential(const GridView& gridView)

125 : ParentType(gridView), K_(0)

126 {

127 for (int i = 0; i < dim; i++)

128 K_[i][i] = 1e-7;

129

130 // residual saturations

131 materialLawParams_.setSwr(0);

132 materialLawParams_.setSnr(0);

133

134 // parameters for the Brooks -Corey Law

135 // entry pressures

136 materialLawParams_.setPe(500);

137

138 // Brooks -Corey shape parameters

139 materialLawParams_.setLambda(2);

140 }

141

142 private:

143 MaterialLawParams materialLawParams_;

144 FieldMatrix K_;

145 };

146

147 } // end namespace

148 #endif

As this file only slightly differs from the implicit version, consult chapter 3.1.4 for explanations. How-
ever, as a standard Finite Volume scheme is used, in contrast to the box-method in the implicit case,
the argument list here is the same as for the problem functions: Either an element, or only the global
position if the function is called ...AtPos(...).

3.2.3 Exercises

The following exercises will give you the opportunity to learn how you can change soil parameters,
boundary conditions and fluid properties in DuMux and to play along with the sequential modelling
framework.

Exercise 1

For Exercise 1 you only have to make some small changes in the tutorial files.

a) Altering output

To get an impression what the results should look like you can first run the original version
of the sequential tutorial model by typing ./tutorial sequential. The runtime parameters
which are set can be found in the input file (listing 6). If the input file has the same name than
the main file (e.g. tutorial sequential.cc and tutorial sequential.input), it is automat-
ically chosen. If the name differs the program has to be started typing ./tutorial sequential

-parameterFile <filename>.input. For more options you can also type ./tutorial sequential

-h. For the visualisation with paraview please refer to 2.2.
As you can see, the simulation creates many output files. To reduce these in order to perform
longer simulations, change the method responsible for output (line 132 in the file tutorialproblem
sequential) as to write an output only every 20 time-steps. Compile the main file by typing
make tutorial sequential and run the model. Now, run the simulation for 5e5 seconds.
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b) Changing the Model Domain and the Boundary Conditions
Change the size of the model domain so that you get a rectangle with edge lengths of x = 300 m
and y = 300 m and with discretisation lengths of ∆x = 20 m and ∆y = 10 m.
Change the boundary conditions in the file tutorialproblem sequential.hh so that water
enters from the bottom and oil flows out at the top boundary. The right and the left boundary
should be closed for water and oil fluxes. The Neumannn Boundary conditions are multiplied
by the normal (pointing outwards), so an influx is negative, an outflux always positive. Such
information can easily be found in the documentation of the functions (also look into base classes).

c) Changing Fluids
Now you can change the fluids. Use DNAPL instead of Oil and Brine instead of Water. To do
that you have to select different components via the property system in the problem file:

a) Brine: The class Dumux::Brine acts as an adapter to the fluid system that alters a pure
water class by adding some salt. Hence, the class Dumux::Brine uses a pure water class, such
as Dumux::H2O, as a second template argument after the data type <Scalar> as a template
argument (be sure to use the complete water class with its own template parameter).

b) DNAPL: A standard set of chemical substances, such as Water and Brine, is already in-
cluded (via a list of #include .. commandos) and hence easily accessible by default.
This is not the case for the class Dumux::DNAPL, however, which is located in the folder
dumux/material/components/. Try to include the file as well as select the component via
the property system.

If you want to take a closer look at how the fluid classes are defined and which substances are
already available please browse through the files in the directory /dumux/material/components.

d) Use the DuMux fluid system
DuMux usually organizes fluid mixtures via a fluidsystem, see also chapter ??. In order to
include a fluidsystem you first have to comment the lines 67 to 82 in the problem file. If you use
eclipse, this can easily be done by pressing str + shift + 7 – the same as to cancel the comment
later on.
Now include the file fluidsystems/h2oair.hh in the material folder, and set a property FluidSystem

with the appropriate type, Dumux::H2OAirFluidSystem<TypeTag>. However, this rather com-
plicated fluidsystem uses tabularized fluid data, which need to be initialized (i.e. the ta-
bles need to be filled with values) in the constructor body of the current problem by adding
GET PROP TYPE(TypeTag, FluidSystem)::init();. Remember that the constructor function
always has the same name as the respective class, i.e. TutorialProblemSequential(..).
To avoid the initialization, use the simpler version of water Dumux::SimpleH2O or a non-tabulated
version Dumux::H2O. This can be done by setting the property Components type H2O, as is done
in all the test problems of the sequential 2p2c model.
The density of the gas is magnitudes smaller than that of oil, so please decrease the outflow rate

to qn = 3× 10−4
[

kg
m2s

]
. Also reduce the simulation duration to 2e4 seconds.

Please reverse the changes of this example, as we still use bulk phases and hence do not need
such an extensive fluid system.

e) Heterogeneities
Set up a model domain with the soil properties given in figure 3.8. Adjust the boundary conditions
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600 m

300 m K = 10−8 m2

φ = 0.15
K = 10−9 m2

φ = 0.3

Figure 3.8: Exercise 1d: Set-up of a model domain a heterogeneity. ∆x = ∆y = 20 m.

so that water is again flowing from left to right. When does the front cross the material border?
In paraview, the option View → Animation View is nice to get a rough feeling of the time-step
sizes.

Exercise 2

For this exercise you should create a new problem file analogous to the file tutorialproblem sequential.hh

(e.g. with the name ex2 tutorialproblem sequential.hh and new spatial parameters just like
tutorialspatialparams sequential.hh. These files need to be included in the file tutorial sequential.cc.

Each new files should contain the definition of a new class with a name that relates to the file name,
such as Ex2TutorialProblemSequential. Make sure that you also adjust the guardian macros in
lines 24 and 25 in the header files (e.g. change
DUMUX TUTORIALPROBLEM SEQUENTIAL HH to DUMUX EX2 TUTORIALPROBLEM SEQUENTIAL HH). Beside also
adjusting the guardian macros, the new problem file should define and use a new type tag for the prob-
lem as well as a new problem class e.g. Ex2TutorialProblemSequential. Make sure to assign your
newly defined spatial parameter class to the SpatialParams property for the new type tag.

After this, change the domain size (parameter input file) to match the domain described by figure
3.9. Adapt the problem class so that the boundary conditions are consistent with figure 3.10. Initially,
the domain is fully saturated with water and the pressure is pw = 2× 105 Pa . Oil infiltrates from the
left side. Create a grid with 20 cells in x-direction and 10 cells in y-direction. The simulation time
should be set to 1e6 s.

Now include your new problem file in the main file and replace the TutorialProblemSequential

type tag by the one you’ve created and compile the program.

• What happens if you increase the resolution of the grid? Hint: Paraview can visualize the
time-steps via the “Animation View” (to be enabled unter the button View).

• Set the CFL-factor to 1 and investigate the saturation: Is the value range reasonable?

• Further increase the CFL-factor to 2 and investigate the saturation.

Exercise 3: Parameter file input

As you have experienced, compilation takes quite some time. Therefore, DuMux provides a simple
method to read in parameters (such as simulation end time or modelling parameters) via Paramter
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50 m

100 m

20 m

15 m

50 m 25 m

K = 10−7 m2

φ = 0.2

Brooks-Corey Law

λ = 1.8, pe = 1000 Pa

K = 10−9 m2

φ = 0.15

Brooks-Corey Law

λ = 2, pe = 1500 Pa

Figure 3.9: Set-up of the model domain and the soil parameters

no flow

no flow

qn = 0

qw = 2 · 10−4 kg/m2s

Sw = 0

pw = 2 · 105 Pa

Figure 3.10: Boundary Conditions

Input Files. The tests in the Test-folder /test/ already use this system.
If you look at the Application in /test/porousmediumflow/2p/sequential/, you see that the main
file looks rather empty: The parameter file test box2p.input is read by a standard start procedure,
which is called in the main function. This should be adapted for your problem at hand. The program
run has to be called with the parameter file as argument. As this is a basic DuMux feature, the proce-
dure is the equivalent in the sequential as in the box models. In the code, parameters can be read via the
macro GET RUNTIME PARAM(TypeTag, Scalar, MyWonderfulGroup.MyWonderfulParameter);. In test 2p,
MyWonderfulGroup is the group SpatialParams - any type of groups is applicable, if the group defini-
tion in the parameter file is enclosed in square brackets. The parameters are then listed thereafter. Try
and use as much parameters as possible via the input file, such as lens dimension, grid resolution, soil
properties etc. In addition, certain parameters that are specific to the model, such as the CFL-factor,
can be assigned in the parameter file without any further action.

Exercise 4

Create a new file for benzene called benzene.hh and implement a new fluid system. (You may get a
hint by looking at existing fluid systems in the directory /dumux/material/fluidsystems.)

Use benzene as a new fluid and run the model of Exercise 2 with water and benzene. Benzene has
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a density of 889.51 kg/m3 and a viscosity of 0.00112 Pa s.

