

Basics of Reservoir Simulation

With the

Eclipse Reservoir Simulator

Lecture Notes

Øystein Pettersen

 Dept. of Mathematics, Univ. of Bergen, 2006

2

3

Contents

LIST OF FIGURES 6

INTRODUCTION 7
Prerequisites 7

1. OVERVIEW – MINIMUM REQUIRED DATA INPUT 9
1.1 The grid 9
1.2 Petrophysics 9
1.3 Fluid properties 10
1.4 Soil properties 10
1.5 Equilibration 10
1.6 Well specification 10
1.7 Dynamics 10
1.8 Output 10
1.9 Simple Eclipse data file contents 10
A. Syntax 10
B. Data file (“BASIC data input example”) 13
A note on units 16

2. THE RUNSPEC SECTION 19
Grid dimension – keyword DIMENS 19
Phases 19
Unit system 19
Start date 20
Unified / Non-unified files (chapter 11) 20
Data checking only 20
Table dimensions 20
Well data dimensions 20
NSTACK (chapters 17-18) 20
Aquifer specifications – AQUDIMS (chapter 14) 20
Grid options (chapter 13) 20
Rock compressibility options (chapter 6) 20
Local Grid Refinement (chapter 15) 21

3. STRUCTURED GRIDS (CORNER POINT GRIDS) (GRID SECTION) 22
The Corner Point Grid 23
Defining a corner point grid in Eclipse 25
Moderately complex grids – FILL 26

4. PETROPHYSICS (GRID SECTION) 27
Average permeability 27
Transmissibility 29
Inactive cells 31

5. FLUID PROPERTIES (PROPS SECTION) 31
Tables in Eclipse 31
Relative permeability and Capillary Pressure 32
Two-phase curves (water – oil) 32
Three-phase relative permeabilities 34
PVT data 34
Water 35
Dead Oil 36
Dry Gas 37

4

Live Oil 38

6. SOIL COMPRESSIBILITY (PROPS SECTION) 39

7. INITIALISATION (SOLUTION SECTION) 40
Datum depth 41
Contacts 41
The Nacc parameter – accuracy of initial fluids in place calculations 41
Equilibrium – discussion – advanced issues 42

8. TIME DEPENDENT INPUT DATA (SCHEDULE SECTION) 43

8.1 WELL DEFINITIONS AND CONTROL 43
Well Specification (WELSPECS keyword) 43
Well Completions (COMPDAT keyword) 44
Production / Injection data (Keywords WCONPROD / WCONINJE) 47
Economic well constraints (keywords WECON, WECONINJ) 50
Other often used Well control keywords 51

8.2 TIME STEPPING 52
Order of actions 53

8.3 CONVERGENCE CONTROL I (KEYWORD TUNING) 53

9. REGIONS 55

10. SIMPLIFIED INPUT AND MODIFICATION OF ECLIPSE AR RAYS 56
BOX 56
EQUALS 57
ADD, MULTIPLY 58
COPY 59
COPYBOX 59

11. ECLIPSE OUTPUT, FORMATS AND FILES 60
File names 60
Textual output 60
The RPTXXX keywords 61
Time dependent vectors – SUMMARY data 63
Restart data and restart files 66

12. RESTARTING A SIMULATION 68
The SKIPREST keyword 68

13. FAULT MODELLING – NON-NEIGHBOUR CONNECTIONS 69
The 7-point stencil 69
The fault layout – non-neighbour connections 69
Fault transmissibility multipliers 71
Defining a fault manually – the ADDZCORN keyword 74

14. AQUIFER MODELLING (GRID SECTION) 76
Aquifer definition 77
Aquifer connection to reservoir 79

5

15. LOCAL GRID REFINEMENT 79
15.2 LGR on an irregular volume – Amalgamation 82
15.3 Wells on local grids – Horizontal wells 82
15.4 Horizontal wells and friction 85

16. NUMERICAL SOLUTION OF THE FLOW EQUATIONS 87
The IMPES method 89
Solution of Non-linear Equations – the Newton-Raphson method 92
Overview of equation solving (time step advancement) in Eclipse 94

17. ITERATION METHODS FOR LINEAR SYSTEMS 95
Direct, simple approach 95
The Gauss-Seidel method 96
Accelerators – the point SOR method 96
Conjugate Gradients – ORTHOMIN 96
Preconditioning 98
Preconditioning and Orthomin 99
Determining a preconditioner – Nested Factorisation 99

18. CONVERGENCE CONTROL II – TUNING PARAMETERS 101
TUNING keyword summarized 104

19. NON-NEIGHBOUR CONNECTIONS AND SYSTEM STRUCTURE 104

A. GRF FILES IN GRAF 108
A simple straightforward GRF file 108
Advanced GRF file 109

B. SOME CONSIDERATIONS REGARDING GRID CONSISTENCY 1 11
Grids planned for use in rock mechanics simulations 111
Embedding 112
Non-vertical coordinate lines 113
Honouring material properties of non-reservoir rock. 113

Rev 04.2013

6

List of Figures
Figure 1. Regular Cartesian Grid 17

Figure 2. Regular XY-Cartesian Grid 17

Figure 3. Irregular structured grid 18

Figure 4. Unstructured grid 18

Figure 5. Cell indices and coordinate indices in a structured grid 23

Figure 6. Three of the four cells sharing a coord line, and some corner points 24

Figure 7. Cross-section view of a fault in a corner point grid 24

Figure 8. A shaly layer modelled as a gap (non-grid) in a corner point grid 25

Figure 9. Discretisation notation 30

Figure 10. Typical two-phase relative permeability curves 32

Figure 11. Volume factor and viscosity, dead oil (from example PVDO table) 36

Figure 12. Volume factor and viscosity for dry gas (from example PVDG table) 37

Figure 13. Variation of live oil volume factor, below bubble point and two branches
above (from example PVTO table) 39

Figure 14. Pressure variation near well bore – without skin and with positive skin 46

Figure 15. The 7-point stencil schematic 69

Figure 16. Sand to sand communication across a fault (vertical cross section) 70

Figure 17. Example XY-view of fault 73

Figure 18. Example use of continuity flags in ADDZCORN, left hand x-direction 75

Figure 19. Examples of use of combinations of cell index and zeros to move ind. corners 76

Figure 20. Examples of use of inactive cells to define aquifers (grid viewed from above) 77

Figure 21. Gas cone near a horizontal well, fine grid, vertical cross section 79

Figure 22. As figure 21, but on a coarse grid 80

Figure 23. Extending resolution of fine cells non-uniformly, XY-view 80

Figure 24. Example where one cell in original grid has been replaced with an LGR 81

Figure 25. Example LGR on irregular area (XY view) 82

Figure 26. A horizontal well on a standard grid (XY view) 83

Figure 27. As Figure 26, but using LGR near the well 83

Figure 28. Actual well path (grey) and grid approximation (black) (XY-view) 86

Figure 29. Natural ordering of a 4 x 3 x 2 grid 88

Figure 30. Coefficient matrix for a 4 x 3 x 2 grid (x means “nonzero element”) 86

Figure 31. Solving a nonlinear problem with the Newton-Raphson method 92

Figure 32. Labelling the seven diagonals in a 7-diagonal matrix 100

Figure 33. A grid with ZYX ordering 105

Figure 34. System structure for grid in Figure 33 105

Figure 35. Grid as in Figure 33, but with fault 106

Figure 36. System structure for faulted grid 106

7

Introduction
Simulators are used in several different contexts, e.g.

• flight simulators
• control room simulators
• ship bridge simulators

Such simulators are characterised by a real-life environment, i.e. the user has a “look-and-feel” of the
real world that is entirely authentic, with a simulated real-world feedback provided by a computer
program. E.g. in a flight simulator the controls are identical to the real aircraft controls and the view
through the “air plane windows”, which are actually computer screens, is just like in the real world, a
view which is updated based on user interactions. The simulated air plane’s reactions to user actions
are perfectly described by laws of motion, so that the computer (simulator) gives the user an authentic
feedback to the way the aircraft is handled. The advantage is of course that the user can get training in
handling of dangerous situations without the real-life consequences of errors.

In reservoir simulators the objective is much the same – to simulate the exploitation of a real reservoir
without the costs of real life trial and error, e.g. to test different productions scenarios to find an
optimal one before the reservoir is actually put on production. Unfortunately, in contrast to e.g. a
control room simulator, we cannot expect the reservoir simulator to provide an exact replica of flow in,
and production from the reservoir. This is due to a number of factors, but the most important
difference is that while e.g. an aircraft is accurately and detailed described in the computer program,
and the equations of air flow are well known and can be solved with great accuracy, the description of
the reservoir and the boundary conditions for the equations for flow in a porous rock are known only
with a great deal of uncertainty. Primarily, the pore system itself and the flow in this system happens
on a detail level that is impossible to describe or model – and if it were possible the resulting problem
would be too large to solve on present-day computers anyway. In addition to that, the detail structure
of the pore system will obviously be unknown. So the problems we look at are a result of

• generalisation of real micro-scale data from macro scale observations (seismics and well data)
• upscaling of detail level behaviour to a manageable scale and problem size.
• some uncertainty in the descriptive model itself (equations for multiphase flow in porous media).

With such uncertainties both in the input data and the solution procedure, it is not surprising that
“exact” answers cannot be provided – typically manifested by comparing the simulated data to actual
field data after some time of field production.

Still reservoir simulation is regularly used with great success, and remains one of the support pillars
for decision making when field plans for development and operations are made. This is, because even
if there may be uncertainties tied to simulated results, the simulations reveal invaluable information
about the reservoir flow, and not the least, can point to areas which need closer investigation or can
represent elements of risk to the production scenarios.

An important aspect in this discussion is that offshore operations require much more robust
plans and economics than small onshore reservoirs do – plainly put, one cannot afford to do (grave)
errors when determining an operations plan, since the investments up front are so large.

In such a context, some of the tasks of the reservoir engineer in charge of doing reservoir simulations
are,

• evaluate the quality of the input data
• transform the input data to a form suitable for simulation
• identify which parts of the data are most sensitive to uncertainty
• identify necessary additional data acquisition
• identify key data which may directly influence choice of operations plans, and uncertainty tied to

these
• perform a suite of reservoir simulations
• evaluate quality of results from the simulations, uncertainties, areas of robustness
• utilize available field production data to tune simulations
• point to potential future problems / solutions, suggest production plans

8

On this background we clearly see that the simulator itself is merely a tool used in the process – in
many cases an indispensable tool, but the human factor – the engineer, is undoubtedly the main factor
in this process.

Knowledge of how to use the tool is a necessary ingredient in the work flow, but really not a goal per
se. Still, it remains a fact that it would be impossible to carry out the tasks above without this
knowledge.

The objective of these lecture notes is to provide the necessary background for using the reservoir
simulator as a tool. Many subjects are common to most or all simulators, and have been tried covered
in a general sense. But in the end all input must be defined in a detail language defined by each
simulator. Although the general set-up for input files for different reservoir simulators has much in
common, the detail syntax is obviously unique to each simulator. In these notes, we focus on the
syntax used by the market leading reservoir simulator Eclipse, by Geoquest / Schlumberger, which is
used by many oil companies with offices in Norway.

Eclipse includes options for simulating “almost anything”, through several thousand keywords. In
these notes we aim at covering those subjects and keywords which are sufficient and necessary to run
the majority of “standard” simulations.

Many, perhaps all the most common, subjects and keywords are described in these notes, which hence
can be a sufficient basis for setting up input data files for a great deal of problems. Still, the user must
be aware that only a small subset of the keywords are described, and for many of the keywords only a
subset of the available options have been described. The objective of these lecture notes is thus to
enable the user to understand the required input data to a reservoir simulator, convert the input issues
to Eclipse format and run simulations with Eclipse, for not-too-complex problems. With this
background it should be relatively easy to advance to other and more general problem settings, by
consulting the Eclipse reference documentation.

Hence, the notes cannot in any way replace the Eclipse reference manual, where the user should
always look to find the official and detailed description of any keyword. Further, the Eclipse technical
reference contains detail descriptions of methodology and physical background for many subjects that
are relevant when attempting to understand the workings of the simulator.

It cannot be avoided that the contents of the notes becomes technical at times, and one may easily get
the impression that the reservoir simulation is an exercise in technicalities. Therefore keep in mind the
list of tasks above, and that the simulator is merely a tool – the real challenge is not to get keyword
syntaxes correct (although they must be), but to interpret input and output from the simulations in a
process where the decisions based on the simulations are the goal, not the simulations.

From the author’s point of view it is the use of the simulator that is important, not the technicalities.
Some general rules can be given, and are given in many excellent books, but expert use of simulators
is primarily a question of experience. Unfortunately most of the subjects tied to real life use of the
simulator are beyond the scope of these notes, so interested readers should consult other books in the
field.

One of the important tasks for a user of a reservoir simulator is to evaluate the quality of simulated
results. Are the results “as expected”? – Do the results appear trustworthy? ...
Again, experience is an important factor in such evaluations, but another factor should not be
neglected, namely knowledge of the inner workings of the simulator. (Too) many engineers treat and
use the simulator as a “black box”. It is the author’s opinion and experience that input data will
generally be of higher quality, potential simulation errors will be quicker identified, and result
evaluation will be more robust if the user has some knowledge of how the input data is handled by the
simulator.

9

A complete treatment of the inner workings of Eclipse (or any other simulator) is obviously far beyond
the scope of these notes (Ref. Eclipse technical appendices or many books on the subject), but many
basic features will be covered.

Prerequisites
Knowledge in basic reservoir technology is required – as the very least the reader must know the
terminology, although more is an advantage.
Some background in calculus and differential equations is recommended.
Especially for the last part of the text, a basic background in linear algebra and some numerical
methods is advantageous.

1. Overview – minimum required data input

1.1 The grid
Real reservoirs are of course continuous, and all flow-dependent parameters change continuously with
time. A reservoir simulator, which is a computer program, cannot, however, relate to continuous
variables. It is therefore necessary to subdivide the continuous reservoir into a finite number of
discrete elements, and also to define time development in a discrete sense. Then at any time, all
properties will be understood as being constant within one element, and dynamic (time dependent)
updates will occur only at defined time steps, while all data are seen as constant between such updates.