Exercise 5: Time Dependent Boundary Conditions

In this exercise we want to investigate the influence of time dependent boundary conditions. For this,
redo the steps of exercise 2 and create a new problem and spatial parameters file.

After this, change the run-time parameters so that they match the domain described by figure
3.11. Adapt the problem class so that the boundary conditions are consistent with figure 3.12. Here
you can see the time dependence of the wetting saturation, where water infiltrates only during 105 s
and 4 · 105 s. To implement these time dependencies you need the actual time tn+1 = tn + ∆t and
the endtime of the simulation. For this you can use the methods this->timeManager().time(),
this->timeManager().timeStepSize() and this->timeManager().endTime().

Initially, the domain is fully saturated with oil and the pressure is pw = 2×105 Pa. Water infiltrates
from the left side. Create a grid with 100 cells in x-direction and 10 cells in y-direction. The simulation
time should be set to 5 ·105 s with an initial time-step size of 10 s. To avoid too big time-step sizes you
should set the parameter MaxTimeStepSize for the group TimeManager (in your input file) to 100 s.
You should only create output files every 100th time-step (see exercise 1a). Then, you can compile the
program.

50 m

100 m no flow

no flow

qn = 1 · 10−3 kg/m2s

qw = 0

Sw(t)

pw = 2 · 105 Pa

K = 10−7 m2

φ = 0.2

Brooks-Corey Law

λ = 2, pe = 500 Pa

Figure 3.11: Set-up of the model domain and the soil parameters

• Open paraview and plot the values of Sw at time 5 · 105 s over the x−axis.
(Filter->Data Analysis->Plot Over Line)

• What happens without any time-step restriction?

Exercise 6

If both the implicit and the sequential tutorial are completed, one should have noticed that the
function arguments in the problem function differ slighty, as the numerical models differ. However,
both are functions that depend on space, so both models can also work with functions based ond
...AtPos(GlobalPosition & globalPos), no matter if we model implicit or sequential. Try to for-
mulate a spatial parameters file that works with both problems, the implicit and the sequential.
Therein, only use functions at the position.
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Sw

time [s]

1

0
1 · 105 4 · 105 5 · 105

sin(π time−105

3·105
)

Figure 3.12: Time Dependent Boundary Conditions

3.3 Further Practice

If there is a need for further practice, we refer here to the test problems, that are already implemented
in DuMux. Several examples for implicit and sequential models can be found in the test-directory. An
overview over the available tests cases can be found on the class documentation http://www.dumux.

org/documentation.php. There you also find a feature-list for the individual tests.
Another possibility to gain more experience with DuMux is the dumux-lecture module, where a

number of DuMux applications are provided and explained. It is structured according to the use of
these applications in different lecture classes at the Department of Hydromechanics and Modelling of
Hydrosystems. The majority of applications belongs accordingly to the course in Multiphase Modelling
(mm), while there are also some basic examples from the courses Environmental Fluid Mechanics (efm)
and Modelling of Hydrosystems (mhs). These applications contain were primarily designed to enhance
the understanding of conceptualizing the governing physical processes and their implementation in a
numerical simulator. Different aspects of modelling multi-phase multi-component flow and transport
processes are approached. In the focus are questions like the assignment of boundary conditions, the
choice of the appropriate physics for a given problem (which phases, which components), discretiza-
tion issues, time stepping, etc. You can find, for example, a comparison of different two-phase flow
problems considering in the more simple approach two immiscible fluids while components in both
phases with interphase mass transfer are considered in the more complex case. All the scenarios and
their physical background are explained in additional .tex-files, which are provided in sub-directories
names description. The following test cases are contained:

• Buckley-Leverett Problem - Classical porous media flow show case

• CO2 plume - The influence of the Gravitational Number

• Column Xylene - A VEGAS experiment

• Convective Mixing - Related to CO2 storage
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• Fuel Cell

• Heatpipe - A show case for two-phase two-component flow with heat fluxes

• Heavy Oil - SAGD (steam assisted gravity drainage)

• Henry Problem - A show case related to salt water intrusion

• McWorther Problem - Classical porous media flow show case

• NAPL Infiltration

• Remediation Scenarios - For NAPL contaminated unsaturated soils

• Groundwater - Simple groundwater flow case for MHS lecture

• Different single/two-phase single/two-component problems - Example from lecture EFM

Dumux-lecture can be obtained as follows:

$ git clone https ://git.iws.uni -stuttgart.de/dumux -repositories/dumux -lecture

.git
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This chapter provides an overview of the general structure in DuMux 4.1 and gives help for basic work
with DuMux (4.2,4.3,4.4,4.5,4.6). Further it presents useful external tools 4.7 and basic concepts 4.8.

4.1 Directory Structure

DuMux has the following folder structure, which is similar to other DUNE modules.

• bin: binaries, e.g. used for the automatic testing, postprocessing, installation

• cmake: the configuration options for building DuMux

• doc: files necessary for the Doxygen documentation and this handbook, and various logos

• dumux: the main folder, containing the source files, see 4.1 for a visualized structure. For more
information on the models have a look at the Doxygen documentation.

• test: tests for each numerical model and some functionality. The structure is equivalent to the
dumux folder, the references folder contains solutions for the automatic testing. Each test
program consist of source *.cc, the problem definition *problem.hh, and an input file *.input.
If necessary, spatially dependent parameters are defined in *spatialparameters.hh. For more
detailed descriptions of the tests, please have a look at the Doxygen documentation.

• tutorial: contains the tutorials described in Chapter 3.

4.2 Setup of new Folders and new Tests

This section describes how to set up a new folder and how to tell the build system there is a new one.

Adding new Folders

1) create new folder with content

2) adapt the CMakeList.txt in the folder above and add a line with add_subdirectory(NEW_FOLDER)

3) create a CMakeList.txt in the newly created folder

4) go to your build-directory and type make to re-configure the system
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dumux

porousmediumflow models
Specific model definition for porous medium flow simulations, in both
implicit or sequential formulation: implementation of equations,
model specific properties and indices.

parallel Helper files for parallel simulations.

nonlinear Newton’s method.

multidomain

couplinglocalres. The localresiduals extending the baselocalresiduals for coupling.

common The multidomain wrappers, generic functions, and properties.

models
Localoperators, which implement the coupling and communication be-
tween models in different subdomains, and model specific properties.

material

spatialparams
Base class for all spatially dependent variables, like permeability and
porosity. Includes spatial averaging routines. All other properties are
specified in the specific files of the respective models.

fluidsystems Fluid systems express the thermodynamic relations between quantities.

fluidstates
Fluid states are responsible for caching the thermodynamic configura-
tion of a system at a given spatial and temporal position.

fluidmatrixint.
Constitutive relationships (e.g. capillary pressures, relative permeabili-
ties

eos Equations of state (eos) are auxiliary classes which provide relations be-
tween a fluid phase’s temperature, pressure, composition and density.

constraintsolvers
Constraint solvers to make sure that the resulting fluid state is consis-
tent with a given set of thermodynamic equations.

components
Properties of a pure chemical substance (e.g. water) or pseudo sub-
stance (e.g. air).

chemistry Files needed to account for, e.g. electrochemical processes as in a fuel
cell.

binarycoefficients
Binary coefficients (like binary diffusion coefficients) and those needed
for the constitutive relationships (e.g. Henry coefficient)

linear Linear solver backend.

io
Additional in-/output possibilities like restart files, gnuplot-interface,
VTKWriter extensions and files for grid generation.

implicit

cornerpoint Files need for handling cornerpoint grids.

cellcentered
Specific files for fully implicit cell centered method: assembler, mesh ge-
ometry in fvelementgeometry.hh, base classes for model and problem
definition.

box
Specific files for the gerenal fully implicit boxmethod: assembler, dual
mesh geometry in fvelementgeometry.hh, base classes for model and
problem definition.

adaptive Contains the methods for grid adaption.

Common functionality of cell centered and box formulation: assembling
in localjacobian.hh, evaluation of partial derivative in localresidual.hh,
base classes for model and problem definition.

geomechanics models Specific model files for coupling flow and rock mechanisms.

freeflow models
Single-phase free flow models using Navier-Stokes and algebraic turbu-
lence models. All models are discretized with the box-method.

common
Common files of the implicit and the sequential models: time integra-
tion, start routine start.hh, the property system, ...

Figure 4.1: Structure of the directory dumux containing the DuMux source files.
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Adding new Test Programs To add a test use the add dumux test macro. The command has four
arguments:

1) name of test (has to be unique)

2) name of executable

3) source file (*.cc)

4) command to be executed as test - either the executable or a some helper script with arguments

4.3 Parameters in DuMux

Simulation parameters can be parsed to the program via a parameter file or the command line. A
list of all available parameters is provided in the Doxygen documentation of the file parameterfile,
which is accessible via Modules -> Parameters.

After having run the example application from section 2.2 you will get the following output at the
end of the simulation run 1:

# Run -time specified parameters:

[ Grid ]

File = "./ grids/test_2p.dgf"

[ Implicit ]

EnableJacobianRecycling = "1"

EnablePartialReassemble = "1"

[ Problem ]

Name = "lensbox"

[ SpatialParams ]

LensLowerLeftX = "1.0 "

LensLowerLeftY = "2.0 "

LensUpperRightX = "4 .0"

LensUpperRightY = "3 .0"

[ TimeManager ]

DtInitial = "250"

TEnd = "3000"

# DEPRECATED run -time specified parameters:

PrintParameters = "1"

# Replace by:

[ TimeManager ]

PrintParameters = "1"

# Compile -time specified parameters:

[ Implicit ]

EnableHints = "0"

MassUpwindWeight = "1"

MaxTimeStepDivisions = "10"

MobilityUpwindWeight = "1"

NumericDifferenceMethod = "1"

1If you did not get the output, restart the application the following way: ./test box2p -PrintParameters true, this
will print the parameters once your simulation is finished
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UseTwoPointFlux = "0"

[ LinearSolver ]

MaxIterations = "250"

PreconditionerRelaxation = "1"

ResidualReduction = "1e-06"

Verbosity = "0"

[ Newton ]

WriteConvergence = "0"

[ Problem ]

EnableGravity = "1"

[ TimeManager ]

MaxTimeStepSize = "1 .79769e+308"

[ Vtk ]

AddVelocity = "0"

# UNUSED parameters:

ImportantVariable = "1"

A number of things can be learned:

• run-time parameters can be changed without re-compiling

• deprecated run-time parameters will be removed in the next release

• compile-time parameters cannot be overwritten by the input file

• unused are not used by the simulation (maybe typo or wrong group)

All applications have a help message which you can read by giving --help as a command line
argument to the application.

For further details, please have a look for Dune::ParameterTree in the DUNE documentation.

4.4 Restart DuMux Simulations

You can restart the simulation from a specific point in time or extend the simulation beyond the
originally end of simulation. What you need is a *.drs file (which contains the all necessary restart
information. Then you can simply restart a simulation via

./ test_program -TimeManager.Restart RESTART_TIME

To test restart behavior, use the test box1p2cni problem in the test/implicit/1p2c folder. You
get the RESTART TIME from the name of your .drs file. Restarting will only work when the exact time
from an existing restart file is given. If you need more restart files, you can change the frequency by
including the function into your problem:

1 // Writes a restart file every 5th time step

2 bool shouldWriteRestartFile () const

3 {

4 return (this ->timeManager ().timeStepIndex () % 5 == 0);

5 }
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4.5 Coding Guidelines

Writing code in a readable manner is very important, especially for future code developers (e.g. for
adding features, debugging, etc.). This section is inspired by the DUNE coding guidelines http:

//www.dune-project.org/doc/devel/codingstyle.html, which is strongly recommended.

Documentation: Please document freely what each part of your code does. All comments/ docu-
mentation is in English. We proclaim the Doc-Me Dogma, which means whatever you do, please
document it least with

1 /*! \todo Please doc me! */

That way at least the absence of documentation is documented, and it is easier to get rid of it
systematically. Please comment all:

• Method Parameters (in / out)

• Method parameters which are not self-explanatory should always have a meaningful comment at
calling sites. Example:

1 localResidual.eval(/* includeBoundaries =*/ true);

• Template Parameters

• Return Values

• Exceptions thrown by a method

Naming: To avoid duplicated types or variables and for a better understanding and usability of the
code we have the following naming conventions:

• Variables/Functions . . .

– start in lower case and contain letters.

– CamelCase: if the name consists of several words, then the first letter of a new word is
capital.

– Self-Explaining : in general abbreviations should be avoided (write saturation in stead of S)

– Abbreviations: If and only if a single letter that represents an abbreviation or index is
followed by a single letter (abbreviation or index), CamelCase is not used. An inner-word
underscore is only permitted if it symbolizes a fraction line. Afterwards, we continue with
lower case, i.e. the common rules apply to both enumerator and denominator. Examples:

∗ pw but pressureW → because “pressure” is a word.

∗ srnw but sReg→ because “reg” is not an abbreviation of a single letter. “n” abbreviates
“non”, “w” is “wetting”, so not CamelCase.

∗ pcgw but dTauDPi → Both “Tau” and “Pi” are words, plus longer than a letter.

∗ But: CaCO3 The only exception: chemical formulas are written in their chemically
correct way → CaCO3
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• Private Data Variables: Names of private data variables end with an underscore and are the
only variables that contain underscores.

• Type names: For type names, the same rules as for variables apply. The only difference is that
the first letter is capital.

• Files: File names should consist of lower case letters exclusively. Header files get the suffix .hh,
implementation files the suffix .cc

• The Exclusive-Access Macro: Every header file traditionally begins with the definition of a
preprocessor constant that is used to make sure that each header file is only included once. If your
header file is called ’myheaderfile.hh’, this constant should be DUMUX MYHEADERFILE HH.

• Macros: The use of preprocessor macros is strongly discouraged. If you have to use them for
whatever reason, please use capital letters only.

4.6 Developing DuMux

4.6.1 Communicate with DuMux Developers

Issues and Bug Tracking The bug-tracking system GitLab Issues offers the possibility to report bugs
or discuss new development requests. Feel free to register (if you don’t have a Git account already)
and to constribute at https://git.iws.uni-stuttgart.de/dumux-repositories/dumux/issues.

Commits, Merges, etc. To be up-to-date with the latest changes made to any git-repository you can
use RSS Feeds. Simply click on Issues or Activity and then select a tab you are interested in and use
your favorite RSS-application for receiving the news.

Automatic Testing Dashboard The automatic testing using BuildBot helps to constantly check
the DuMux problems for compiling and running correctly. It is available at https://git.iws.

uni-stuttgart.de/buildbot/#/builders.

The General Mailing List: If you have questions, specific problems (which you really struggle to
solve on your own), or hints for the DuMux-developers, please contact the mailing list dumux@iws.

uni-stuttgart.de. You can subscribe to the mailing list via https://listserv.uni-stuttgart.

de/mailman/listinfo/dumux, then you will be informed about upcoming releases or events.

4.6.2 Tips and Tricks

DuMux users and developers at the LH2 are also referred to the internal Wiki for more information.

Option Files optim.opts and debug.opts DUNE and DuMux are built with the help of dunecontrol,
as explained on page 5. The options needed to be specified for that are provided using option files like
debug.opts and optim.opts. These two compile DUNE and DuMux either for debugging or for fast
simulation. Programs compiled with optimization options can lead to a speedup of factor up to ten!
In contrast programs that are compiled with optimization can hardly be debugged. You can modify
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the files and change the compiler, the name of the build director, add third-party dependencies, add
additional compiler flags, ... .

1 BUILDDIR=build -clang

2 CMAKE_FLAGS="\

3 -DCMAKE_C_COMPILER =/usr/bin/clang \

4 -DCMAKE_CXX_COMPILER =/usr/bin/clang++ \

5 -DUG_DIR =./ externals/ug-3 .12.1 "

Dunecontrol for selected modules A complete build using dunecontrol takes some time. In many
cases not all modules need to be re-built. Pass the flag --only=dumux to dunecontrol for configuring
or building only DuMux. A more complex example would be the use of an additional module. Then
you have to configure and build only DUNE-grid and DuMux by adding --only=MODULE,dumux.

Patching Files or Modules If you want to send changes to an other developer of DuMux providing
patches can be quite smart. To create a patch simply type:

$ git diff > PATCHFILE

which creates a text file containing all your changes to the files in the current folder or its subdirectories.
To apply a patch in the same directory type:

$ patch -p1 < PATCHFILE

See 2.3.2 if you need to apply patches to DuMux or DUNE.

File Name and Line Number by Predefined Macro If you want to know where some output or
debug information came from, use the predefined macros FILE and LINE :

1 std::cout << "# This was written from "<< __FILE__ << ", line " << __LINE__ << std::endl;

Using DUNE Debug Streams DUNE provides a helpful feature, for keeping your debug-output
organized. It uses simple streams like std::cout, but they can be switched on and off for the whole
project. You can chose five different levels of severity:

5 - grave (dgrave)

4 - warning (dwarn)

3 - info (dinfo)

2 - verbose (dverb)

1 - very verbose (dvverb)

They are used as follows:

1 // define the minimal debug level somewhere in your code

2 #define DUNE_MINIMAL_DEBUG_LEVEL 4

3 Dune:: dgrave << "message"; // will be printed

4 Dune:: dwarn << "message"; // will be printed

5 Dune:: dinfo << "message"; // will NOT be printed
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Make headercheck: To check one header file for all necessary includes to compile the contained
code, use make headercheck. Include the option -DENABLE HEADERCHECK=1 in your opts file and run
dunecontrol. Then go to the top level in your build-directory and type make headercheck to check
all headers or press ’tab’ to use the auto-completion to search for a specific header.