The subdivision of the reservoir into finite volume elements or cells is denoted a discretisation of the
reservoir, and the set of elements is called the reservoir grid. Intuitively, we would expect the
simulator results to be more reliable if the grid closely approximates the reservoir itself. Since most
real reservoirs have a complex geometry and internal structure, a good approximation will normally
require a large number of cells. Computational considerations will on the other hand restrict the
number of cells by available computer memory and/or acceptable run times, so the grid we choose to
use will almost always be a compromise between different desires.

Grid design, or how to build a suitable (“best”) grid for a given reservoir is a science (or art
perhaps) in itself, which we will not study here.
 The simplest grids are those which are comprised of a number of equal cube-shaped cells. The
grid is then uniquely defined by the size of each cube, and the number of cubes in each of the major
directions, X, Y, Z.

Eclipse convention: I, J, K are used for indices in X, Y, Z – directions, and the ordering is defined as
in “normal reading order”, i.e. I runs from left to right, J runs from top of a page to bottom, and K runs
from page to page. In a grid oriented along standard geographical axes, I would increase from west to
east, J would increase from north to south, and K downwards.

We denote the length of the cell (cube) in the X, Y, Z-directions by DX, DY, DZ respectively.
Then the simplest grid is comprised of identical cells, NX cells in the X-direction, NY cells in the Y-
direction, and NZ cells in the Z-direction, totally NX*NY*NZ cells.

A simple extension of this grid, is to allow for DX to be dependent on the I-index, and DY to
be dependent on the J-index. (Note that we don’t allow for DX to be dependent on J. Figure out why
this restriction exists.). An example of such a grid is shown in Figure 1.

A real reservoir is never completely horizontal, and also has a complex internal structure defined by
the different geologic units that build the reservoir. These units are also commonly natural flow units,
and hence when building grids, we generally try to honour the depth variation of the units in the grid.
So a natural generalisation of the simple grid is to keep DX and DY constant, but allow DZ (the cell
thickness) and cell depth to vary from cell to cell. Figure 2 shows an example. Such grids are much
used in the industry.

1.2 Petrophysics
In the reservoir porosity and permeability may have large variation. In each grid cell we define a value
of these variables that is a representative cell average value of the property. Although permeability is a

10

tensor variable, Eclipse only allows for the diagonal elements Kxx, Kyy, and Kzz, called PERMX,
PERMY, and PERMZ. Also, the mixture of porous and non-porous material is handled by the net-to-
gross parameter, NTG.

1.3 Fluid properties
In this introduction we look at the simple case two-phase flow with water and undersaturated oil (i.e.
the oil pressure is always above the bubble point pressure). Then the required data for defining the
fluids are,

• density at surface conditions
• PVT relations (volume factors, viscosity)
• constant gas resolution factor
• relative permeabilities krw and kro as functions of water saturation
• water – oil capillary pressure

1.4 Soil properties
These are simplified in most reservoir simulators, and typically are comprised of some relationship
which define how porosity (or pore volumes) and permeability change with fluid pressure. The
simplest and most used assumption is constant compressibility.

1.5 Equilibration
The initial reservoir state is defined by the pressure and saturations in each grid cell at the start of the
simulation. It is convenient to let the simulator calculate the initial state based on the reasonable
assumption that the reservoir fluids are in equilibrium at no-flow conditions. We then only need
supply the depths of the oil-water and gas-oil contacts, and the fluid pressures at a reference depth.
The simulator can then calculate the necessary state from fluid weight versus depth gradients.

1.6 Well specification
Wells are the most significant means to add or remove fluid to/from the reservoir. The definition of
how wells should be operated in a production scheme can be very complex, but at least we will need to
describe the well positions, at which depths they are open to the reservoir, and the production or
injection rates.

1.7 Dynamics
The reservoir production scheme is rarely or never static. During the field’s life time, wells will be
added or closed, well rates will be changed, and operating constraints may be added or removed. All
such events are handled by defining a series of milestones, dates at which operating conditions may
change.

1.8 Output
The simulation would be rather useless if we don’t require some sort of results from the run. Such
results can be either text files, spreadsheet files, or files intended for graphic visualisation. Since the
amount of possible output is enormous, only data items required by the user are written, and at user
defined times only. Often the milestones mentioned in 1.7 coincide with these output-times.

1.9 Simple Eclipse data file contents

A. Syntax
All data needed by Eclipse is collected in an input data file, which is an ordinary text file. The
different data items are identified by keywords, and most often followed by the associated data. The
keyword data is always terminated by a slash (‘/’). In some cases data occur in groups, where each
group is terminated by a slash. Exactly how this works in practice will become clear when we look at
the keywords in detail.

11

Data organisation
An Eclipse data file is comprised of eight sections headed by a section header. (Some of the sections
are optional). These sections must come in the prescribed order, but the order of the keywords within
each section is arbitrary (except the SCHEDULE section where time-dependency is handled in the
order it is defined).

The data sections, with headers, are (note: This order is required),

RUNSPEC (required)

Run specifications. Includes a description of the run, such as grid size, table sizes, number of
wells, which phases to include an so forth.

GRID (required)
Defines the grid dimensions and shape, including petrophysics (porosity, permeability, net-to-
gross).

EDIT (optional)
User-defined changes to the grid data which are applied after Eclipse has processed them, can
be defined in this section. The EDIT section will not be covered in these notes.

PROPS (required)
Fluid and rock properties (relative permeabilities, PVT tables, ...)

REGIONS (optional)
User defined report regions, or e.g. regions where different rel.-perm. curves apply can be
defined in this section.

SOLUTION (required)
Equilibration data (description of how the model is to be initialised).

SUMMARY (optional)
Results output is primarily of two types:
1) Scalar data as a function of time (e.g. average field pressure)
2) Data with one value pr. grid cell (e.g. oil saturation). These are only output at chosen

times.
This section is used to define output of the first kind, by specifying which data items to write
to report files.

SCHEDULE (required)
Well definitions, description of operating schedule, convergence control, control of output of
the second kind described above.

Comments
Any line in an Eclipse input file that starts with two dashes (--) is treated as a comment.
It is strongly recommended to use many comments, the advantage is easily seen when returning to the
file for later updates. (Note that the two dashes must be in column 1 and 2, no leading blanks.)

The Eclipse data format, default values and data repeats
A property like porosity must be defined with one value for each grid cell. The Eclipse data format
expects exactly this: With a total of N = NX*NY*NZ cells, N porosity values must be given. The order
is according to the “book order”, line after line until a page has been read, then the next page until all
data has been read. I.e. First the top layer (K=1) is read, line by line (begin with J=1, read I=1,...,NX,
then J=2, etc.) Then repeat for K=2,...,NZ.

An example for porosity is then,
PORO
0.32 0.24 0.24 0.3 0.31 0.31 0.312 0.32
0.26 0.26 0.26 0.27 0.3 ...
...
... 0.26 0.25 0.25 0.25 0.28 / (Totally N values)

Note that it is allowed to put a comment after the terminating slash.
For this particular example, if the entire porosity array must be supplied, it is typically generated by an
external program, like e.g. IRAP RMS or FloGrid, not input manually.

12

When providing a data vector associated with a keyword, often the same value will be repeated. One
example is that we often look at models where we assume that porosity is constant in each layer. Then
the porosity keyword would be comprised of NX*NY equal values for layer 1, followed by another
NX*NY equal values for layer 2 etc. This situation is so common that Eclipse fortunately allows for a
shorthand notation: n*val means that the value val shall be repeated n times. So,

PORO
 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.24 0.2 5 0.25 0.25 /
is equivalent to

PORO

8*0.23 0.24 3*0.25 /
Note that there must not be any blanks on any side of the asterisk (star).

In many cases required data items may be defaulted. Eclipse has defined default values for many
values, and if we on input set these items to default, Eclipse will use the defined default values instead.
A default value is specified by “1* ” , and can be repeated as above, with n* (e.g. to specify that the
next three items shall be defaulted use 3*).
If “the rest” of the data items are defaulted, this is not necessary to state explicitly. As an example, the
COMPDAT keyword requires 14 data items, but we will default the last five.
Either of the syntaxes below are valid (don’t care about the meaning just now).

COMPDAT

WP1 10 2 1 2 OPEN 2* 0.5 5* /
 WP2 10 3 1 2 OPEN 2* 0.5 /
/

INCLUDE statements
Some of the data items can be really huge, especially the GRID section data. Since we seldom want to
look at such data once they have been defined anyway, it is convenient to keep them outside the
DATA file.

Eclipse allows for including other files in the data file, also on several levels (a file that is
included may itself contain INCLUDE statements). Eclipse also knows about absolute and relative
addressing of folders, so we can (and the user is encouraged to) keep included files in separate folders.
If we e.g. use one folder for each run, keep all the data that don’t change between runs in one or
several folders, and use relative addressing in the INCLUDE statements, we can obtain a well
organized file structure.
(The main reason for using relative addressing is that we then can move an entire project to a new
parent folder without having to change all the INCLUDEs in the data files.)

Example (recommended type of file structure)
Assume a folder hierarchy where the “home” folder for this suite of runs is SimField . This folder
contains the two subfolders include and runs . The include folder contains the subfolders GRID,

FLUIDS, DIV, SCHEDULE , while the runs folder contains one folder for each run, e.g. BASE,
SENS1, SENS2, ...
The grid definition (grid cell coordinate data) is in the file SIMF.GRDECL, which resides in the GRID
subfolder. Our data file is in one of the subfolders to runs (note how it doesn’t matter which), and the
appropriate include statement in the GRID section would be,
INCLUDE
 ‘../../include/GRID/SIMF.GRDECL’ /

If the file to include resides in the same folder as the data file, this will obviously be shorter, as e.g.

INCLUDE
 GF_PVT_TABLES.PROPS /

Note: Each INCLUDE statement contains exactly one file to include. It is not possible to list several
files in the same INCLUDE keyword.

13

B. Data file (“BASIC data input example”)
Following is an example of minimum required data input to Eclipse. The keywords are commented
using lines starting with two dashes. Full understanding of the file is not to be expected at this stage.
Note: Section headers are in bold for clarity only. An eclipse data file must be in text-only format, not
e.g. saved as a Word-document.

RUNSPEC === =============
-- Title is used as header on output, to identify r un
TITLE
 Example simple Eclipse file, lecture notes

-- Specify dimension of model, NX, NY, NZ
DIMENS
-- NX NY NZ
 10 3 3 /

-- Phases included (oil and water, i.e. 2-phase run)
OIL
WATER

-- Units to use, alternatives are METRIC, FIELD or LAB
FIELD

-- Specify maximum values for well data (# means “m ax number of”)
WELLDIMS
-- #wells #cell-connections Next three values are defaulted
 4 5 3* /

-- Start date, i.e. “Day 0” in simulation
START
 1 JAN 2004 /

GRID === ==============
-- Turn off writing of data to report file
NOECHO

-- Definition of grid cells. From DIMENS keyword ab ove, we have:
-- N = NX*NY*NZ = 10*3*3 = 90.
-- In each cell DX = DY = 1000 ft and DZ = 50 ft
-- (Dimension measured in feet since units were def ined as FIELD above)
-- The grid cells are then defined by:
DX
 90*1000 /
DY
 90*1000 /
DZ
 90*50 /

-- So far the grid shape has been defined, but we a lso need to define at
-- which depth (measured from sea level) the cell t ops are. We assume a
-- horizontal reservoir, and input depths which are consistent with the
-- DZ-values we defined above.
TOPS
 30*5000 30*5050 30*5100 /

-- Permeabilities are constant, so define 90 equal values.
PERMX
 90*200 /
PERMY
 90*200 /
PERMZ
 90*200 /

-- Porosity is constant in each layer, so define 30 values in layer 1,
-- 30 in layer 2, and 30 in layer 3. Each layer con tains 30 cells.
PORO
 30*0.3
 30*0.23
 30*0.18 /

14

-- Request to write an INIT (initial) file. Contain s all data used to
-- initialize the model
INIT

-- Turn report writing back on
ECHO

PROPS === ================

-- Relative permeability for water and oil,
-- and water-oil capillary pressure, as a function of water saturation
SWOF
-- Sw Krw Krow Pcow

0.220 0.0000 1.0000 0
0.300 0.0700 0.4000 0
0.400 0.1500 0.1250 0
0.500 0.2400 0.0649 0
0.600 0.3300 0.0048 0
0.800 0.6500 0.0 0
0.900 0.8300 0.0 0
1.000 1.0000 0.0 0 /

-- PVT properties for water.
-- (Pref: Reference pressure for rest of data (psi)
-- Bw: Volume formation factor for water
-- Cw: Water compressibiblity
-- ViscW: Water viscosity)
PVTW
-- Pref Bw Cw ViscW
 4014.7 1.029 3.13E-6 0.31 0 /

-- PVT properties for oil
PVDO
-- P Bo viscO
 3337 1.2600 1.042
 3725 1.2555 1.072
 4139.5 1.2507 1.096
 4573.2 1.2463 1.118
 5053.9 1.24173 1.151
 5487.5 1.2377 1.174
 5813.9 1.2356 1.2 /

-- Dead oil: Rs (Gas resolution factor) is constant
RSCONST
-- Rs Bubble-point-pressure
 0.4 3337.0 /

-- Specify constant rock compressibility.
ROCK
-- Pref Cr
 14.7 3.0D-6 /

-- Fluid densities at surface conditions
DENSITY
-- Oil Water Gas
 49.1 64.79 0.06054 /

SOLUTION == =============

EQUIL
-- DD = Datum depth, the depth to which all reports will be referenced.
-- DD Pressure@DD OWC Pcow(OWC) Default r est of data items
 5000 4800 6000 0.0 6* /

15

SUMMARY == ==============

-- List data vectors which we want stored for graph ics post-processing

-- Field Oil Production Rate
FOPR
-- Field Oil Production Total
FOPT
-- Field Water Cut
FWCT
-- Field Pressure (averaged reservoir pressure)
FPR
-- Field Oil In Place
FOIP
-- Field Water Production Rate
FWPR
-- Field Water Injection Rate
FWIR
-- Well Water Cut for all wells
WWCT
 /

SCHEDULE === =============

-- Specify output of graphics result files for cell data, and times which
-- to write these. (Details to come later)
RPTRST
 BASIC=5 NORST=1 FREQ=6 /

-- Well specification: Give names, positions (i, j) and main phase of wells
WELSPECS
--wname group i j Z(bhp) prefPhase
 WP1 G 10 2 1* OIL /

/
-- (Note two slashes, one terminates each well, one terminates the keyword)

-- Completion data, the well is open to the reservo ir in cells in layers
-- from k_hi to k_lo.
COMPDAT
--wname ic jc k_hi k_lo open/shut 2*Don’tCare we ll_diam Default...
 WP1 10 2 1 2 OPEN 2* 0.5 4* /
 /

-- Production data, specify producing rate and cons traints
-- Well WP1 will produce with an oil rate of 2000 S TB/day constrained by
-- that well’s flowing bottomhole pressure is minim um 3350 psi.
-- (Details to come later)
WCONPROD
--wname open/shut ctrlmode orat 4*Default bhpmin Re st default...
 WP1 OPEN ORAT 2000 4* 3350 /
 /

-- Milestone dates, e.g. to write results
DATES
 1 JUL 2004 /
 1 JAN 2005 /
/

-- Change production rate to 4000 STB/day
WCONPROD
--wname open/shut ctrlmode orat 4*Default bhpmin Re st default...
 WP1 OPEN ORAT 4000 4* 3350 /
 /

DATES
 1 JUL 2005 /
 /

END

16

A note on units
Eclipse accepts data in metric units, as well as field or lab units. Specification of which unit
convention to use is done in the RUNSPEC section. Since metric units are widely used by Norwegian
oil companies and international companies based in Norway, unless otherwise specified all the
examples in these notes will assume metric units are used.