Naming conventions General guidelines for naming conventions are specified in Section 4.5. However,
in order to avoid ambiguity a list of proposed names for variables, types, functions etc is provided where
users and mainly DuMux developers can refer for standards (check dumux-devel/doc/naminglist/

naming-conventions.odt).

4.7 External Tools

4.7.1 Eclipse

There is an Eclipse style file which can be used for DuMux.

a) open in eclipse: Window → Preferences → C/C++ → Code Style → Formatter

b) press the Import button

c) choose the file eclipse profile.xml from your dumux-devel directory

d) make sure that now DuMux is chosen in Select a profile

4.7.2 Git

Git is a version control tool which we use. The basic Git commands are:

• git checkout receive a specified branch from the repository

• git clone clone a repository; creates a local copy

• git diff to see the actual changes compared to your last commit

• git pull pull changes from the repository; synchronizes the repository with your local copy

• git push push comitted changes to the repository; synchronizes your local copy with the repos-
itory

• git status to check which files/folders have been changed

• git gui graphical user interface, helps selecting changes for a commit

4.7.3 Gnuplot

A gnuplot interface is available to plot or visualize results during a simulation run. This is achieved
with the help of the class provided in io/gnuplotinterface.hh. Have a look at tests including this
header for examples how to use this interface.
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4.7.4 Gstat

Gstat is an open source software tool which generates geostatistical random fields (see www.gstat.org).
In order to use gstat, execute the bin/installexternal.sh from your DuMux root directory or
donwload, unpack and install the tarball from the gstat-website. Then rerun cmake (in the second
case set GSTAT ROOT in your input file to the path where gstat is installed).

4.7.5 Kate

For kate there is syntax highlighting style for DuMux input files. Simply copy the file dumux-devel/dumux-
InputFiles.xml to the syntax folder in your kate configuration directory (e.g. HOME/.kde4/share/apps-
/katepart/syntax/dumuxInputFiles.xml).

4.7.6 ParaView

Reload Button: There are scripts to reload *.pvd or series of *.vtu files since ParaView 4.2. The
scripts can be found under this link. Just save the specific code portion in a file and load it via
Macros → Add new macro.

Guide: Since ParaView 4.3.1 The ParaView Guide is partly available for free download, see http:

//www.paraview.org/documentation/. It corresponds to the ParaView book, only without three
application chapters. Attention, its size is 180 MiB.

4.8 Assembling the linear system

The physical system is implemented as the mathematical differential equation in local operators. Du-
Mux generates the linear system automatically. Read on, to learn what is done internally.

4.8.1 Newton’s method

The differential equations are implemented in the residual form. All terms are on the left hand side
and are summed up. The terms contain values for the primary variables which are part of the solution
vector u. The sum of the terms is called residual r(u) which is a function of the solution. For example:

φ
∂%αSα
∂t

− div

(
%α
krα
µα

K (grad pα − %αg)

)
− qα︸ ︷︷ ︸

=: r(u)

= 0

We don’t know the solution u, so we use the iterative Newton’s method to obtain a good estimate
of u. We start with an initial guess u0 and calculate it’s residual r(u0). To minimize the error, we
calculate the derivative of the residual with respect to the solution. This is the Jacobian matrix

d

du
r
(
ui
)

= Jr(ui) =

(
d

duim
r
(
ui
)
n

)
m,n

with i denoting the Newton iteration step. Each column is the residual derived with respect to the
mth entry of ui.
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The Jacobian indicates the direction where the residual increases. By solving the linear system

Jr(ui) · xi = r(ui)

we calculate the direction of maximum growth xi. We subtract it from our current solution to get a
new, better solution ui+1 = ui − xi.

We repeat the calculation of of the Jacobian Jr(ui) and the direction of maximum growth xi until
our approximated solution becomes good enough.

4.8.2 Structure of matrix and vectors

To understand the meaning of an entry in the matrix or the vector of the linear system, we have to
define their structure. Both have a blocking structure. Each block contains the degrees of freedom
(also called variable or unknown) for a sub-control volume. The equation index is used to order of the
degrees of freedom. For each sub-control volume we have one block. The mapper is used to order the
blocks.

1. SCV 2. SCV n. SCV

. . . 1. SCV

. . . 2. SCV

...
...

. . .
...

. . . n. SCV

...

eqIdx

0

1
...

m− 1

Figure 4.2: Structure of matrix and vector, left blocking structure, right within block

Accessing entries follows this structure. You can access the pressure value in the third sub-control
volume in a vector sol with sol [2 ][ pressureIdx].
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This chapter contains detailed information for those who are interested in deeper modifications of
underlying DuMux models, classes, functions, etc.

5.1 Models

Here the basic definitions, the general models concept, and a list of models available in DuMux are
given.

5.1.1 Basic Definitions and Assumptions

The basic definitions and assumptions are made, using the example of a three-phase three-component
system water-NAPL-gas [7]. The modification for other multicomponent systems is straightforward
and can be found, e. g., in [5, 1].

Components: The term component stands for constituents of the phases which can be associated with
a unique chemical species, or, more generally, with a group of species exploiting similar physical
behavior. In this work, we assume a water-gas-NAPL system composed of the phases water
(subscript w), gas (g), and NAPL (n). These phases are composed of the components water
(superscript w), the pseudo-component air (a), and the organic contaminant (c) (see Fig. 5.1).

Phases: For compositional multi-phase models, phases are not only matter of a single chemical sub-
stance. Instead, their composition in general includes several species/components. For mass
transfer, the component behavior is quite different from the phase behavior.

Equilibrium: For the non-isothermal, multi-phase, multi-component processes in porous media we state
that the assumption of local thermodynamic equilibrium. Chemical equilibrium means that the
mass/mole fractions of a component in different phases are in equilibrium. Thermal equilibrium
assumes the same temperature for all considered phases. Mechanical equilibrium is not valid in
a porous medium, since discontinuities in pressure can occur across a fluid-fluid interface due to
capillary effects.

Notation: The subscript index α ∈ {w,n, g} refers to the phase, while the superscript κ ∈ {w, a, c}
refers to the component.

5.1.2 Available Models

We distinguish fully-implicit and sequential models. A list of all available models can be found in
the Doxygen documentation at http://www.dumux.org/doxygen-stable/html-2.11/modules.php.
The documentation includes a detailed description for every model.
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pα phase pressure φ porosity
T temperature K absolute permeability tensor
Sα phase saturation τ tortuosity
xκα mole fraction of component κ in phase α g gravitational acceleration
Xκ
α mass fraction of component κ in phase α qκα volume source term of κ in α

%mol,α molar density of phase α uα specific internal energy
%α mass density of phase α hα specific enthalpy
M molar mass of a phase or component cs specific heat enthalpy
krα relative permeability λpm heat conductivity
µα phase viscosity qh heat source term
Dκ
α diffusivity of component κ in phase α va,α advective velocity

vα velocity (Darcy or free flow)

Table 5.1: Notation list for most of the variables and indices used in DuMux.

solid phase (porous matrix)

water phase (w) gas phase (g)

NAPL phase (n)

adsorption

desorption

condensation, dissolution

evaporation, degassing

diss
ol

utio
n

evaporation

condensation

gas

NAPL

thermal energy (h)

Mass components

Air

Water

Organic contaminant (NAPL)

Solid phase

Figure 5.1: Mass and energy transfer between the phases
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Fully-Implicit Models

The fully-implicit models are using the box or the cell-centered finite volume method as described
in section 5.2.1 and 5.2.2 for spatial and the implicit Euler method as temporal discretization. The
fully-implicit models are located in subdirectories of dumux/freeflow, dumux/geomechanics, and
dumux/porousmediumflow.

Grid adaption is available for both discretization schemes, box and cc. The adaptionhelper-method
has to be adjusted to the respective model. Note that the current implementation only ensures mass
conservation for incompressible fluids. In general, the spatial parameters, especially the porosity, have
to be assigned on the coarsest level of discretization.

Sequential Models

The basic idea of the sequential models is to reformulate the equations of multi-phase flow into one
equation for pressure and equations for phase/component/... transport. The pressure equation is the
sum of the mass balance equations and thus considers the total flow of the fluid system. The new set
of equations is considered as decoupled (or weakly coupled) and can thus be solved sequentially. The
most popular sequential model is the fractional flow formulation for two-phase flow which is usually
implemented applying an IMplicit Pressure Explicit Saturation algorithm (IMPES). In comparison to
a fully implicit model, the sequential structure allows the use of different discretization methods for the
different equations. The standard method used in the sequential models is a cell-centered finite volume
method. Further schemes, so far only available for the two-phase pressure equation, are cell-centered
finite volumes with multi-point flux approximation (MPFA O-method) and mimetic finite differences.

An h-adaptive implementation of both sequential models is provided for two dimensions. The
sequential models are located in subdirectories of dumux/porousmediumflow.

5.2 Spatial Discretization Schemes

For the implicit models there are two spatial discretization schemes (box and Cell Centered Finite
Volume Method) available which are shortly introduced in this subsection.

5.2.1 Box Method – A Short Introduction

The so called box method unites the advantages of the finite-volume (FV) and finite-element (FE)
methods.

First, the model domain G is discretized with a FE mesh consisting of nodes i and corresponding
elements Ek. Then, a secondary FV mesh is constructed by connecting the midpoints and barycenters
of the elements surrounding node i creating a box Bi around node i (see Figure 5.2a).

The FE mesh divides the box Bi into subcontrolvolumes (scv’s) bki (see Figure 5.2b). Figure 5.2c
shows the finite element Ek and the scv’s bki inside Ek, which belong to four different boxes Bi. Also
necessary for the discretization are the faces of the subcontrolvolumes (scvf’s) ekij between the scv’s bki
and bkj , where |ekij | is the length of the scvf. The integration points xkij on ekij and the outer normal

vector nkij are also to be defined (see Figure 5.2c).
The advantage of the FE method is that unstructured grids can be used, while the FV method is

mass conservative. The idea is to apply the FV method (balance of fluxes across the interfaces) to
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Figure 5.2: Discretization of the box method

each FV box Bi and to get the fluxes across the interfaces ekij at the integration points xkij from the
FE approach. Consequently, at each scvf the following expression results:

f(ũ(xkij)) · nkij |ekij | with ũ(xkij) =
∑
i

Ni(x
k
ij) · ûi. (5.1)

In the following, the discretization of the balance equation is going to be derived. From the
Reynolds transport theorem follows the general balance equation:∫

G

∂

∂t
u dG︸ ︷︷ ︸

1

+

∫
∂G

(vu+ w) · n dΓ︸ ︷︷ ︸
2

=

∫
G
q dG︸ ︷︷ ︸
3

(5.2)

f(u) =

∫
G

∂u

∂t
dG+

∫
G
∇ · [vu+ w(u)]︸ ︷︷ ︸

F (u)

dG−
∫
G
q dG = 0 (5.3)

where term 1 describes the changes of entity u within a control volume over time, term 2 the advective,
diffusive and dispersive fluxes over the interfaces of the control volume and term 3 is the source and
sink term. G denotes the model domain and F (u) = F (v, p) = F (v(x, t), p(x, t)).

Like the FE method, the box method follows the principle of weighted residuals. In the function
f(u) the unknown u is approximated by discrete values at the nodes of the FE mesh ûi and linear
basis functions Ni yielding an approximate function f(ũ). For u ∈ {v, p, xκ} this means:
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p̃ =
∑
i

Nip̂i (5.4)

ṽ =
∑
i

Niv̂ (5.5)

x̃κ =
∑
i

Nix̂
κ (5.6)

∇p̃ =
∑
i

∇Nip̂i (5.7)

∇ṽ =
∑
i

∇Niv̂ (5.8)

∇x̃κ =
∑
i

∇Nix̂
κ. (5.9)

Due to the approximation with node values and basis functions the differential equations are not
exactly fulfilled anymore but a residual ε is produced.

f(u) = 0 ⇒ f(ũ) = ε (5.10)

Application of the principle of weighted residuals, meaning the multiplication of the residual ε with
a weighting function Wj and claiming that this product has to vanish within the whole domain,∫

G
Wj · ε

!
= 0 with

∑
j

Wj = 1 (5.11)

yields the following equation:∫
G
Wj

∂ũ

∂t
dG+

∫
G
Wj · [∇ · F (ũ)] dG−

∫
G
Wj · q dG =

∫
G
Wj · ε dG

!
= 0. (5.12)

Then, the chain rule and the Green-Gaussian integral theorem are applied.

∫
G
Wj

∂
∑

iNiûi
∂t

dG+

∫
∂G

[Wj · F (ũ)] · n dΓG +

∫
G
∇Wj · F (ũ) dG−

∫
G
Wj · q dG = 0 (5.13)

A mass lumping technique is applied by assuming that the storage capacity is reduced to the nodes.
This means that the integrals Mi,j =

∫
GWj Ni dG are replaced by the mass lumping term M lump

i,j

which is defined as:

M lump
i,j =

{∫
GWj dG =

∫
GNi dG = Vi i = j

0 i 6= j
(5.14)

where Vi is the volume of the FV box Bi associated with node i. The application of this assumption
in combination with

∫
GWj q dG = Vi q yields

Vi
∂ûi
∂t

+

∫
∂G

[Wj · F (ũ)] · n dΓG +

∫
G
∇Wj · F (ũ) dG− Vi · q = 0 . (5.15)

Defining the weighting function Wj to be piecewisely constant over a control volume box Bi

Wj(x) =

{
1 x ∈ Bi
0 x /∈ Bi

(5.16)

causes ∇Wj = 0:

Vi
∂ûi
∂t

+

∫
∂Bi

[Wj · F (ũ)] · n dΓBi − Vi · q = 0. (5.17)
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The consideration of the time discretization and inserting Wj = 1 finally leads to the discretized
form which will be applied to the mathematical flow and transport equations:

Vi
ûn+1
i − ûni

∆t
+

∫
∂Bi

F (ũn+1) · n dΓBi − Vi qn+1 = 0 (5.18)

5.2.2 Cell Centered Finite Volume Method – A Short Introduction

Figure 5.3: Discretization of the cell centered finite volume method

The cell centered finite volume method uses the elements of the grid as control volumes. For each
control volume all discrete values are determined at the element/control volume center (see Figure 5.3).
The mass or energy fluxes are evaluated at the integration points (xij), which are located at the mid-
points of the control volume faces. This is a two point flux approximation since the flux between the
element/control volume centers i and j is calculated only with information from these two points. In
contrast the box method uses a multi-point flux approximation where all nodes of the element influence
the flux between two specific nodes.
Neumann boundary conditions are applied at the boundary control volume faces and Dirichlet bound-
ary conditions at the boundary control volumes.
The cell centered finite volume method is robust and mass conservative but should only be applied for
structured grids (the control volume face normal vector (nij) should be parallel to the direction of the
gradient between the two element/control volume centers).

5.3 Steps of a DuMux Simulation

This chapter is supposed to show how things are “handed around” in DuMux. It is not a comprehenisve
guide through the modeling framework of DuMux, but hopefully it will help getting to grips with it.

In Section 5.3.1 the structure of DuMux is shown from a content point of view. Section 5.3.2 however
is written from the point of view of the implementation. The same coloration in the flowcharts of both
sections refers to the same level of calculation. For keeping things simple, the program flow of a 2p
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model is shown in section 5.3.2. There are extensive comments regarding the formating in the tex file:
so feel free, to enhance this description.

5.3.1 Structure – by Content

This list shows the algorithmic outline of a typical DuMux run. Each item stands for a characteristic
step within the modeling framework.

In Figure 5.4, the algorithmic representations of both approaches, the fully implicit and the sequential
one are illustrated down to the element level.

1. m
ai

n

2. tim
e

st
ep

3. N
ew

to
n

4. el
em

en
t

initialize
foreach time step

prepare update
foreach Newton iteration

foreach element
- calculate element

residual vector and
Jacobian matrix

- assemble into global
residual vector and

Jacobian matrix
endfor
solve linear system
update solution
check for Newton convergence

endfor
- adapt time step size,

possibly redo with smaller step size
- write result

endfor
finalize

1.
m

ai
n

2.
tim

e
st

ep

3.
IM

PES/C

4.
el

em
en

t

initialize
foreach time step

prepare update
foreach IMPES/C step

if grid is adaptive
- calculate refinement indicator
- mark elements, adapt the grid
- map old solution to new grid

- calculate flow field
foreach element

- calculate element stiffness matrix
- assemble into global matrix

endfor
solve linear system
- calculate transport

(saturations, concentrations,...)
foreach element

-calculate update (explicitly)
- adapt time step (CFL-like criterion)

endfor
- update old solution
- postprocess (flash calculation, etc.)

endfor
- write result

endfor
finalize

Figure 5.4: Structure of a fully implicit (left) and a sequential (right) scheme in DuMux.