Note on character data
In many keywords some of the required input is text, or character data. (Example: In the DATES
keyword, each line contains “DAY MONTH YEAR”. Here DAY and YEAR are numerical values,
while MONTH is a character string, e.g. JUL as in the example above.
When character data is defined, this can be done with or without quotes (single quote, the vertical
quote on the keyboard). Hence the DATES keyword above can be defined in two alternative ways:

DATES
 1 JUL 2005 /
 /

or

DATES
 1 ’JUL’ 2005 /
 /

Both these syntaxes are accepted by ECLIPSE. It is always permitted to use quotes when defining
character data, but in most cases ECLIPSE accepts the input without quotes, which can be preferable
from the user viewpoint. In some exceptional cases, however, Eclipse requires the quotes. As a rule of
thumb the quotes are required if necessary to resolve ambiguities. (And nothing worse than an error
message results if a text string was defined without quote where one was expected.)

Examples where quotes are required

1. When the text string contains blanks (or other separator characters)
A well name as B-1HA is accepted without quotes, but well name ‘B1 REV’ requires quotes.

2. File paths which include subfolders, as the slash (/) would else be misinterpreted as a
terminator. Example: The two INCLUDE statements on the bottom of page 10. The first one
requires quotes, the second one, which is a single file name, does not.

3. Wildcards (as defined in the Well Completions section, page 42) always require quotes.

In the examples in these lecture notes, quotes have been used if and only if they are required.

Technical comment: In early versions of ECLIPSE, quotes where required for all character input. As
new versions have been released the set of data requiring quotes has steadily been reduced. Syntax
which is accepted in current versions of ECLIPSE may therefore not be valid in older versions.

17

Figure 1. Regular Cartesian Grid

Figure 2. Regular XY-Cartesian Grid

18

Figure 3. Irregular structured grid

Figure 4. Unstructured grid

19

2. The RUNSPEC section
As the RUNSPEC section comes first in the Eclipse data file it is described here. Many of the terms
used in this description will not be defined before later, but are included here for completeness.
The section contains run specification data, i.e. information Eclipse needs at the very beginning of the
job, before it commences reading of any other data, typically for determining how much computer
memory to reserve for the different kinds of input.

Grid dimension – keyword DIMENS
Specification of the number of cells in x, y, and z-directions:
DIMENS
 NX NY NZ /

Example:
The grid is 30 cells in the x-direction, 15 cells in y-direction and 5 cells in the z-direction (vertical) –
will also be referred to as 5 layers.

DIMENS
-- NX NY NZ
 30 15 5 /

Phases
The phase definition specifies how many and which phases are present in the run. Each included phase
is specified by one keyword. The alternatives are,
OIL
WATER
GAS
VAPOIL (Vaporized oil in gas)
DISGAS (Dissolved gas in oil)

(No slashes)

Example
For a standard three-phase problem with no gas dissolved in the oil we would specify,

OIL
WATER
GAS

Unit system
Specify the unit system the data are defined in (all data must be in the same unit system)
Choose one of

FIELD (Standard oil-field units)
METRIC (well known metric system)
LAB (similar to metric, but everything is scaled down to lab size)

(No slashes)

20

Start date
Specify the date when the simulation starts, also called initial date or “day 0”.
Date format is identical to the format in the DATE specification (see section 8.2)

Example
The simulation starts at April 14., 1997:

START
 14 APR 1997 /

Unified / Non-unified files (chapter 11)
Specify if unified files are to be used. Non-unified is the default and will be assumed if specification
of unified is omitted.
Keywords:
UNIFIN Specifies unified input files are used (relevant for restarts)
UNIFOUT Request for unified output files (summary and restart)

Data checking only
Eclipse can be requested to check the input data syntax without running the simulation. This is done
by the keyword

NOSIM (no slash)

Input errors in the SCHEDULE section will not be discovered before Eclipse encounters them.
(Eclipse does not read the entire file before the run starts, only as much as it needs). By routinely
doing a data check run after major changes, unexpected terminations of simulations due to data errors
can be avoided.

Table dimensions
Eclipse needs to know how many tables we are going to define, and how many entries the tables will
have when it sets up the run dimensioning, i.e. when the RUNSPEC section is read.

Technical note: This is because Eclipse is written in FORTRAN, and does not use dynamic memory
allocation.

The appropriate keyword is TABDIMS, which contains the following relevant items, (for others, see
Eclipse documentation)

1. NTSFUN: Number of saturation table families (rel.-perm-families / regions)
2. NTPVT: Number of PVT families / regions
3. NSSFUN: Max number of lines in any rel-perm table
4. NPPVT: Max number of lines in any PVT table or Rock compaction table
5. NTFIP: Max number of FIP regions (defined by FIPNUM)
6. NRPVT: Max number of Rs-nodes in a live oil PVT table or Rv-nodes in wet

 gas PVT table

Example

To set all values to their default:

TABDIMS
-- NTSFUN NTPVT NSSFUN NPPVT NTFIP NRPVT
 1 1 20 20 1 20 /

EQLDIMS

Used to set some parameters for equilibration. Can be defaulted (omitted) in most cases.

21

Well data dimensions
Eclipse must know how many wells to allocate memory for, and how much memory is needed for
each well. This is specified in the WELLDIMS keyword, with entries,
 MAXWELLS Maximum number of wells in the model
 MAXCONNW Maximum number of connections (completions) in each well
 MAXGROUP Maximum number of groups in model
 MAXWELLG Maximum number of wells in a single group
The default value for all the entries is zero, so this keyword must be specified if the model contains
any wells.
Example
WELLDIMS
-- MAXWELLS MAXCONNW MAXGROUP MAXWELLG
 18 6 1 18 /

NSTACK (chapters 17-18)
To redefine the size of the NSTACK, i.e. the number of search directions to store for use by the linear
solver, include the keyword NSTACK. The default value of NSTACK is 10.
Example
To increase NSTACK to 25,

NSTACK
 25 /

Aquifer specifications – AQUDIMS (chapter 14)
Specify maximum number of lines in the AQUNUM and AQUCON keywords. (I.e. not the number of
connections defined, but the number of lines used to define the connections in the keyword)
Default values are zero, so this keyword must be specified if aquifers are used.
Example

AQUDIMS
-- Max#NumLines Max#ConnLines (rest not used for numerical aquifers)
 5 7 /

Grid options (chapter 13)
The GRIDOPTS keyword is used to flag that negative index transmissibility multipliers are used.
(And some other flags which are not used in these notes)
To allow for MULTX– and related keywords, set

GRIDOPTS

YES /

The default is “NO”, so the keyword is not needed if negative index transmissibility multipliers are not
used.

Rock compressibility options (chapter 6)
When rock compressibility is defined by the ROCKTAB (or ROCKTABH) keyword, the keyword
ROCKCOMP must be included in the RUNSPEC section. The keyword has two associated items,

1. Specify if rock compaction is reversible (elastic) or irreversible (plastic), or if tables with
hysteresis are used. Choices are REVERS, IRREVERS, and HYSTER

2. Number of rock compaction tables (normally equal to number of ROCKNUM regions)
Example
To specify that ROCKTAB tables are irreversible, and that the model includes three different rocknum
regions,

ROCKCOMP
 IRREVERS 3 /

22

Local Grid Refinement (chapter 15)
If local grid refinements are included in the model, they must be specified in the RUNSPEC section,
with keyword LGR, containing the following items,

1. MAXLGR Maximum number of LGRs in the model
2. MAXCELLS Maximum number of cells in any LGR
3. MAXAMLGC Maximum amalgamated coarse cells (not covered in these notes)
4. MAXAMLGF Maximum number of LGR amalgamations
5. MAXLGRAM Maximum number of LGRs in any amalgamation
6. LSTACK Equivalent to NSTACK for Local Grid solving (default: Equal to NSTACK)

Example
The model contains 10 local grids, five of these have been amalgamated to one, and three others
comprise another amalgamation. The largest of the LGRs contains 160 cells

LGR
-- MAXLGR MAXCELLS MAXAMALGC MAXAMALGF MAXLGRAM LSTACK
 10 160 1* 2 5 1* /

3. Structured grids (Corner point grids) (GRID sect ion)
The simple grids we defined in Chapter 1 can not in general be used to approximate complex reservoir
geometries satisfactory, and this is regarded as being of great importance in the oil industry. The grid
serves two purposes, which unfortunately often are conflicting. Firstly the grid is a set of finite volume
cells which approximates the reservoir volume including internal characteristics. Secondly the grid is a
device for solving the reservoir flow equations in a numerical fashion. Even though a great deal of
research has been put into the challenge of constructing numerical schemes which work satisfactorily
for “any” cell shapes, it is still true that the “best” numeric results are obtained on a regular cartesian
grid, while the grids that are “good enough” approximations to the reservoir shape seldom are very
regular. As noted above, constructing a grid that is an optimal compromise between actual reservoir
shape, numeric accuracy and affordable computing time is a science in itself, which cannot be covered
in this context.
 The ideal grid is regular and cartesian. Cartesian means that all cell faces meet at right angles,
while regular is used to specify that the lengths DX, DY, and DZ are compatible. If the flow rate
components are equal in all three directions (no preferred flow direction) then compatible would mean
DX = DY = DZ. However, in a reservoir the vertical flow is typically much smaller than horizontal
flow1, and in this case the ideal aspect ratio (ratio of the different cell lengths) is such that the typical
time a flow particle uses to traverse the cell is roughly the same in all cell lengths. By this rule we
should expect that in most grid cells, DX and DY are of comparable magnitude, and DZ much smaller
(which is indeed the case in industrial grids). Many grids are comprised of cells which appear regular
cartesian in the XY-plane, as seen from above, but not in cross-sections, i.e. in the XZ or YZ-planes,
since the grid layers attempt to approximate the geological layers (Figure 2). Be aware that if the
angles between the top or bottom and the vertical sides deviate too much from 90° the quality of the
numerical results can be expected to get worse as the angle deviation increases. Apart from this
warning we will not discuss this further.

The major reason that XY-cartesian grids are not more or less exclusively used is the existence of
faults in the reservoir. Faults are surfaces of discontinuity in the reservoir with often very complex
geometry. Often the goal is a grid that honours the geometry of the faults as closely as possible, and
this is simply not in general doable with a regular grid.
Figure 3 shows an irregular structured grid where it has been attempted to let cell boundaries align to
the faults as closely as possible.

1 The term horizontal is used loosely, to denote flow along geological layers, or in the bedding plane direction

23

One alternative solution which is growing in popularity, is to use unstructured grids. By allowing for
cells with any number of faces, any geometry can be modelled, and at the same time keeping the total
number of cells at a manageable level. (Figure 4.)

The organisation of the cell structure and computational challenges have to now not been completely
solved, which is the main reason the “traditional” grids are still dominating the scene. We will
henceforth concentrate on structured grids.

A structured grid is characterized by

1. All cells are six-sided with eight nodes, i.e. topologically equivalent to a cube.
2. The cells are logically organized in a regular scheme, such that each cell’s position in the grid

is uniquely determined by it’s (I, J, K)-index.

The Corner Point Grid
A structured grid is uniquely determined when all eight corners of all cells have been defined. In
Eclipse, the corners cannot be completely arbitrary, but are constrained in the following manner:

Coordinate Lines
A coordinate line is a straight non-horizontal line defined by two coordinates

(x, y, z)TOP and (x, y, z)BTM.
In the simplest and most common case the coordinate lines are vertical. For the regular cartesian grid
the coordinate lines would be the vertical lines which in the XY-plane can be seen as the nodes, or the
“meeting point” between four and four cells. The same principle is valid in general, although more
complex. The coordinate lines form a skeleton of lines, each line identified by its index (I, J). Except
for edge cells, any coordinate line is associated with four columns of cells. Refer to Figure 5, and
confirm that coordinate line (I, J) is associated with the four cell columns (I-1, J-1, K), (I, J-1, K), (I-1,
J, K), and (I, J, K). (K takes all values 1,...,NZ). Recall that each cell was defined by its eight corner
nodes. In each of the associated cells, exactly two corners (one on the top face and one on the bottom
face) are on the coord line. Denote the four associated cell columns C1, C2, C3, and C4, and let the
corners lying on the coordinate line be N1A and N1B in cell column C1, N2A and N2B in C2 etc. (Ref.
Figure 6) The constraint defined by Eclipse is then that cell corners N1A, N1B ,..., N4A, N4B lie on the
coordinate line for all layers K. A way of looking at this is to envisage the coordinate line as a straw,
and the corner nodes as beads on this straw. The beads can move up and down on the straw, but are
restricted to stay on the straw, which by definition cannot be bended – coordinate lines must be
straight lines.

Figure 5. Cell indices and coordinate indices in a structured grid

Coord line (1,1)

Coord
line (5,4)

Coord line (5,1)

Top

Btm

24

A structured grid obeying the coordinate line restriction was originally called a corner point grid by
the Eclipse development team. The Eclipse grid format is now a de facto industry standard, and corner
point grids are used in a much wider context.