5.3.2 Structure – by Implementation

This section is supposed to help you in getting an idea how things are handled in DuMux and in which
files things are written down. This is not intuitivly clear, therefore it is mentioned for each step-stone .

called by tells you from which file a function is accessed. implemented in tells you in which file the
function is written down. The name of the function is set in typewriter. Being a function is indicated
by round brackets () but only the function name is given and not the full signature (arguments...) .
Comments regarding the events within one step-stone are set smaller.
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main() ⇒ Dumux::start<ProblemTypeTag>() ⇒ start ()

start () in: start.hh
start the simulation

−→

start () ⇒ timeManager.init()

init() in: timemanager.hh
initialization

−→

start () ⇒ timeManager.run()

run() in: timemanager.hh
time step management

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
while(!finished)

main→ time step

run() ⇒ problem->timeIntegration()

timeIntegration() in: implicitproblem.hh
execute time integration scheme

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
define number of allowed Newton fails

(each halving dt)

timeIntegration() ⇒ model->update()

update() in: implicitmodel.hh
sth like numerical model

−→

update() ⇒ solver.execute()

execute() in: newtonmethod.hh
applying Newton method
keeps track of things, catching errors

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
time step→ Newton step

while(ctl.newtonProceed()

uLastIter = uCurrentIter(model.uCur())

execute() ⇒ execute () ⇒ jacobianAsm.assemble()

assemble() in: implicitassembler.hh
linearize the problem:
add all element contributions to global Jacobian and
global residual

−→

assemble() ⇒ asImp ().assemble () ⇒ resetSystem ()

resetSystem () in: implicitassembler.hh
set r.h.s. (i.e. residual)
set Jacobian to zero

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Newton step→ element
loop all elements

assemble() ⇒ asImp ().assemble () ⇒ asImp ().assembleElement ()

assembleElement () in: e.g. boxassembler.hh
call local Jacobian and residual assembly

−→

assembleElement () ⇒ model ().localJacobian().assemble()

assemble() in: implicitlocaljacobian.hh
set curr. element, update element’s fin.vol.geom.
reset local Jacobian to 0
update types of boundaries on this element

−→

assemble() ⇒ prevVolVars .update(),curVolVars .update()

update() in: e.g. 2pvolumevariables.hh
call model (e.g. 2p)specific update of quantities de-
fined for the volume:
variables for the current and previous timestep

update() ⇒ completeFluidState()

completeFluidState() in: e.g. 2pvolumevariables.hh
calculate all required fluid properties from the pri-
mary variables, here the fluid system does the real
work:
calculates, saves, and provides: densities, etc.

−→

assemble() ⇒ localResidual().eval()⇒asImp ().eval()

eval() in: e.g. implicitlocalresidual.hh
the element’s local residual is calculated:
see the next two stepstones

−→

eval() ⇒ asImp ().evalFluxes ()

evalFluxes () in: e.g. boxlocalresidual.hh
evaluate the fluxes going into each finite volume, this
is model specific



evalFluxes () ⇒ this→asImp ().computeFlux()

computeFlux() in: e.g. 2plocalresidual.hh
this calculate the model specific fluxes (e.g. advective
and diffusive) using the FluxVariables

−→

eval() ⇒ asImp ().evalVolumeTerms ()

evalVolumeTerms () in: implicitlocalresidual.hh
evaluate the model specific storage and source terms
for each finite volume

−→

eval() ⇒ asImp ().evalBoundary ()

evalBoundary () in: implicitlocalresidual.hh
evaluate the model specific boundary conditions

assemble() ⇒ asImp ().evalPartialDerivative ()

evalPartialDerivative () in: e.g.
implicitlocaljacobian.hh

actually calculate the element’s (local) Jacobian
matrix a property chooses backward/central/foward
differences. here: central differences

−→

approximation of partial derivatives: numerical differentiation
add ±ε solution, divide difference of residual by 2ε
all partial derivatives for the element from the local Jacobian
matrix

priVars[pvIdx]+=eps

this is adding eps to the current solution
curVolVars_[scvIdx].update(+eps)

recalculate volume variables, having ε added
localResidual().eval(+eps)

calculate local residual for modified solution as before: involves
- computeFlux
- computeStorage
- computeSource

store the residual()

repeat for priVars[pvIdx]-=eps

derivative is (residual(+eps) - residual(-eps))/2eps

assemble () ⇒ asImp ().assembleElement ()

assembleElement () in: implicitassembler.hh
Residual of the current solution is now
“numerically differentiated”, for the element i.e.
the local Jacobian matrix is calculated.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
The contribution of a single element is done.

Now, it needs to be added to the global quantities:
Add to global residual and global Jacobian.

assemble () ⇒ asImp ().assembleElement ()

assembleElement () in: e.g. boxassembler.hh
Add to global residual.:
resdidual [globI+=

model ().globalJacobian().resdidual(i)]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
loop vertices
of an element

assemble () ⇒ asImp ().assembleElement ()

assembleElement () in: e.g. boxassembler.hh
Add to global residual:
(*matrix )[globI][globJ] +=

model ().localJacobian().mat(i,j)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
element→ Newton step

Assembling of elements to global quantities is done.

execute () ⇒ while(ctl.newtonProceed())

newtonProceed() in: newtoncontroller.hh
Print information.
Start/ stop timer.



−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
set delta Vector to zero

(this is what is
solved for later)

execute () ⇒ ctl.newtonSolveLinear()

newtonSolveLinear() in: newtoncontroller.hh
Catching errors.
Ask the linear solver to solve the system.
i.e.: give Jacobian(matrix), delta(x), r.h.s.(residual)
to linear solver
∇r(xk) ·∆xk = r(xk)
tricky: each Newton step solves a linear system of
equations.

−→

newtonSolveLinear() ⇒ int converged = linearSolver .solve()

solve() in: boxlinearsolver.hh
Solve the linear system with the chosen backend.

execute () ⇒ ctl.newtonUpdate()

newtonUpdate() in: newtoncontroller.hh
We solved for the change in solution, but need the
solution:
Calculate current (this iteration) solution
from last (iteration) solution and current (iteration)
change in solution:
xk+1 = xk −∆xk where ∆xk = (∇r(xk))−1 · r(xk)

−→

execute () ⇒ ctl.newtonEndStep()

newtonEndStep() in: newtoncontroller.hh
Increase counter for number of Newton steps.
Print info.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
check whether to do another Newton iteration:
that is: check if the error is below tolerance or
maximum number of iterations was reached.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Newton step→ Time step

Newton done
if failed  halve timestep size, restart loop

execute () ⇒ ctl.newtonEnd()

newtonEnd() in: newtoncontroller.hh
Tell the controller we are done −→

update() ⇒ asImp ().updateSuccessful()

updateSuccessful() in: e.g. implicitmodel.hh
can be filled model specific

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
in while(!finished)

run() ⇒ problem ->postTimeStep()

postTimeStep(),writeOutput() in:
implicitproblem.hh

Give the problem the chance to post-process the so-
lution.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
write output

uPrev ← uCur
time += dt, timestepIdx++

deal with restart and episodes

run()⇒setTimeStepSize(problem ->nextTimeStepSize(dt))

⇒nextTimeStepSize() ⇒ newtonCtl .suggestTimestepSize()

suggestTimestepSize() in: newtoncontroller.hh
Determine new time step size from number of New-
ton steps.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Time step→main

loop until simulation is finished
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5.4 Property System

A high level overview over the property system’s design and principle ideas are given, then follows a
reference and a self-contained example.

5.4.1 Motivation and features

The DuMux property system was designed as an attempt to mitigate the problems of traits classes. It
can be seen as a traits system which allows easy inheritance and any acyclic dependency of parameter
definitions. Just like traits, the DuMux property system is a compile time mechanism, thus there is
no run-time performance penalty associated with it.

In the context of the DuMux property system, a property is an arbitrary class body which may
contain type definitions, values and methods. Each property has a so-called property tag which labels
its name.

Just like normal classes, properties can be arranged in hierarchies. In the context of the DuMux

property system, nodes of the inheritance hierarchy are called type tags.
It also supports property nesting and introspection. Property nesting means that the definition of

a property can depend on the value of other properties which may be defined for arbitrary levels of
the inheritance hierarchy. The term introspection denotes the ability to generate diagnostic messages
which can be used to find out where a certain property was defined and how it was inherited.

5.4.2 How-to

All source files which use the property system should include the header file dumux/common/propertysystem.
hh. Declaration of type tags and property tags as well as defining properties must be done inside the
namespace Dumux::Properties.

Defining Type Tags

New nodes in the type tag hierarchy can be defined using

1 NEW_TYPE_TAG(NewTypeTagName , INHERITS_FROM(BaseTagNam e1 , BaseTagNam e2 , ...));

where the INHERITS FROM part is optional. To avoid inconsistencies in the hierarchy, each type tag
may be defined only once for a program.

Example:

1 namespace Dumux {

2 namespace Properties {

3 NEW_TYPE_TAG(MyBaseTypeTag1);

4 NEW_TYPE_TAG(MyBaseTypeTag2);

5

6 NEW_TYPE_TAG(MyDerivedTypeTag , INHERITS_FROM(MyBaseTypeTag1, MyBaseTypeTag2));

7 }}

Declaring Property Tags

New property tags, i.e. labels for properties, are declared using

1 NEW_PROP_TAG(NewPropTagName);
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A property tag can be declared arbitrarily often, in fact it is recommended that all properties are
declared in each file where they are used.

Example:

1 namespace Dumux {

2 namespace Properties {

3 NEW_PROP_TAG(MyPropertyTag);

4 }}

Defining Properties

The value of a property on a given node of the type tag hierarchy is defined using

1 SET_PROP(TypeTagName , PropertyTagName)

2 {

3 // arbitrary body of a struct

4 };

For each program, a property itself can be declared at most once, although properties may be over-
written for derived type tags.