Examples

Ex. 1. Regular grid
The regular cartesian grid is obviously a corner point grid, and the coordinate lines are vertical. Each
grid node (edge nodes excepted) is the meeting point for eight cells, and each of these cells has one
corner equal to the meeting point. Since we required that all eight corners were defined for every cell,
this means that in regular points like this, every node coordinate will be defined (and stored) eight
times. (Waste of memory and hard disk space...)

Figure 6. Three of the four cells sharing a coord line, and some corner points

Ex. 2. Fault
Modelling of fault throws is the main reason for introducing the corner point concept. Figure 7 shows
a cross-section view in the XZ plane of a fault, with upthrown side (footwall) to the left and
downthrown side (hanging wall) to the right. One way to look at this is that the grid has been
constructed in the same fashion as the fault itself. Starting with a continuous grid, the cells on the
hanging wall side has been allowed to slide downwards along the fault plane, which is a coordinate
line. Note how the corners on the downthrown side has moved along the coordinate line, such that the
depths of associated nodes are no longer equal. It is easy to convince oneself that such a modelling of
faults could not be possible without the general way in which all eight cell corners are handled
individually.

Figure 7. Cross-section view of a fault in a corner point grid

LayerLayer

1

2

3

4

1

2

3

4

Coord
line

X
Z

25

Notes:
• Since the coordinate lines must be straight lines, listric faults (curved) cannot be modelled2.
• Obviously, the coordinate lines must form a grid skeleton which is physically realisable. This

means that Y-faults and other complex shapes are impossible to model, since it would lead to
crossing coordinate lines.

• As modelled, faults are discontinuity surfaces. In reality all faults have volume, a fault core and a
surrounding damage zone. Such features can be modelled, but in this context we stick to the
Eclipse concept.

Ex. 3. Shaly Layer
A non-permeable layer is a non-flow unit, and inactive in the grid. As such, the layer does not need to
be modelled at all. Eclipse allows for gaps in the grid, i.e. the top of one cell does not need to coincide
with the bottom of the cell above3. Although such explicit modelling of gaps is rather rare in practice,
it is an example that the grid doesn’t have to be continuous vertically, and hence the generality of all
eight corners being handled individually is actually required (Figure 8).

Figure 8. A shaly layer modelled as a gap (non-grid) in a corner point grid

Degenerate cells
As defined, each cell in a corner-point grid is defined by its eight corners. If all corners are different,
and the cell has a “normal” appearance (topologically equivalent to a cube), the cell is a standard
corner-point cell. It is however permitted and useful to allow some corners to be coinciding, in which
case we say that the cell is degenerate. A degenerate cell has fewer actual corners than the eight
corners it is defined by. Typically, a degenerate cell will have one or more edge thicknesses equal to
zero, e.g. a wedge-shaped cell used to define a pinchout zone. The most common example is probably
zero-thickness cells. When a geological layer terminates, this must be modelled in a grid by defining
part of the layer with cells with thickness zero, since the number of layers must be the same in the
entire grid.

Defining a corner point grid in Eclipse
Eclipse always stores the grid in corner point format. I.e., on input we must either define the cell
corners explicitly, or we must give sufficient grid data that eclipse can construct the corner points
itself. In practice we will either define a regular simple grid as in the example in Chapter 1, or the grid
will be constructed by suited software, such that the corner point data is supplied in a black box file.
Hence, a user will never input corner points manually. It is, nevertheless, useful to know the format of
the corner point input to Eclipse, which is defined by the two keywords COORD and ZCORN.

COORD is used to define the coordinate lines. Each coordinate line is uniquely defined by two points,
and since the line cannot be horizontal, the two points are denoted top and btm (bottom). If the number
of cells in x and y-direction are NX and NY, the number of coordinate lines will be NX+1 and NY+1.

2 Actually, when Eclipse reads the grid, it doesn’t check that the coordinate lines are really straight. So if the grid
could be constructed by non-eclipse software that permits listric faults, and if the resulting grid was edible by
Eclipse, then Eclipse could be tricked to handle quite general grids. This is far beyond the scope of these notes.
3 Eclipse doesn’t even object to overlaps, although this is obviously physically impossible.

Layer
1
2
3

4
5

Shale

26

The coordinate lines are then input in the book page format, line by line, with I running from 1 to
NX+1 on each line:

COORD
x(1,1)TOP y(1,1)TOP z(1,1)TOP x(1,1)BTM y(1,1)BTM z(1,1)BTM
x(2,1)TOP y(2,1)TOP z(2,1)TOP x(2,1)BTM y(2,1)BTM z(2,1)BTM
x(3,1)TOP y(3,1)TOP z(3,1)TOP x(3,1)BTM y31,1)BTM z(3,1)BTM
.

.

.

x(NX+1,NY+1)TOP y(NX+1,NY+1)TOP z(NX+1,NY+1)TOP
x(NX+1,NY+1)BTM y(NX+1,NY+1)BTM z(NX+1,NY+1)BTM

Note that no cell corners have been defined by the COORD keyword, so far only a family of lines
where corners are allowed is all we have. Corner depths are defined by the keyword ZCORN. The
intersection between a (non-horizontal) coordinate line and a depth value is unique, such that from
coordinate lines and corner depths, all coordinates can be calculated. It would perhaps seem natural to
define corners cell by cell, but Eclipse sticks strictly to the book page format, so (with x pointing east,
y south) first the top northern edge of all cells are read from west to east, then the southern edge, then
advancing to next row of cells. When the top of a layer has been read, the bottom is read in a similar
fashion, and then we are ready for the next layer. Recall that corners associated with the same
coordinate line may have different depths, but are equal in continuous areas, such that all corners must
be defined – nothing is “implicitly assumed”. When explaining the syntax we will use indices NW, NE,
SW, SE to denote the corners (assuming a standard orientation of the grid), and T, B for Top, Bottom.

ZCORN
z(1,1,1)T,NW z(1,1,1)T,NE z(2,1,1)T,NW z(2,1,1)T,NE ... z(NX,1,1)T,NE
z(1,1,1)T,SW z(1,1,1)T,SE z(2,1,1)T,SW z(2,1,1)T,SE ... z(NX,1,1)T,SE
z(1,2,1)T,NW z(1,2,1)T,NE z(2,2,1)T,NW z(2,2,1)T,NE ... z(NX,2,1)T,NE
z(1,2,1)T,SW z(1,2,1)T,SE z(2,2,1)T,SW z(2,1,1)T,SE ... z(NX,2,1)T,SE
.
.
.
z(1,NY,1)T,SW z(1,NY,1)T,SE z(2,NY,1)T,SW z(2,NY,1)T,SE ... z(NX,NY,1)T,SE
z(1,1,1)B,NW z(1,1,1)B,NE z(2,1,1)B,NW z(2,1,1)B,NE ... z(NX,1,1)B,NE
.
.
.
z(1,NY,1)B,SW z(1,NY,1)B,SE z(2,NY,1)B,SW z(2,NY,1)B,SE ... z(NX,NY,1)B,SE
z(1,1,2)T,NW z(1,1,2)T,NE z(2,1,2)T,NW z(2,1,2)T,NE ... z(NX,1,2)T,NE
.
.
.
z(1,NY,NZ)T,SW z(1,NY,NZ)T,SE z(2,NY,NZ)T,SW z(2,NY,NZ)T,SE ... z(NX,NY,NZ)T,SE

Moderately complex grids – FILL
As noted, most or all complex grids for real field simulations are constructed with dedicated software like
FloGrid or IRAP RMS. Simple cartesian grids can easily be defined in the GRID section of the data file. Often
we are however faced with the challenge of constructing a grid which is not as complex as the real-case grids,
but still too complex to be defined with the available keywords in the GRID section. For such cases
Schlumberger offers a program called FILL, which basically is a program that constructs a complete grid
including petrophysics by interpolation of sparse data. If combined with a spreadsheet like EXCEL, quite
interesting grids can be constructed with FILL. FILL is considered obsolete, and probably no longer supported
by Schlumberger, but old versions are always available. Ref. Eclipse documentation for further information.

27

4. Petrophysics (GRID section)
Petrophysics input to Eclipse is porosity, net-to-gross ratios, and three diagonal components of the
permeability tensor. The general syntax is defined in the basic data input example, one value for each
cell. (An easier and more flexible format will be defined in chapter 10).
The values should be “representative average values” for the cell volume. For porosity and net-to-
gross ratios the simple arithmetic average is the best we can use, but for permeability the best solution
is not that obvious.

Average permeability
The question is, if permeability varies with x in the interval (x0, x1), K = K(x), is it possible to define a
constant representative permeability, K = K* , such that flow between x0 and x1 is the same if we
replace the actual variation K(x) with the constant K*?

To gain insight in this problem we simplify it: Assume one-dimensional incompressible stationary
one-phase flow. The governing equations are,

Darcy’s law:
x

pK
u

∂
∂

−=
µ

 (1)

Conservation law: () 0=
∂
∂=









∂
∂

∂
∂ ρφ

µ
ρ

tx

pK

x
 (2)

(The last term vanishes since stationary flow has been assumed)
Notation is standard, u is Darcy velocity, K permeability, p fluid pressure, µ viscosity (assumed
constant), ρ the constant density, and φ porosity.

Omitting constants in Eq. (2) we have: 0)(=








dx

dp
xK

dx

d
, (3)

an equation that is easily solved:

∫∫ −=⇒−=⇒−==






 1

0

1

0
)()(

)(1

x

x

x

x xK

dx
udp

xK

u

dx

dp
uC

dx

dp
xK µµµ (4)

(C1 determined from Eq. (1)).

The fluid flows from x0 to x1 such that the end point pressures are p0 = p(x0), p1 = p(x1).

Then from Eq. (4):

∫−=−
1

0
)(01

x

x xK

dx
upp µ . (5)

Replacing K(x) by the constant permeability K* in Eq. (5) gives:

∫
−

−=−=−
1

0
**

01
01

x

x K

xx
u

K

dx
upp µµ (6)

If K* can be used in place of the actual variation K(x) the end point pressures p0 and p1 must be the
same in equations (5) and (6). Hence,

∫∫ =
−

⇒
−

−=−=−
1

0

1

0
)(**)(

0101
01

x

x

x

x xK

dx

K

xx

K

xx
u

xK

dx
upp µµ (7)

Letting x0 and x1 be the cell edges, we see that the pressure drop across the cell is unaltered if we
replace K(x) with K* .

K* is called the harmonic average of K(x), denoted by <K> H:

28

∫=
><

− 1

0
)(

01
x

xH xK

dx

K

xx
 (8)

In practice, we often regard the permeability as piecewise constant. Let the interval [a, b] be
subdivided into N subintervals, such that K = Ki for x in subinterval i, with length Li. Then the integral
(8) computes to:

∑
=

=+++=
><

− N

i i

i

N

N

H K

L

K

L

K

L

K

L

K

ab

12

2

1

1
L (9)

We have shown that when the flow is in the same direction as the permeability variation, the
appropriate average permeability to use is the harmonic average. It would however be wrong to
conclude that the harmonic average is always the best to use. This can be illustrated with some
examples.

Example 1. Non-permeable slab.
Assume a unit cube of porous material, with isotropic and constant permeability K = 1000mD, except
for a thin slab of non-porous soil (K = 0) in the volume 0.5 ≤ x ≤ 0.51, all y and z
Then flow in the x-direction will be completely stopped by the slab, such that the effective
permeability across the cube in the x-direction is zero, which is also what we would get if we compute
the harmonic average.
In the y and z-directions, the flow would, however, hardly be affected by the slab. Since the flow is
along the slab, not across it, the slab will only represent a minor reduction of permeability. In this case
the arithmetic average is the most appropriate:

mDKL
L

K i
i

iA 9901000*49.00*01.01000*5.0
1 =++==>< ∑

Example 2. A fracture
A rectangular grid block is 100m x 100m x 5m. A 1m wide fracture runs along the entire cell in the y-
direction at x = 50m. The fracture also covers the whole cell thickness. Inside the fracture the
permeability is very high, 10000mD, while the non-fractured porous media (“matrix”) has a low
permeability of 2mD. Then for flow across the cell normal to the fracture (in the x-direction) we use
the harmonic average (Equation (9)):

mDK
mD

m

mD

m

mD

m

K

m
H

H

02.25001.49
10000

1

2

99100 =><⇒=+=
><

For flow parallel to the fracture we use the arithmetic average:

mD
m

mDmmDm
K A 102

100

10000*12*99 =+=><

So for this particular example we should define the grid cell permeability as anisotropic, with Kx =
2mD, and Ky = 102mD. I.e. the flow across the fracture is only insignificantly influenced by the
fracture, while the flow in the fracture direction is strongly influenced.

Since real reservoirs have been deposited in a layer by layer fashion (roughly) and been
compressed vertically, the typical reservoir has significant permeability variation vertically, but less
along the layers. Also the vertical permeability will normally be lower than the horizontal, both locally
due to the compression direction, and more noticeable on a larger scale, since low permeable layers
(shale, clay, ...) will almost always be present. As a rule of thumb, grid cell permeabilities can be
obtained from log data (measurements along a well path) by using the harmonic average in the vertical
direction, and arithmetic averages in the horizontal directions (along the bedding planes).

29

If the permeability variation within a grid cell has no preferred direction, it has been shown that the
best average value to use is the geometric average: With the same notation as above, assuming all
interval lengths are equal,

NN

i
iG KK

/1

1













=>< ∏

=
 (10)

Transmissibility
Permeability is a measure for conductance, and its inverse is a measure for resistance. If we draw the
comparison to electrical resistance or conductance, it is evident that we never speak of “resistance in a
point”. Resistance or conductance is a property that only has meaning if referred to as “between two
points”, i.e. conductance and resistance is a flow property. In the same manner, it is meaningless to
speak of “permeability in a point”. If we regard the grid cell as a volume, we could interpret
permeability as the flow property across the cell. However, viewing the cell as a volume is solely a
convenient visualisation means. By the manner the simulator solves the flow equations the grid is a set
of points, and all property values are to be understood as the values in the points. And obviously
nothing can vary “in a point”. (By this way of looking at the grid we are less tempted to think that it is
possible to model variations within a grid cell volume. If the point of interest is really a point it is
evident that no variation can be possible.) The bottom line is that the permeabilities of interest should
really be measures for conductivity between different grid points.

Finite differences
In numerical methods, differentials are replaced by finite difference approximations. Since

x

f

dx

df
x ∆

∆=
→∆ 0

lim , we expect
x

f

∆
∆

 to be a good approximation to
dx

df
 when ∆x is small.

E.g. to solve the differential equation 0)(=+
dx

df
xf on the interval 0 ≤ x ≤ 1, we subdivide the interval

into N subintervals of equal length h = 1/N.
Let xi = ih, and fi = f(xi). Then an approximation to the differential equation at the point x = xi is,

0
)(

=
∆

+
h

xf
f i
i . We approximate ∆f(xi) with the “forward difference”,)()()(1 iii xfxfxf −≈∆ + , such

that the difference equation becomes,

ii
ii

i fhf
h

ff
f)1(0 1

1 −=⇒=
−

+ +
+ , for i=1,2,...,N.

From this last equation we can compute all the fi.

In this context we are especially interested in the transport term for phase l (= o,w,g; oil water or gas)
in the flow equations,

 







∇

⋅
⋅∇ l

ll

rl p
B

kK

µ
,

where krl is relative permeability, and µl and Bl are viscosity and volume factor for phase l.

Introducing mobility
B

kr

µ
λ = (where the phase subscript has been omitted for simplicity), and

restricting ourselves to one-dimensional flow, this term becomes,










dx

dp
K

dx

d λ (11)

We seek a finite difference approximation to the term (11).

30

From numerical analysis it is known that the central difference 11 −+ −=∆ iii fff “works better” than
forward or backward differences4. When we firstly discretise the inner differential, for reasons that
will become clear eventually, we will not use the points xi+1 and xi-1, but intermediate points xi+1/2
midway between xi and xi+1, and xi-1/2 midway between xi and xi-1.

Figure 9. Discretisation notation

Using a temporary shorthand notation
dx

dp
KF λ= , the central finite difference approximation is,

2/12/1

2/12/1

−+

−+

−
−

≈=








ii

ii
i

i xx

FF
F

dx

d

dx

dp
K

dx

d λ (12)

Now F in the “half-points” can be evaluated by a central difference in exactly the same manner:

()
2/1

2/12/1
+

++ 






=
i

ii dx

dp
KF λ and

ii

ii

i xx

pp

dx

dp

−
−

≈








+

+

+ 1

1

2/1

Similarly,
1

1

2/1 −

−

− −
−

≈








ii

ii

i xx

pp

dx

dp
, so that we finally get,

() ()





















−
−

−








−
−

∆
≈









−

−
−

+

+
+

1

1
2/1

1

1
2/1

1

ii

ii
i

ii

ii
i

ii xx

pp
K

xx

pp
K

xdx

dp
K

dx

d λλλ (13)

Using Equation (9) we see that the permeability in the “half points” should be evaluated as,

1

2/112/1

2/1

1

+

+++

+

+ −
+

−
=

−

i

ii

i

ii

i

ii

K

xx

K

xx

K

xx

Equation (13) includes permeability and mobility evaluated at the “half points”. For practical purposes
we can interpret the “half points” as lying on cell edges, although this is only true if the grid is uniform.
Hence, the permeability values needed by the simulator (at “half-points”) must be computed from two
and two cell values, and is interpreted as conductivity between the two cell centres. Pressure is, on the
other hand, computed at the cell centres, all this in accordance with the introductory discussion.

Actually, the permeability cell values in the input data file are never used by the simulator at
all. During the initialisation phase, these values are converted to the “half-point” inter-cell values, and
in computer memory these are stored by overwriting the original permeability values, which hence are
inaccessible during the simulation.

The representative permeability between two cell centres is called the transmissibility between the
cells. In practice, all simulators include some geometric factors and in some cases also fluid properties
in the definition of transmissibilities, but in this context we shall refer to the transmissibility as simply
the harmonic averaged permeability between two cell centres5.

Be aware that this is not in accordance with Eclipse’s way of defining transmissibility (consult
manual / technical appendices), and if the user wants to define Eclipse transmissibilities
explicitly Eclipse documentation should be consulted.

4 The central difference is a second order approximation, i.e. the error is of order h2, while the forwards and
backwards approximations are of first order, with error of order h.
5 Since the detail definition of transmissibility differs from simulator to simulator, it is unfortunately not possible
to transfer transmissibilities determined by e.g. history matching from one simulator to another.

xi-1

xi-1/2

xi xi+1

xi+1/2

F = F(x)i i

31

The mobility term – upstream weighting
The other “troublesome” term,),(2/12/12/1 +++ = iii Spλλ must be handled differently. The details are
beyond the scope of these notes, but averaging values for pressure and saturations from two neighbour
cells is not a good solution. By arguing physically that mobility is a property that moves with the flow,
λ is computed based on the values in the cell the flow is coming from to reach the cell edge. Hence for
a one-dimensional case,





←
→

=
+

+ uif

uif

i

i
i

1
2/1 λ

λ
λ

This is called upstream weighting.
(And yes, this can and does pose problems frequently.)

Averaging – smoothing
When we compute the cell average permeability, the actual permeability field is smoothened by the
averaging, and the effect of local extreme values may be lost. When the simulator converts the input
permeability to inter-cell transmissibilities, the data is smoothened yet another time. The permeability
field that is used by the simulator is therefore typically considerably smoother than the original data.
In some cases this effect can change the flow pattern such that we don’t get the results that were
expected by logical physical reasoning. In such cases it is recommended to compute improved
transmissibilities manually, and replace simulator-computed values by these in critical areas.

Inactive cells
An inactive cell is a cell that does not contribute to fluid volumes or flow in the reservoir. By default,
the simulator will flag any cell with vanishing pore volume as inactive. In addition, the user may
define active cells explicitly, by the keyword ACTNUM, where all cells are listed, the active ones as
“1”, inactive as “0”. Note that a cell with zero pore volume will be inactive irrespective of the value it
receives in ACTNUM.

Another source for inactive cells is the minimum pore volume option. Cells with very small
pore volume will contribute insignificantly to flow or production, but exactly because they have a pore
volume which is very different from typical values they can have a negative effect on the numerical
solution, and total computing time can become (unacceptable) large. For this reason it is possible and
advisable to define a minimum pore volume value such that cells with smaller pore volume than this
value will be flagged as inactive. For Eclipse, see keywords MINPV or MINPVV.

An inactive cell between two active cells will be a flow barrier. But if a cell becomes inactive
by the minimum pore volume option, it would obviously be wrong to treat it as a barrier, which would
not be in accordance with the original layout. Eclipse therefore has a keyword PINCH which when
used causes correct transmissibilities to be computed across cells made inactive by small pore volume.

Note that in this case the transmissibilities are not between neighbour cells, which they don’t need to be.
General transmissibilities can be between any cells.

5. Fluid properties (PROPS section)

Tables in Eclipse
All functional dependencies are defined by tables in Eclipse. Values between tabulated points are
found by linear interpolation when needed. If values extend beyond the range in the table, the first or
last point in the table is used, i.e. no trend extrapolation. Note that in many cases Eclipse actually
needs differentials calculated from the tables, hence not only should table data be sufficiently smooth,
but also the derivatives. With this background we can put up some simple rules of thumb,

• Ensure that the table range covers all values that can occur in the simulation. If in doubt,
extrapolate table roughly by hand (it’s going to be better than Eclipse’s constant extension).

• Use enough points that transitions between table points are “sufficiently smooth”. Avoid abrupt
changes, e.g. don’t use a step function, but define some extra points which round off the corners a
little. Since Eclipse interpolates linearly, check that the point spacing is dense enough that this is
good enough. On the other hand don’t use too many points, as this may slow down the table look-
up.

32

• Hysteresis will not be covered here, but if used it is recommended to define the two curves at a
parting point such that the parting is smooth, with smooth derivatives.

In most cases the functional dependency that is tabulated has some physical constraints. Eclipse knows
all about such constraints, and will check tables, and refuse to simulate an unphysical situation.
(Typical monotonicity, consistency,...). Some violations will result in warnings, other in errors.

Relative permeability and Capillary Pressure

Two-phase curves (water – oil)
The standard way of defining relative permeability for an oil-water system is as a function of water
saturation, krl = krl(Sw), l = o,w. The interesting range is the mobile fluid range,
0 ≤ Swc ≤ Sw ≤ 1 – Sor ≤ 1, where Swc is critical water saturation and Sor residual oil saturation.
The endpoint relative permeabilities are,

)1(),(''
orrwrwwcroro SkkSkk −==

The easiest way to input the curves to Eclipse is by the keyword SWOF. Each entry (line in the table)
consists of four items,
Sw krw(Sw) kro(Sw) Pcwo(Sw)

Requirements:
Column 1 is in increasing order.
Column 2 is non-decreasing
Column 3 is non-increasing
Column 4 is non-increasing

In the first column, the first entry is taken as connate water, and krw must be zero on this line,
while kro = kro’.

Sw = 1 – Sor at the first zero-value in the third column, while the last entry in the first column is
taken as maximum occurring water saturation, Sw,max.

NOTE: Sw,max is used to initialise saturations in the water zone in the reservoir. Only in exceptional
cases should this value be different from 1.0.

Some entries in columns 2, 3, and 4 can be defaulted (by 1*). Missing table values will then be
computed by linear interpolation.

Figure 10. Typical two-phase relative permeability curves

Relative permeabilities

0

0,2

0,4

0,6

0,8

1

0 0,2 0,4 0,6 0,8 1

Sw

krw

kro

Swc=0.2 1-Sor=0.84

krw’=0.19

kro’=1.0

33

Example 1
The relative permeability curves shown in Figure 10 can be input to Eclipse as,

SWOF
-- Sw krw kro Pcwo

 0.2 0.0 1.0 10.0
 0.3 0.0046 0.712 2.7
 0.45 0.029 0.371 0.78
 0.6 0.074 0.141 0.3
 0.7 0.116 0.0479 0.14
 0.8 0.167 0.004 0.033
 0.84 0.19 0.0 0.0
 0.9 0.25 0.0 0.0
 1.0 1.0 0.0 0.0 /

From the first line we deduce that Swc = 0.2, and k’ro = 1.0.
The first entry where kro is 0 is at Sw = 0.84. Hence 1 – Sor = 0.84 (Sor = 0.16), and k’rw = 0.19. The last
table entry is Sw = Sw,max = 1.0, so the water saturation in the water zone will be 1.0.

Note that we have defined a point between 1 – Sor and 1.0, such that the water relative
permeability is smooth near 1 – Sor.
Theoretically, ∞→cwoP as Sw approaches Swc. This obviously can’t be input in the table, so we use a
large value of the capillary pressure at the end point, such that the curve is relatively smooth.

An alternative way of defining two-phase water-oil relative permeability curves is by the keywords
SWFN and SOF2. The difference from SWOF is that only one curve is defined in each keyword,
water relative permeability by SWFN and oil relative permeability by SOF2. Also the curves are
defined with its own saturation as independent variable, krw = krw(Sw) and kro = kro(So). (Both tables
defined with the first column in increasing order.) Apart from that all rules and constraints defined for
SWOF are the same. (SWFN and SOF2 are not much used anymore.)

Example 2
The relative permeabilities defined in Example 1, by SWFN and SOF2 keywords,

SWFN
-- Sw krw Pcwo

 0.2 0.0 10.0
 0.3 0.0046 2.7
 0.45 0.029 0.78
 0.6 0.074 0.3
 0.7 0.116 0.14
 0.8 0.167 0.033
 0.84 0.19 0.0
 0.9 0.25 0.0
 1.0 1.0 0.0 /

SOF2
-- So kro
 0.0 0.0
 0.16 0.0
 0.2 0.004
 0.3 0.0479
 0.4 0.141
 0.55 0.371
 0.7 0.712
 0.8 1.0 /

Since we now have two tables, they must be compatible: the endpoint water saturations in SWFN (0.2
and 0.84) must correspond to the endpoint oil saturations in SOF2 (0.16 and 0.8).

34

Three-phase relative permeabilities
If we assume that any of the three phases can flow irrespective of the saturation of the two other
phases, we will need a very complex description, that is not even agreed on in the industry. We
therefore restrict ourselves to a simple model, and refer to other literature if a more realistic model is
needed. The basic assumption is that the flow is in essence two-phase, with the third phase acting as a
“dummy background”, but not contributing actively to the flow. Then the relative permeability curves
for oil are either oil-water (no gas) or oil-gas (water at connate saturation). The input can be defined in
several ways in Eclipse. We present only one, and refer to the manuals for alternatives.
Three phase relative permeabilities are input by the keywords SWOF and SGOF.
SWOF is identical to the two-phase case, except that column 3, krow, is now interpreted as oil relative
permeability when only oil and water are present,
Sw krw(Sw) krow(Sw; Sg=0) Pcwo(Sw)

The data for keyword SGOF also consist of lines with four entries:
Sg krg(Sg) krog(Sg; Sw=Swc) Pcog(Sg)

We see that the first entry in column 3 is oil relative permeability at minimum water and gas saturation
in both tables, so those two have to be equal. The last value in column 3 must be zero for both
keywords. Pcog(Sg) must be nondecreasing.

Example 3. Three phase relative permeabilities using SWOF and SGOF

SWOF
-- Sw Krw Krow Pcow

0.22 0.0 1.0 7.0
0.30 0.07 0.4 4.0
0.40 0.15 0.125 3.0
0.50 1* 0.065 1*
0.60 0.33 0.0048 2.0
0.80 0.65 0.0 1.0
0.90 0.83 0.0 1*
1.00 1.00 0.0 0.0 /

SGOF
-- Sg Krg Krog Pcog

0.00 0.0 1.00 0.0
0.04 0.0 0.60 0.2
0.10 0.022 0.33 0.5
0.20 0.1 0.10 1.0
0.30 0.24 0.02 1*
0.40 1* 0.00 1*
0.50 0.42 0.00 1*
0.60 0.5 0.00 3.0
0.70 0.813 0.00 3.5
0.78 1.0 0.00 3.9 /

PVT data
Eclipse, as most black oil simulators, assumes isothermal behaviour in the reservoir, i.e. the PVT
relations are defined for constant reservoir temperature. This may be far from reality, as e.g. when
injecting cold water into a warm reservoir, but this is a limitation we have to live with.