Also, the following convenience macros are available to define simple properties:

1 SET_TYPE_PROP(TypeTagName , PropertyTagName , type);

2 SET_BOOL_PROP(TypeTagName , PropertyTagName , booleanValue);

3 SET_INT_PROP(TypeTagName , PropertyTagName , integerValue);

4 SET_SCALAR_PROP(TypeTagName , PropertyTagName , floatingPointValue);

Example:

1 namespace Dumux {

2 namespace Properties {

3 NEW_TYPE_TAG(MyTypeTag);

4

5 NEW_PROP_TAG(MyCustomProperty);

6 NEW_PROP_TAG(MyType);

7

8 NEW_PROP_TAG(MyBoolValue);

9 NEW_PROP_TAG(MyIntValue);

10 NEW_PROP_TAG(MyScalarValue);

11

12 SET_PROP(MyTypeTag , MyCustomProperty)

13 {

14 static void print() { std::cout << "Hello , World!\n"; }

15 };

16 SET_TYPE_PROP(MyTypeTag , MyType , unsigned int);

17

18 SET_BOOL_PROP(MyTypeTag , MyBoolValue , true);

19 SET_INT_PROP(MyTypeTag , MyIntValue , 12345);

20 SET_SCALAR_PROP(MyTypeTag , MyScalarValue , 12345.6 7890);

21 }}

Un-setting Properties

Sometimes an inherited properties do not make sense for a certain node in the type tag hierarchy.
These properties can be explicitly un-set using

1 UNSET_PROP(TypeTagName , PropertyTagName);
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The un-set property can not be set for the same type tag, but of course derived type tags may set it
again.

Example:

1 namespace Dumux {

2 namespace Properties {

3 NEW_TYPE_TAG(BaseTypeTag);

4 NEW_TYPE_TAG(DerivedTypeTag , INHERITS_FROM(BaseTypeTag));

5

6 NEW_PROP_TAG(TestProp);

7

8 SET_TYPE_PROP(BaseTypeTag , TestProp , int);

9 UNSET_PROP(DerivedTypeTag , TestProp);

10 // trying to access the ’TestProp ’ property for ’DerivedTypeTag ’

11 // will trigger a compiler error!

12 }}

Converting Tag Names to Tag Types

For the C++ compiler, property and type tags are like ordinary types. Both can thus be used as
template arguments. To convert a property tag name or a type tag name into the corresponding type,
the macros TTAG(TypeTagName) and PTAG(PropertyTagName) ought to be used.

Retrieving Property Values

The value of a property can be retrieved using

1 GET_PROP(TypeTag , PropertyTag)

or using the convenience macros

1 GET_PROP_TYPE(TypeTag , PropertyTag)

2 GET_PROP_VALUE(TypeTag , PropertyTag)

The first convenience macro retrieves the type defined using SET TYPE PROP and is equivalent to

1 GET_PROP(TypeTag , PropertyTag)::type

while the second convenience macro retrieves the value of any property defined using one of the macros
SET {INT,BOOL,SCALAR} PROP and is equivalent to

1 GET_PROP(TypeTag , PropertyTag)::value

Example:

1 template <TypeTag >

2 class MyClass {

3 // retrieve the :: value attribute of the ’NumEq ’ property

4 enum { numEq = GET_PROP(TypeTag , NumEq):: value };

5 // retrieve the :: value attribute of the ’NumPhases ’ property using the convenience macro

6 enum { numPhases = GET_PROP_VALUE(TypeTag , NumPhases) };

7

8 // retrieve the :: type attribute of the ’Scalar ’ property

9 typedef typename GET_PROP(TypeTag , Scalar)::type Scalar;

10 // retrieve the :: type attribute of the ’Vector ’ property using the convenience macro

11 typedef typename GET_PROP_TYPE(TypeTag , Vector) Vector;

12 };
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Compact car

Sedan

Truck

Pickup

Tank

Hummer

(a)

GasUsage

TopSpeed

NumSeats

AutomaticTransmission

CannonCalibre

Payload

(b)

Figure 5.5: (a) A possible property inheritance graph for various kinds of cars. The lower nodes inherit
from higher ones; Inherited properties from nodes on the right take precedence over the
properties defined on the left. (b) Property names which make sense for at least one of
the car types of (a).

Nesting Property Definitions

Inside property definitions there is access to all other properties which are defined somewhere on the
type tag hierarchy. The node for which the current property is requested is available via the keyword
TypeTag. Inside property class bodies this can be used to retrieve other properties using the GET PROP

macros.

Example:

1 SET_PROP(MyModelTypeTag , Vector)

2 {

3 private: typedef typename GET_PROP_TYPE(TypeTag , Scalar) Scalar;

4 public: typedef std::vector <Scalar > type;

5 };

5.4.3 A Self-Contained Example

As a concrete example, let us consider some kinds of cars: Compact cars, sedans, trucks, pickups,
military tanks and the Hummer-H1 sports utility vehicle. Since all these cars share some characteristics,
it makes sense to inherit those from the closest matching car type and only specify the properties which
are different. Thus, an inheritance diagram for the car types above might look like outlined in Figure
5.5a.

Using the DuMux property system, this inheritance hierarchy is defined by:

1 #include <dumux/common/propertysystem.hh >

2 #include <iostream >

3

4 namespace Dumux {

5 namespace Properties {

6 NEW_TYPE_TAG(CompactCar);

7 NEW_TYPE_TAG(Truck);

8 NEW_TYPE_TAG(Tank);

9 NEW_TYPE_TAG(Sedan , INHERITS_FROM(CompactCar));

10 NEW_TYPE_TAG(Pickup , INHERITS_FROM(Sedan , Truck));

11 NEW_TYPE_TAG(HummerH1, INHERITS_FROM(Pickup , Tank));
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Figure 5.5b lists a few property names which make sense for at least one of the nodes of Figure 5.5a.
These property names can be declared as follows:

12 NEW_PROP_TAG(TopSpeed); // [km/h]

13 NEW_PROP_TAG(NumSeats); // []

14 NEW_PROP_TAG(CanonCaliber); // [mm]

15 NEW_PROP_TAG(GasUsage); // [l/100km]

16 NEW_PROP_TAG(AutomaticTransmission); // true/false

17 NEW_PROP_TAG(Payload); // [t]

So far, the inheritance hierarchy and the property names are completely separate. What is missing
is setting some values for the property names on specific nodes of the inheritance hierarchy. Let us
assume the following:

• For a compact car, the top speed is the gas usage in l/100km times 30, the number of seats is 5
and the gas usage is 4 l/100km.

• A truck is by law limited to 100 km/h top speed, the number of seats is 2, it uses 18 l/100km and
has a cargo payload of 35 t.

• A tank exhibits a top speed of 60 km/h, uses 65 l/100km and features a 120 mm diameter canon

• A sedan has a gas usage of 7 l/100km, as well as an automatic transmission, in every other aspect
it is like a compact car.

• A pick-up truck has a top speed of 120 km/h and a payload of 5 t. In every other aspect it is like
a sedan or a truck but if in doubt, it is more like a truck.

• The Hummer-H1 SUV exhibits the same top speed as a pick-up truck. In all other aspects it is
similar to a pickup and a tank, but, if in doubt, more like a tank.

Using the DuMux property system, these assumptions are formulated using

18 SET_INT_PROP(CompactCar , TopSpeed , GET_PROP_VALUE(TypeTag , GasUsage) * 30);

19 SET_INT_PROP(CompactCar , NumSeats , 5);

20 SET_INT_PROP(CompactCar , GasUsage , 4);

21

22 SET_INT_PROP(Truck , TopSpeed , 100);

23 SET_INT_PROP(Truck , NumSeats , 2);

24 SET_INT_PROP(Truck , GasUsage , 18);

25 SET_INT_PROP(Truck , Payload , 35);

26

27 SET_INT_PROP(Tank , TopSpeed , 60);

28 SET_INT_PROP(Tank , GasUsage , 65);

29 SET_INT_PROP(Tank , CanonCaliber , 120);

30

31 SET_INT_PROP(Sedan , GasUsage , 7);

32 SET_BOOL_PROP(Sedan , AutomaticTransmission , true);

33

34 SET_INT_PROP(Pickup , TopSpeed , 120);

35 SET_INT_PROP(Pickup , Payload , 5);

36

37 SET_INT_PROP(HummerH1, TopSpeed , GET_PROP_VALUE(TTAG(Pickup), TopSpeed));

At this point, the Hummer-H1 has a 120 mm canon which it inherited from its military ancestor. It
can be removed by

38 UNSET_PROP(HummerH1, CanonCaliber);

39

40 }} // close namespaces
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Now property values can be retrieved and some diagnostic messages can be generated. For example

41 int main()

42 {

43 std::cout << "top speed of sedan: " << GET_PROP_VALUE(TTAG(Sedan), TopSpeed) << "\n";

44 std::cout << "top speed of truck: " << GET_PROP_VALUE(TTAG(Truck), TopSpeed) << "\n";

45

46 std::cout << PROP_DIAGNOSTIC(TTAG(Sedan), TopSpeed);

47 std::cout << PROP_DIAGNOSTIC(TTAG(HummerH1), CanonCaliber);

48

49 Dumux:: Properties ::print <TTAG(Sedan) >();

50 }

will yield the following output:

$ top speed of sedan: 210

$ top speed of truck: 100

$ Properties for Sedan:

$ bool AutomaticTransmission = ’true ’ defined at test_propertysystem.cc:68

$ int GasUsage = ’7’ defined at test_propertysystem.cc:67

$ Inherited from CompactCar:

$ int NumSeats = ’5’ defined at test_propertysystem.cc:55

$ int TopSpeed = ’::Dumux :: Properties :: GetProperty <TypeTag , :: Dumux:: Properties ::PTag::

GasUsage >::p:: value * 30’ defined at test_propertysystem.cc:54

5.4.4 Property and Parameter Values

In DuMux three different ways to obtain the value of a property are available:

GET PROP VALUE: Always returns the compile-time specified value of the property. This is needed for
properties, which are not intended to be changed by parameter files.