Although the simulator must relate to the fluids as they occur in the reservoir, we as observers can
only measure fluid properties at the surface. It is therefore convenient, and standard in all reservoir
simulators to define fluid properties at standard conditions (also called surface conditions, or stock
tank conditions), i.e. at atmospheric pressure and temperature 15.5 °C. We will use subscript RC for
Reservoir Conditions and subscript SC for Standard Conditions.

35

Densities are then supplied to Eclipse as standard condition values (as in the DENSITY keyword in
the “BASIC data input example”), and transforming these values to reservoir conditions is done by the
formation volume factors, which is the ratio of a unit volume of fluid at reservoir conditions to the
volume the same amount of fluid occupies at standard conditions,

,
,

,

SCl

RCl
l V

V
B = where l denotes gas, oil or water.

The unit for Bl is Rm3/Sm3, reservoir cube metres on standard cube metres.

The dissolved gas-oil-ratio, Rs, is defined as the gas volume, measured at standard conditions, that can
be dissolved in one standard conditions unit volume of oil, if both fluids are taken to reservoir
conditions.

Then, since a volume of oil at reservoir conditions contains both pure (liquid) oil and dissolved gas,
the formation volume factors can be expressed by the fluid densities as,

RCo

SCgsSCo
o

RCg

SCg
g

RCw

SCw
w

R
B

B

B

,

,,

,

,

,

,

ρ
ρρ

ρ
ρ
ρ
ρ

+
=

=

=

Oil will behave very differently depending on whether the oil pressure is above or below the bubble
point. If the oil is at a higher pressure than the bubble point pressure, no gas will evaporate from the
oil, and the oil behaves as a “pure” fluid, similar to water. Oil in this regime is called dead oil or
undersaturated oil, while oil below the bubble point is called live, or saturated oil.
For gas, water or dead oil, increasing the fluid pressure results in compressing the fluid – it becomes
heavier. Hence the volume formation factor will be decreasing with increasing pressure for such fluids.
Also fluid viscosity must be expected to be non-decreasing as the fluid becomes heavier. When oil
pressure is reduced below the bubble point, the behaviour is less predictable, as the oil will become
heavier due to gas release, but lighter due to expansion.

Water
In the black oil model, water is pure water, and does not mix with oil or contain dissolved gas.
Further, since water compressibility is low, a constant compressibility coefficient is assumed.

The coefficient of compressibility is defined as,

dp

dB

B
C w

w
w

1−= (14)

When Cw is constant, equation (14) can be solved easily:

)](exp[

loglog

00

0

ppCBB

B

B
pCBd

B

dB
dpC

www

w

w
ww

w

w
w

−−=

⇒=∆⇒−=−=

From this expression, the volume formation factor can be calculated at any pressure from its value at a
reference pressure p0.

Water viscosity can safely be assumed constant. Hence, Eclipse only needs water PVT data at a
reference pressure Pref.
Eclipse syntax:

PVTW

Pref [bars] Bw(Pref) [Rm3/Sm3] Cw [bars-1] µw(Pref) [cP] Cν

36

The term Cν is called “viscosibility”, and is defined as

dp

d
C w

w

µ
µν
1=

It can safely be defaulted in almost all runs.

Example:
PVTW
-- Pref Bw(Pref) Cw mu_w(Pref) C_nu
 245.0 1.0035 2.0e-5 0.525 1* /

Dead Oil
If the oil pressure stays above the bubble point pressure everywhere in the reservoir at all times, a
simplified version of oil PVT data can be defined. In the permitted pressure regime, no gas is liberated
from the oil in the reservoir, and hence the oil behaves as a pure liquid. Eclipse uses a special keyword
for this situation, PVDO (PVT for Dead Oil). The table consists of three columns, with syntax for each
line,
 Po [bars] Bo(Po) [Rm3/Sm3] µo(Po) [cP]

Po must be increasing down the column
Bo must be decreasing down the column
µo must be non-decreasing down the column

Example
(See also Figure 11)

PVDO
-- Po Bo mu_o

27.2 1.012 1.160
81.6 1.004 1.164

 136.0 0.996 1.167
 190.5 0.988 1.172
 245.0 0.9802 1.177
 300.0 0.9724 1.181
 353.0 0.9646 1.185 /

Figure 11. Volume factor and viscosity, dead oil (from example PVDO table)

For dead oil no gas vaporises from the oil in the reservoir. When the oil flows in a producing well to
the surface, the oil pressure will normally be far below bubble point when the oil arrives at the

PVDO

0,95

1

1,05

1,1

1,15

1,2

1,25

0 50 100 150 200 250 300 350 400

Po (bars)

Bo

mu_o

37

platform. The released gas volume pr. unit oil volume will however be constant, since all oil departed
the reservoir as dead oil. The amount of released gas which must be accounted for on the surface can
therefore be specified as a constant, which must be supplied to Eclipse in dead oil runs,

RSCONST
Rs [Sm3/Sm3] PBP [bars]

Note that if the pressure in any grid block falls below the bubble point pressure PBP, the run will
terminate.

Example
RSCONST
-- Rs P_BP
 180 230 /

Dry Gas
Gas which does not contain vaporised oil is denoted dry gas, and is the only kind of gas we will look
at in these notes.

PVT data for dry gas are equivalent to PVT data for dead oil, and the table syntax in Eclipse is equal:
Each line,
 Pg [bars] Bg(Pg) [Rm3/Sm3] µg(Pg) [cP]

Pg must be increasing down the column
Bg must be decreasing down the column
µg must be non-decreasing down the column

Figure 12. Volume factor and viscosity for dry gas (from example PVDG table)

Example
(see also Figure 12)

PVDG

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

0 50 100 150 200 250 300 350 400

Pg (bars)

Bg

mu_g

38

PVDG
-- Pg Bg mu_g

27.2 0.03313 0.0130
54.4 0.016564 0.0135
81.6 0.010051 0.0140

 108.8 0.007500 0.0145
 136.0 0.006255 0.0150
 163.2 0.005503 0.0155
 190.4 0.004716 0.0160
 217.6 0.004155 0.0165
 245.0 0.00365 0.0170
 272.0 0.00328 0.0175
 299.2 0.00303 0.0180
 326.4 0.00275 0.0185
 353.6 0.00253 0.0190
 380.8 0.00236 0.0195 /

Live Oil
An undersaturated oil has a well defined bubble point pressure PBP. If the oil pressure is reduced to PBP
the oil starts to boil, and gas evaporates from the oil. But once this process starts, the oil itself changes
– when some gas has been liberated from the oil, the remaining liquid oil contains less dissolved gas
than before the evaporation, such that the oil is heavier, and with a new, lower bubble point than
originally. Hence, PVT relationships for live oil must describe both how the oil itself changes, and for
“each type of oil” how properties vary with primarily oil pressure. As long as the “oil type” is constant
the property variation is similar to that of dead oil, described by the PVDO keyword. Whereas the
bubble point is constant for dead oil, for live oil it is directly related to the “oil type”, which can be
characterized by the gas resolution factor Rs. Hence we must specify the relationship between Rs and
PBP, as well as variation of oil properties – typically the liquid oil grows heavier and more viscous as
the amount of dissolved gas is reduced. The table can use either PBP or Rs as primary variable, in
Eclipse Rs has been chosen.

The table contains two types of data,

1. Data for saturated oil, tabulated as a function of Rs. Each line contains PVT data relating to the
supplied Rs –value.

2. Data for undersaturated oil, valid for a certain value of Rs, and tabulated as a function of oil
pressure. This data must be defined for the largest Rs –value in the table, and can also be
defined for other Rs –values.

One record in the table is comprised of four items if data is of the first kind, and an additional sub-
table if it is of the second kind. Each record is terminated by a slash.

Data of the first kind are given as,

Rs [Sm3/Sm3] PBP(Rs) [bars] Bo(PBP) [Rm3/Sm3] µo(PBP) [cP]

The Rs –values should be increasing within the table.

When data of the second kind are supplied, the record takes the form,

Rs [Sm3/Sm3] PBP(Rs) [bars] Bo(PBP) [Rm3/Sm3] µo(PBP) [cP]
 Po [bars] Bo(Rs, Po) [Rm3/Sm3] µo(Rs, Po) [cP]
 .
 .
 .
 Po [bars] Bo(Rs, Po) [Rm3/Sm3] µo(Rs, Po) [cP]
I.e. the first four items are defined as above, and then additional data are defined, tabulated as a
function of Po (which must be defined in increasing order, starting with PBP), all valid for the current
value of Rs.

39

Example
(See also Figure 13; viscosity is not shown as it behaves as in the dead oil regime)

PVTO
-- Rs P_bp(Rs) Bo(P_bp) mu_o(P_bp)

49.0 27.2 1.1334 1.17 /
 108.6 81.6 1.1626 1.11 /
 167.1 136.0 1.1906 1.06 /
 220.8 190.4 1.2174 1.00 /
 267.2 245.0 1.2432 0.95
-- Subtable for undersaturated oil with Rs = 267.2
-- Po Bo(Po) mu_o(P_o)
 272.0 1.2382 0.95
 299.2 1.2332 0.95
 326.4 1.2283 0.95
 353.6 1.2235 0.95
 380.8 1.2186 0.95 / Record end
 286.7 272.0 1.2544 0.94 /
 306.3 299.2 1.2656 0.92
-- Subtable for undersaturated oil with Rs = 306.3
 326.4 1.2606 0.92
 353.6 1.2555 0.92
 380.8 1.2505 0.92 /
/ “Empty” record marks end of table

Figure 13. Variation of live oil volume factor, below bubble point and two branches above (from example
PVTO table)

6. Soil compressibility (PROPS section)
In reservoir simulation soil compaction (which is actually compaction of the pore space) is modelled
as a function of fluid pressure, which is a necessary simplification. The simplest available compaction
model is to assume linear elasticity, i.e. a constant coefficient of rock compression (similar to the
constant water compressibility discussed above), defined with keyword ROCK, with syntax,

ROCK
 Pref [bars] Cr [bars-1]

Example
ROCK
-- Pref Cr
 310.0 5.0e-6 /

Oil Formation Volume Factor

1,12

1,14

1,16

1,18

1,2

1,22

1,24

1,26

1,28

0 50 100 150 200 250 300 350 400

P (bars)

Bo (P_bp)

Bo (P_o) (1)

Bo (P_o) (2)

40

Then if a grid cell has an initial pore volume of PV0 = PV(Pref), the pore volume corresponding to cell
pressure P, PV(P), will be,

)](exp[)(0 refr PPCPVPPV −=

Non-linear compaction with or without hysteresis can be modelled by means of the keyword
ROCKTAB. The input consists of a table which specifies the pore volume multiplier (PVM) as a
function of cell pressure. A permeability multiplier can also be specified. The basic syntax for each
line is,

 P [bars] PVM(P) Perm-mult(P)

P must be increasing down the column
Columns 2 and 3 must be non-decreasing down the columns.

In addition it may be necessary to include the ROCKCOMP keyword in the RUNSPEC section.

Example

ROCKTAB
-- P PVMult Perm-mult
 100.000 0.93520 1.0
 167.854 0.95327 1.0
 203.427 0.96376 1.0
 227.475 0.97265 1.0
 251.206 0.97953 1.0
 264.976 0.98510 1.0
 280.418 0.98937 1.0
 289.369 0.99254 1.0
 293.122 0.99484 1.0
 300.651 0.99652 1.0
 305.144 0.99797 1.0
 310.000 1.00000 1.0 /

7. Initialisation (SOLUTION section)
At time zero, before any flow occurs in the reservoir, the saturation and pressure distribution in the
reservoir must be such that the fluids are in gravity equilibrium, i.e. a no-flow situation. Although it is
possible (in principle) to manually define initial grid cell values such that the no-flow condition is
satisfied it is virtually impossible to do this in practice. Almost without exception, the equilibrium
calculations will be performed by the simulator, which is also strongly recommended. Using Eclipse,
this signifies that initialisation of the models will always be done by the keyword EQUIL. By this
keyword Eclipse has sufficient data to compute capillary and fluid gradients, and hence fluid
saturation densities in each cell.

The data record is comprised of one line of data values (or one for each equilibration region if needed),

DD P(DD) OWC Pcow(OWC) GOC Pcog(GOC) RsPBPvsD RvPdvsD Nacc

Datum depth
DD (Datum Depth) and P(DD) (Pressure at datum depth) are the fix-points in the calculations. All cell
pressures will be calculated from fluid pressure gradients and the supplied pressure value at datum
depth. Also, calculated pressures during the simulation can be reported as equivalent datum depth
pressures. So typically datum depth will be chosen at a depth where an early pressure measurement
was made. If a gas-oil contact exists Eclipse will often only accept datum depth at this contact, so it
can be recommended practice to do this in general (ref. Eclipse documentation for details).

41

Contacts
Item 3, OWC is the depth of the oil-water contact in oil-water or three-phase problems, the depth of
the gas-water contact in gas-water problems. (The value is ignored in single phase or gas-oil problems).
Item 5, GOC is the depth of the gas-oil contact (ignored in single-phase, oil-water, and gas-water
problems). Capillary pressures specified at the contacts (items 4 and 6) will overrule capillary
pressures defined in the relative permeability tables.
Note that if a contact is not present in the reservoir it should be defined above or below the reservoir,
not defaulted. E.g. in a three-phase run with initially no free gas, the GOC should be defined at a depth
above the reservoir, to assure correct fluid distribution when free gas is produced, and since Eclipse
expects a gas-oil contact in a three-phase run.

RsPBPvsD and RvPdvsD. These are flags for specifying initial variation with depth of gas solution,
bubble point, vaporised oil, or dew point. Ref. Eclipse documentation for details, as the flags will not
be used in these notes.

The Nacc parameter – accuracy of initial fluids in place ca lculations
The initial vertical distribution of fluids will be governed by fluid densities and capillary forces.
Starting from the top and going downwards the typical distribution will be, gas, gas-oil transition zone,
oil, oil-water transition, water. By initialisation we aim to define fluid saturations in each grid cell
such that the system is in equilibrium, i.e. when no external forces are applied, no fluid flow should
take place in the reservoir. (Appears obvious, but very often not obeyed in practice.) For simplicity we
discuss only the oil-water contact, and assume no transition zone, i.e. water saturation is unity below
the oil water contact and at connate water saturation above the contact. Only grid cells which contain
the oil-water contact can pose problems. Recall that a grid cell is actually a point in space for the
simulator, so although we can envisage a saturation variation within a cell volume, such a variation is
not possible in a simulation cell – we can only assign one value of e.g. water saturation for the cell. So
the question is, which value to choose?

The simplest and perhaps most obvious solution is to use the saturation at the cell centre, i.e.





=
OWCabovecentrecellifS

OWCbelowcentrecellif
S

wc
w

0.1
 (15)

If the oil-water contact passes close to the cell centre this method will result in inaccurate fluids-in-
place calculations, as the “correct” water saturations should obviously be close to the average value of
connate and pure water. If a cell has total pore volume V, of which Vw is water-filled and Vo oil-filled,
then the cell’s initial water saturation (“exact”) will be

)0.1(
1

owcww VSV
V

S ⋅+⋅= (16)

Intuitively, calculating initial water saturations by Equation (16) will provide a more accurate initial
fluid distribution and better estimates for initial fluids in place than by using Equation (15). Although
Equation (16) is simple as it stands, it becomes rather complex if we try to generalise it to handle
transition zones. Eclipse therefore uses an alternative approach to calculate initial cell saturations from
exact fluid distribution. Imagine the cell divided into a number of horizontal slices of equal thickness.
For each such slice, the slice saturation is defined as the saturation at the slice centre. Then the cell
saturation is the volume-average of the slice saturations. This saturation calculation will obviously be
more accurate the more slices we use. The number of such slices is defined by the Nacc paramter.
Nacc = 0: Use cell centre initialisation (Equation (15))
Nacc > 0: Use 2*Nacc slices and honour actual cell geometry (tilted cells)
Nacc < 0: Use -2*Nacc slices, but treat the cells as being horizontal.

Nacc is limited to 20. Note that the default value is -5 (i.e. 10 slices and cells assumed horizontal), such
that if cell centre initialisation is required, Nacc must be set explicitly to 0.

42

Example.
A reservoir has its highest point 1700 m SMSL (Sub mean sea level), and its deepest point at 1940 m
SMSL. The reservoir was discovered by an appraisal well in which a reservoir pressure of 326 bars
was measured at depth 1754 m SMSL. The oil water contact is at a depth of 1905 m, and there is no
free gas present in the reservoir (so we define GOC above the reservoir).

We use the initially measured pressure as datum, and will initialise our three-phase model
with the accurate fluids-in-place calculation with 20 slices, using the tilted cell option. No capillary
transition zones. The appropriate EQUIL keyword is then,

EQUIL
-- DD P(DD) OWC Pcow(OWC) GOC Pcog(GOC) RsPbpv sD RnPdvsD Nacc

1754 326.0 1905 0 1600 0 1* 1* 10 /

Equilibrium – discussion – advanced issues
From a computational point of view the cell centre initialisation is the most proper option to use, at it
is the only way to initialise the reservoir to complete equilibrium. The accurate fluids-in-place method
will in most cases be almost in a quiescence state, but not quite, such that some fluid flow will take
place if the simulation is started without any production / injection (try it!).

The full problem of proper initialisation cannot be discussed in these notes, but some basic features are
presented, as they should be known by simulator users.

When building simulation models for real reservoirs in a commercial setting (i.e. in an oil company) it
is normally requested that initial fluid-in-place volumes are as correct as possible, not only on
reservoir scale, but also in each reservoir segment and geological unit. This can often only be achieved
by using accurate fluids-in-place initialisation, so even though cell-centre initialisation has many
advantages it is frequently not an option. Additionally, the initial saturation distribution in the
reservoir is seldom or never as simple as a fluid contact with or without transition zone. Saturation
distribution is generated from seismics and saturation vs. depth measurements in wells, and it is often
required to reproduce this initial saturation field in the simulation model, although an exact
reproduction will (almost) never be in equilibrium (primarily because reality includes so much physics
which has been left out in the model).

The bottom line is that we often wish to initialise our simulation grid with a certain saturation field,
but this results in a non-equilibrium model.

Eclipse offers some ways to come around this, by the keyword EQLOPTS. Note that these
should never be used if cell centre initialisation has been chosen.
Basically, three flags can be set to control simulator behaviour:
MOBILE:

Adjusts rel-perm end points (critical saturations) such that relevant fluids are (only just)
immobile at the calculated or defined initial saturations.

QUIESC:
Changes initial cell phase pressures such that a quiescent state is achieved

THPRES:
Enables the Threshold Pressure Option, which is otherwise used to prevent fluids from
different equilibration regions to be in an incompatible state. In essence this option defines
inter-cell transmissibilities which are just large enough to prevent flow between the cells with
the existing pressure differences computed by initialisation (a sort of “pseudo-barrier”). The
changes are applied throughout, not only during initialisation.

All of these flags result in a quiescent initialisation in the sense that no flow will occur if the
simulation is started with no injection / production. However, no one can argue that the means have a
flavour of artificialness, and are outside the control and knowledge of the user. More importantly, the
simulator does change the input data, and these modifications are not only used to force a stable
initialisation, but will continue to be applied throughout the run, some times with unintentional
behaviour as result.

43

If one can live with the lack of accuracy in fluid-in-place computations it is probably the safest to stick
to the simple cell-centre saturation initialisation.

8. Time dependent input data (SCHEDULE section)
So far, all the data we have defined has been static data – used to specify the model itself and initialise
it. The time dependent (dynamic) data describe how the reservoir is produced. Eclipse processes the
dynamic data a little different, as the input file is only read as far as necessary to compute the next
time step. This can be a clue to understanding how the SCHEDULE section is organised. Basically,
the section is comprised of three different kinds of data,

1. Specification of wells, and guidelines for production or injection.
2. Control of progress of the numerical computational scheme (optional)
3. Time stepping

The only way to remove or add fluids from / to the reservoir is by wells, so any simulation model will
include at least one well. In reality wells can be simple or complex, and controlled by a number of
devices, to meet surface constraints. Most simulators will therefore offer an extensive list of features
for controlling simulator well behaviour, some of which we cover in the following section.

8.1 Well definitions and control
In Eclipse, wells are defined and controlled in three stages,

1. Well specification. Includes the static properties of the well as the well name, location,
dimensions,...

2. Completion data. Although the well itself can penetrate a long part of the reservoir, it will be
open for flow between well and reservoir only in limited sections (actually holes), called
completions (or perforations, connections). Completion data specifies where and how the well
is open for flow to / from the reservoir.

3. Production / injection control. Specification of target rates and constraints for well production
or injection.

The first item is given only once for each well, and must be specified before any other well data can be
defined. The second kind of data changes occasionally, while the third kind typically is updated
relatively often.

In production simulation, wells are very often put under group control, which means that in stead of
controlling each well individually, wells are organized in groups, and the control criteria applies to the
group as such. Groups can also be organized hierarchically. Group control will however not be
covered in these notes.

The well control keywords contain many flags, some of which are not needed in the simple problems
we study in these notes. Such flags are marked with N/A in the following, and curious readers should
consult the Eclipse documentation.

Well Specification (WELSPECS keyword)
All wells in Eclipse are referred to by their name, a name which is defined in the WELSPECS
keyword. Therefore, logically, any well must be defined in WELSPECS before any further reference
to the well can be done. Apart from that, the keyword can occur anywhere in the SCHEDULE section
and as many times as needed.

Each well definition consists of one line terminated by a slash, and an empty record is used to
terminate the keyword.

Each line is comprised of the following items,

Wname Gname IWH JWH ZBHP Phase N/A N/A Auto-shut-in XflowFlag N/A DensCalc ...

44

Wname:
Unique well name, max 8 characters. All later reference to the well will be by Wname.

Gname:
Name of group to which the well belongs. Must be supplied even though we don’t intend to
use group control. The top-level group is always FIELD, but that name is reserved and cannot
been used here. Advice: Use some simple dummy-name, like G1.

I WH JWH
I and J cell index for well head, typically taken as the cell where the well hits the reservoir.

ZBHP

Reference depth for bottom hole pressure. The flowing bottom hole pressure, PBHP, is the
pressure inside the well bore. It varies with depth, but not that much if tubing wall friction can
be neglected. It is advised to set this value to the depth of the topmost perforation, which can
be done by defaulting it.

Phase
Preferred phase for the well. Can be set to OIL, WATER, GAS or LIQ. What we define here
doesn’t matter much in practice, since actual phase will be defined later.

Auto-shut-in
Flag for determining what to do with the well if the simulator determines to close it6 due to
some control violation. The options are, SHUT, which isolates the well completely from the
reservoir, or STOP; which only plugs the well above the reservoir, and hence allows for
crossflow after the well has been closed. The STOP option is normally the most realistic
compared to actual field wells, but will be more calculation intensive and can cause
convergence problems, a reasonable reason for choosing SHUT.

XFlowFlag
Flag for defining if crossflow is permitted through the perforations (This can and does occur
in real wells, but the computational considerations discussed above are valid in this context
also.) The options are, YES, crossflow allowed, NO, crossflow not allowed.

DensCalc
At this stage, can be left at default value. When friction wells are used, this item must be set to
‘SEG’ (chapter 15).

Note that in all cases where a character-variable flag is expected, a unique abbreviation is accepted.

Example
WELSPECS
-- Wname Gname IWH JWH Z_BHP Phase N/A N/A ShutI n Xflow
 OP1 G1 12 23 1825.0 OIL 1* 1* STOP YES /
 OP2 G1 5 17 1* OIL 1* 1* STOP YES /
 WI1 G1 19 4 1960 WAT 1* 1* SHUT NO /
/

Well Completions (COMPDAT keyword)
The keyword is used to specify where and how the well is open for flow from / to the reservoir. Each
line (record) contains data as described below. A complete description of a well’s completion can and
often must be defined using several records. As each record is read existing data is updated such that
the most recently read specification is the valid one.
Each line is comprised of the following items,

Wnm* IC JC KC,TOP KC,BTM Open/ShutFlag SatTblNbr N/A Dw Kh Skin N/A Dir r0

Wnm*

Well name as defined in WELSPECS, or well name wildcard. Eclipse will interpret a trailing
* as a wildcard, e.g. OP-1* will mean all wells with well names starting with “OP-1”. (Will
match OP-1A, OP-11, OP-100B, OP-12,..., but not OP10). Note that the * can only be used as
a wildcard at the end of Wnm*.

6 Eclipse defines accurate usage of the terms STOP and SHUT. We will therefore use ”close” when we mean
either STOP or SHUT, and only use STOP / SHUT in Eclipse-correct settings

45

Well name wildcards are so useful that most experienced users choose the well names such
that wildcards can be used in the most efficient manner.

I C JC
I and J indices for connection cells. If defaulted (by setting I, J to 0) the values defined in
WELSPECS will be used.

K C,TOP KC,BTM

K-index (layer) for topmost and bottom cell for which completions (perforations) are defined
in this record. All cells in the range (KC,TOP, KC,BTM) will be open to flow. E.g.
IC JC KC,TOP KC,BTM = 5 20 6 10 means the cells,
(5, 20, 6), (5, 20, 7), (5, 20, 8), (5, 20, 9), and (5, 20, 10)
will be perforated.
Observe that the syntax is tailored for vertical wells.

Open/ShutFlag
Specifies if the connection(s) specified in this record are currently open or closed to flow.
Choices are OPEN or SHUT.
(There is also a third option, AUTO. Ref. Eclipse manual)

SatTblNbr
By default Eclipse will use the relative permeability curves defined for the connection cell for
well in/outflow calculations. So far we haven’t even covered use of multiple relative
permeability regions, but still can appreciate that there may be good reasons for defining
special relative permeabilities for well flow. We contend ourselves with a simple example.
Assume a well is completed down to 1960 m, with OWC at 1970 m. Further assume that in
the simulation grid, both OWC and the well are in the same cell. In that case, the cell will
contain mobile water such that the well will produce water immediately. Obviously in reality,
the well will not produce water before the OWC has risen to the well completion level. We
could model this behaviour by defining an artificially high Swc in the well cell, such that the
water would be seen as immobile until saturation reached a level which corresponds to the
OWC having risen to the perforation.

Dw
Wellbore diameter at the connection. This property is defined here rather than in WELSPECS,
to allow for the diameter to vary along the wellbore.

Kh
Permeability thickness, i.e. the product K*h. This value is a measure for the production (or
injection) capacity of the well. The default value is to take K as the cell permeability and h as
the connection length, which is the cell thickness for a vertical well. If the well is perforated
across the entire cell it is normally OK to use the default value. But often the well is only
perforated in part of the cell thickness, and also the average cell permeability may not be
representative for the permeability in the interval that is perforated. In such cases it is better to
specify the Kh explicitly.

Skin
The skin factor enters the well in/outflow calculations (see below), and can be specified here
(default value is zero).

Dir
The direction the well penetrates the cell. For a vertical well this is the Z-direction, for a
horizontal well parallel to the x-axis X. The choices are X, Y, or Z.

r 0
Pressure equivalent radius. Generally it is recommended to default this value, in which case
the Peaceman equivalent radius will be used (see below). To use an alternative value, specify
r0 > 0.

Wellbore in/outflow calculations
We look at the simplest possible model, a vertical well in a homogeneous isotropic reservoir
producing incompressible fluid at constant rate q. The assumptions imply cylinder symmetric flow, so
that the pressure variation near the well is described by Darcy’s law:

46

dr

dpAK
q

µ
⋅= (17)

where r is the distance from the wellbore centre, and A is the area the fluid crosses at distance r, i.e. A
= 2πrh. h is total completion height.

Equation (17) is easily solved,

)log(
22 w

wf

r

r

p

p
r

r

Kh

q
pp

r

dr

Kh

q
dp

wrw
π

µ
π

µ
=−⇒= ∫∫ (18)

Note that the lower bound of the integral is not zero, which it would be for an ideal point source, rather
we integrate from a finite well radius. Expression (18) actually requires that the well has a finite non-
zero radius. pwf = p(rw) is the pressure value at the well radius, and we assume that p(r) = pwf when
r < r w. pwf is the flowing bottomhole pressure, which we so far have denoted PBHP. We also recognize
the permeability thickness in expression (18).