GET PARAM FROM GROUP: Returns the compile-time specified value, if this value is not be overwritten by
the parameter input file.

GET RUNTIME PARAM FROM GROUP: Always returns a run-time specified value. If the value is not specified
at run-time an error is thrown. This is needed for problem specific properties or properties,
which do not have a meaningful default value.

5.5 Grid Handling

This section summarizes some ideas about grid generation and grid formats that can be used by Du-
Mux. In general, DuMux can read grids from file, or, construct grids inside the code. All grids are
constructed inside a so called GridCreator which is a DuMux property. Note that some GridCreators
are already available in DuMux, so e.g. construction of a structured grid is fairly easy. We will
subsequently introduce the supported file formats, the standard grid creator and its capabilities, and
briefly mention how to customize and deal with common other grid formats.

5.5.1 Supported file formats

DuMux can read grids from file using the Dune Grid Format (DGF) or the Gmsh mesh format.

71



5 Advanced DuMux – Detailed Instructions

Dune Grid Format

Most of our DuMux tests and tutorials use the Dune Grid Format (DGF) to read in grids. A detailed
description of the DGF format and some examples can be found in the DUNE doxygen documentation
(Modules → I/O → Dune Grid Format (DGF)). To generate larger or more complex DGF files,
we recommend to write your own scripts, e.g in C++, Matlab or Python.

The DGF format can also used to read in spatial parameters defined on the grid. These parameters
can be defined on nodes as well as on the elements. An example for predefined parameters on a grid
is the test boxco2 or test cco2 in the dumux/test/porousmediumflow/co2/implicit/ folder.

Gmsh Mesh Format

Gmsh is an open-source flexible grid generator for unstructured finite-element meshes ([9], http:

//geuz.org/gmsh/). DuMux supports the default Gmsh mesh format (MSH). For the format specifics
and how to create grids with Gmsh, e.g. using the provided GUI, we refer to the Gmsh documentation
(http://geuz.org/gmsh/doc/texinfo/gmsh.html).

The MSH format can contain element and boundary markers defined in the grid. Thus, boundaries
can be easily marked as e.g. inflow boundaries using Gmsh. Further, the format supports higher order
elements. They can be used to create boundary parameterization supported by e.g. the grid manager
UGGrid. An example can be found in dumux/test/io/gridcreator.

5.5.2 The default GridCreator

The default GridCreator is called GridCreator and is automatically avaible in all problems. It can
construct grids from a DGF file (*.dgf) by simply providing the filename to the grid in the Grid group 1

of the input file:

1 [Grid]

2 File = mydgfgrid.dgf

If you are using an unstructured grid manager like UGGrid or ALUGrid, constructing a grid from a
Gmsh mesh file (*.msh) is just changing a line:

1 [Grid]

2 File = mygmshgrid.msh

DuMux will tell you in case your selected grid manager does not support reading Gmsh files. You want
to intially refine your grid? It’s just adding a line:

1 [Grid]

2 File = mydgfgrid.dgf

3 Refinement = 4

When reading a Gmsh file, further parameters are recognized. Verbose enables verbose output
on grid construction when set to 1. BoundarySegments enables reading parametrized boundaries.
PhysicalEntities enables reading boundary and element flags.

1Note that group name Grid is the default group name and can be customized in your problem changing the string
property GridParameterGroup. This way it is possible, e.g. for problems with more than one grid, to set different
group names for each grid, thus configuring them separately.
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Grid manager specific parameters

The default GridCreator supports also a selection of grid specific parameters. To give an example we
look at the commonly used unstructured grid manager UGGrid. UGGrids support red-green refinement
per default. One can turn off the green closure by setting the grid’s closure type

1 [Grid]

2 File = mydgfgrid.dgf

3 ClosureType = None # or Green

For all available parameters see the Doxygen documentation.

Structured grids

If you want to construct a structured grid with the default grid creator instead of the File key supply

1 [Grid]

2 LowerLeft = 0 0 0

3 UpperRight = 1 1 1

4 Cells = 10 10 20

where LowerLeft is a vector to the lower left corner of the grid and UpperRight a vector to the upper
right corner. Cells is a vector with the number of cells in each coordinate direction. Note that for a
grid in a two-dimensional world, the vectors only have two entries.

Depending on the grid manager further parameters are recognized. UGGrids, for example, supports
simplex elements as well as hexahedral elements (called simplified “cube” in DUNE). When creating
a structured grid, we can select the cell type as follows

1 [Grid]

2 LowerLeft = 0 0 0

3 UpperRight = 1 1 1

4 Cells = 10 10 20

5 CellType = Cube # or Simplex

For all available parameters see the Doxygen documentation.

5.5.3 Other grid formats and customized grid creators

Other grid formats than DGF and MSH have to be converted to DGF or MSH to be read into DuMux.
A second possiblity (advanced C++) is to write your own GridCreator. For examples have a look at
the CubeGridCreator for a simple and the ArtGridCreator for a more complex example. It follows
a (non-comprehensive) list of hints for some other common grid formats.

Petrel

Grids from Petrel (in ASCII format with the extension *.GRDECL) can be imported into DuMux in
two ways:

a) Using the GRDECL format directly with the help of the grid-manager dune-cornerpoint.

b) Converting the GRDECL file into the DGF format.

The fist options requires the installation of dune-cornerpoint along with its dependencies. Set the
property Grid to Dune::CpGrid in your problem file.
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The second option has the advantage that you end up with a DGF which can then be used with
any grid-manager (dune-alugrid, UG etc.) You also have to install dune-cornerpoint. Additionally
you have to modify the converter grdecl2vtu found in dune-cornerpoint/examples to also write a
DGF. To do so you have to:

• Include the dgfwriter.hh found in dune-grid/dune/grid/io/file/dgfparser

• Create an object of the Dune::DGFWriter and call the its function write() within the main

function for example after the vtkwriter() is called:

1 Dune:: DGFWriterParam <CpGrid :: LeafGridView > dgfWriter(grid.leafView ()))

2 dgfWriter.write(fnamebase + ".dgf")

Material parameters for elements with Petrel specific keywords like PORO are parsed by the converter
grdecl2vtu (see the main function). They are available as vectors within the main function. The
main GRDECL file with the coordinates must include the GRDECL files of the parameters, if for
example the parameters are not already included, include the file bearing your parameter in your main
GRDECL file:

INCLUDE
’PARAMETER X.GRDECL’
/

To add the parameters to your DGF you have to make changes to the header dgfwriter.hh such
that they are passed as arguments of the write() function and written after each element (modify
writeElement() and internal write() functions accordingly). Take caution that you stick to the
correct DGF syntax (see Modules → I/O → Dune Grid Format (DGF) for reference).

ArtMesh

ArtMesh is a 3D mesh generation software. It has its own mesh file format which can be read by Du-
Mux via the ArtGridCreator. Traditionally it was used within DuMux for fracture simulations with
the discrete fracture matrix model (2pdfm). A detailed description of the fracture network creation
and gridding can be found for example in [11], pp. 68.

ICEM

For complex geometries a graphical tool to create grids might be appropriate. One possibility to mesh
for example CAD geometry data is the commercial software ANSYS ICEM CFD. A very detailed, but
outdated description can be found at the LH2 internal wiki. A more recent best practice guide is avail-
able in dumux-devel at dumux-devel/util/gridconverters/Documentation ICEM CFD create mesh.odt.
At LH2 exists a script which converts the ICEM mesh into the DGF.

74

http://www.topologica.org/toplog/wp/
http://www.ansys.com/Products/Other+Products/ANSYS+ICEM+CFD/


Bibliography

[1] M. Acosta, C. Merten, G. Eigenberger, H. Class, R. Helmig, B. Thoben, and H. Müller-Steinhagen.
Modeling non-isothermal two-phase multicomponent flow in the cathode of PEM fuel cells. Journal
of Power Sources, page in print, 2006. URL https://dx.doi.org/10.1016/j.jpowsour.2005.

12.068.

[2] Martin Alkämper, Andreas Dedner, Robert Klöfkorn, and Martin Nolte. The DUNE-ALUGrid
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