When a well is drilled the drilling pressure (inside the well) is normally kept higher than external
reservoir pressure, to avoid reservoir fluids flowing into the well during drilling. Normally drilling
fluids will penetrate the reservoir, and the drill procedure itself can damage a zone near the well. Some
times, a stimulating fluid is added to the damage zone to improve productivity. The bottom line is that
in general there is a zone near the well where flow properties are different than those assumed when
deriving Equation (18), such that actually observed pressure drop differs from that predicted by
Equation (18). This pressure deviation ∆pS is conveniently defined as,

S
Kh

q
pS π

µ
2

=∆ (19)

where S is a dimensionless constant called the skin (or skin factor).
Taking account of the skin, we update the pressure drop (Equation (18)) to,









+=− S
r

r

Kh

q
pp

w
wf)log(

2π
µ

 (20)

(see Figure 14).

Figure 14. Pressure variation near well bore – without skin and with positive skin

Pressure near wellbore

245

250

255

260

Distance from wellbore centre

p,
 b

ar
s

Without skin

With skin

pe

pwf (w. skin)

47

If we let ∞→r in Equation (20), the pressure will also grow without bounds. This is clearly
unphysical, so we define a drainage radius re, where the influence from the well can be neglected, and
pressure has stabilised to a value pe:









+=− S
r

r

Kh

q
pp

w

e
wfe)log(

2π
µ

 (21)

When pe and pwf are known, Equation (21) can be solved to express maximum possible rate from the
well:

S
r

r

ppKh
q

w

e

wfe

+

−
=

)log(

2
max µ

π
 (22)

If we want to use Equations (18) – (22) in a numerical simulator we only have access to pressure as
average cell pressure. And we cannot observe variation like the one described by Equation (20) unless
we have a very fine grid near the well. What we need is some mechanism that relates the cell pressures
we have computed in the simulator to the expressions above. In papers from 1978 and 1983 Peaceman
showed that if the drainage radius re is replaced by an equivalent cell radius rb, Equation (22) can be
used to compute max. rate if pe is replaced with the average cell pressure pb. Peaceman suggested that
for a cartesian grid and isotropic medium, rb could be computed as,

22)()(1.0 yxhrb ∆+∆= (23)

rb as computed by Equation (23) is called Peaceman’s equivalent radius (or Peaceman-radius). Several
suggestions for improving this expression have seen light during the last decades.

Example
Well PROD1 is completed in cells (6, 8, 1), (6, 8, 2), (6, 8, 3) and (6, 8, 7). All connections are open
for production. Default saturation table will be used, the wellbore diameter is 0.3 m., Eclipse can
compute the Kh-product, skin is zero, and the well is vertical.
Well PROD2 is completed in cells (9, 5, 4), (9, 5, 5), and (9, 5, 6). All connections are open for
production. Default saturation table will be used, the wellbore diameter is 0.3 m.
Only part of the layer thicknesses are perforated, so we will define the Kh-products manually.

COMPDAT
-- Wnm* IC JC KTOP KBTM OPEN? SatTbl N/A Dw Kh Sk in N/A Dir r0

PROD1 6 8 1 3 OPEN 1* 1* 0.3 1* 0 1* Z 1* /
PROD1 6 8 7 7 OPEN 1* 1* 0.3 1* 0 1* Z 1* /
PROD2 9 5 4 4 OPEN 1* 1* 0.3 400 0 1* Z 1* /
PROD2 9 5 5 5 OPEN 1* 1* 0.3 900 0 1* Z 1* /
PROD2 9 5 6 6 OPEN 1* 1* 0.3 100 0 1* Z 1* /

/ Empty record terminates keyword

Production / Injection data (Keywords WCONPROD / WC ONINJE)
These keywords are used to specify production injection rates, guidelines and constraints. Eclipse will
determine production / injection rate such that all constraints are fulfilled. If no constraints are violated
the rate will be determined by the primary guide, defined by the Control mode item.
A production well has its data specified in the WCONPROD keyword. Each line (record) in the
keyword contains production data for one well, and production specifications for a well are valid until
they are redefined. The WCONPROD keyword can occur as many times as needed in the SCHEDULE
section. Each record is comprised by,

Wnm* Open/ShutFlag CtrlMode Orat Wrat Grat Lrat Resv BHP THP VFP-data ...

48

Wnm*
 As in COMPDAT
Open/ShutFlag

This is an open/shut flag for the well, in contrast to the flag in the COMPDAT keyword which
was for individual connections. The choices are,
OPEN: Well is open for production (default)
STOP: Well is plugged (stopped) above the reservoir, may be open for crossflow.
SHUT: Well is isolated from formation
(AUTO: Opened automatically by triggering options in the drilling queue.
 Ref. Eclipse documentation.)

CtrlMode
Primary control mode for the well. The specified mode is the guiding mode that the well will
be controlled by if no other constraints are violated. The available flags are, (no default)
ORAT: Oil rate target
WRAT: Water rate target
GRAT: Gas rate target
LRAT: Liquid rate target
RESV: Reservoir fluid volume rate target
BHP: Minimum allowed bottom hole pressure
THP: Minimum allowed tubing head pressure
GRUP: Well is under group control

Orat Wrat Grat Lrat Resv BHP THP
These are the actual guides / targets / constraints that will be used to determine producing rate.
For all the rate constraints, the default is “no limit”. Default BHP is atmospheric pressure, but
it is recommended to always define a minimum BHP, not less than the lowest value in the
PVT tables.

VFP-data....
Tables for Vertical Flow Performance Calculations are important for doing real field
simulations, but will not be covered here.

Constraints / targets / control modes
The rate targets are surface rates or constraints, which all have to be fulfilled, but some can be
defaulted, which means “no limit”.
RESV is a special target. In principle it refers to a fluid rate measured at reservoir conditions. If we e.g.
want injection to balance production such that liquid out = liquid in, we cannot do this by setting
injected water equal to produced liquid, since the equality ceases to be valid when the fluids are
moved to reservoir conditions. But the flag RESV tries to come around this problem. Unfortunately,
the calculation of equivalent reservoir fluid volumes are based on average reservoir pressure, not the
pressure of the actually produced fluid. So the RESV fluid volumes are only approximately correct.

When the fluid flows from the reservoir to the surface in the well, the fluid pressure will decrease as
the fluid moves upwards. The pressure drop is proportional to the completion depth, and more or less
equal to hydrostatic pressure. Obviously, if the fluid leaves the reservoir at a pressure which is lower
than the pressure drop it experiences on the way to the surface, it has too low energy to reach the
surface at all. Therefore, if fluids are to be produced without additional means of lifting, it is required
that the fluid pressure is above some minimum level when they enter the well. This is the minimum
required bottom hole pressure BHP. From Equation (21) we see that the BHP will be lower when the
rate is increased. A BHP violation can therefore often be met by reducing rate.

Constraints on THP (tubing head pressure) act just as the BHP constraints, but are more realistic. The
reason for this is that THP is the pressure measured at the tubing head, i.e. at the surface end of the
well. THP is hence an accessible measure, while BHP, measured in the reservoir is only available
when such measurements are done, which will be relatively infrequent if at all. To use THP data in the
simulation we need to be able to compute THP values from BHP and vice versa. This is done by VFP
curves (Vertical Flow Performance), which are curves which do the desired conversions. The VFP
relations are complex, involving depths, tubing lengths and fluid saturations, and are beyond the scope
of these notes. We will therefore stick to the BHP constraints.

49

Example
WCONPROD
-- Wnm* Open? CtrlMode Orat Wrat Grat Lrat Resv BHP THP ...

PROD1 OPEN ORAT 3000 2000 1* 4500 1* 220 1* /
/

Production data has been specified for a single well, PROD1, which is open at the current time. The
primary control mode is by oil rate, and the guides will be applied as follows:
First Eclipse checks if it possible to fulfil the primary goal. If oil can be produced at a rate of 3000
Sm3/day and at the same time all the other constraints are OK:

• BHP > 220 bars
• Water rate < 2000 Sm3/day
• Liquid rate (water + oil) < 4500 Sm3/day
• (No constraint on gas rate)

then the oil rate is set to the target rate. If any of the items in the bullet list are violated, then Eclipse
will attempt to reduce the oil rate until all the constraints are OK. If it is not possible to fulfil the
constraints with a positive oil rate, then Eclipse will write a message and close the well for the current
time step. But at later time steps the well will be checked to see if it can be reopened.
 Observation: Violation on the secondary targets will generally not be discovered before at the
end of the computations for the current time step. Eclipse will therefore have to redo the entire
calculations with redefined input, and iterate until a solution satisfying all constraints has been found.

Injection well – WCONINJE
The WCONINJE keyword for controlling injection wells is very similar to WCONPROD. The syntax
for each record (line) is,

Wnm* InjType Open/ShutFlag CtrlMode Rate Resv BHP THP N/A

Wnm*
 As before
InjType

This is either WATER (water injector) or GAS (gas injector)
Open/ShutFlag
 As in WCONPROD
CtrlMode

RATE: Surface flow rate target
RESV: Reservoir volume rate target
BHP: Bottom hole pressure
THP: Tubing head pressure
GRUP: Under group control

Rate
 Target or upper limit for injected fluid surface flow rate (default no limit)
Resv
 As in WCONPROD (default no target)
BHP

Target or maximum bottom hole pressure. Note that for an injector, the argument is turned
upside down, such that we now need a high surface pressure to get the fluid into the reservoir.
(default 6895 bars (=105 psi), which for practical purposes means no limit)

THP
 Comments as in WCONPROD.

Example

WCONINJE
-- Wnm* InjTyp Open? CtrlMode Rate Resv BHP T HP
‘INJ*’ WATER OPEN RATE 4000 1* 450 1* /
 INJ4 WATER OPEN BHP 4000 1* 480 1* /
/

50

First all wells with name starting with INJ are defined as water injectors. Constraints:
The wells will inject water at a surface rate of 4000 Sm3/day as long as the bottom hole pressure stays
below 450 bars. If this is not possible, injection rate will be reduced so that the bottom hole pressure
constraint is fulfilled.
Next the well INJ4 is defined. Although it also fits in the INJ* wildcard, the last definition will be the
valid one. INJ4 will be controlled by bottom hole pressure, i.e. it will inject water with a constant BHP
of 480 bars, if this can be done with a water injection rate not exceeding 4000 Sm3/day. If this is not
possible, the BHP will be reduced until injection rate is at most 4000 Sm3/day.

Economic well constraints (keywords WECON, WECONINJ)
The constraints we discussed for the WCONPROD and WCONINJE keywords are physical
constraints. If these are violated, production / injection is not possible. Another kind of constraints are
those that are based on economy. A natural requirement for any well would be that the value of
produced hydrocarbons from the well should as a minimum pay for the costs of maintaining the well.
Such constraints can be specified by the keyword WECON (and also WECONINJ which is rarely
used). The syntax of WECON is,

WECON
Wnm* MinORAT MinGRAT MaxWCUT MaxGOR MaxWGR Workover EndRunFlag

Wnm*
 Well name wildcard as before
MinORAT, MinGRAT, MaxWCUT, MaxGOR, MaxWGR

Economic constraints that all have to be satisfied if the well shall continue to stay open. The
constraints are in order, minimum oil production rate, minimum gas production rate,
maximum water cut, maximum gas-oil ratio, maximum water-gas ratio. (Default values =
“don’t use constraint”)

Workover
What to do if any of the economic constraints are violated. If the specified minimum oil rate
or gas rate cannot be satisfied, the well will be closed unconditionally. If one of the other
constraints is the offending one, the following options are available,
NONE Do nothing (default)
CON Shut the worst-offending connection
CON+ Shut the worst-offending connection and all those below it.
WELL Shut / stop the well
(PLUG Plug back well, ref. Eclipse documentation)

EndRunFlag
Request for whether the simulation shall be terminated if the well is shut or stopped. The
choices are YES or NO. If YES the simulation will continue till the next report step and then
terminate. (Default is NO).

The keyword has several additional items, ref. Eclipse documentation.

Example

For all wells with name starting with OP we require a minimum oil rate of 200 Sm3/day and a
maximum water cut of 0.9. If these requirements are not met the offending well will be closed, but the
run not terminated.

WECON
-- Wnm* MinORAT MinGRAT MaxWCUT MaxGOR MaxWGR Workover End?
 ‘OP*’ 200 1* 0.9 1* 1* WELL NO /

/

It is only natural that we set the EndRunFlag to NO in the example, since we wouldn’t want to
terminate the run as long as there are producing wells left. But when the last well has been shut, there
is no point in continuing the simulation.

51

For such cases we have available the keyword GECON – group economic control. The keyword is
similar to WECON, with the slight variation we need:

GECON
Gname* MinORAT MinGRAT MaxWCUT MaxGOR MaxWGR Workover EndRunFlag

Gname*

Group name wildcard. For our purpose this will always be FIELD, in which case the
constraints apply to the field as whole.

MinORAT MinGRAT MaxWCUT MaxGOR MaxWGR
These are exactly as in WECON, except they are now understood as group (field) quantities,
not single well (default values as in WECON).

Workover
NONE Do nothing (default)
CON Shut worst-offending connection in worst-offending well
CON+ As CON, but also shut all connections below
WELL Shut / stop worst-offending well
(PLUG As WECON)

EndRunFlag
YES Terminate run at next report step if all producers are stopped or shut
NO Continue run regardless (default)

Often both WECON and GECON will be used, they are not mutually exclusive.

Other often used Well control keywords
WELTARG
When well control data has been defined by WCONPROD or WCONINJE, typically only target rates
are changed later. In stead of repeating all the data every time a small change is made to already
defined constraints, the keyword WELTARG can be used. It is suited for situations where only one
parameter for a previously defined well shall be changed. The syntax is,

WELTARG
Wnm* ControlToChange NewValue

Example
All constraints have been defined for well OP1, but at a certain time we wish to change the target oil
rate from its previous value to 3000 Sm3/day.
This can be done by,

WELTARG
 OP1 ORAT 3000 /
/
The advantage goes beyond a shorter syntax, as it is clear to the reader that only the one constraint was
changed.

WCONHIST / WCONINJH
These keywords are very similar to WCONPROD / WCONINJE, but are used to define actual
historical rates and pressures. The advantage is primarily in the post-processing phase, when target
data can be compared to simulated results.

WEFAC
Wells are never on production 24 hours a day, 7 days a week. Some down-time is unavoidable. If a
well is operative 80% of the time with a producing rate Q, simulation production rate could of course
be defined as 0.8Q, ensuring correct grand total. This would however not be entirely correct, as the
bottomhole pressure calculations would be based on an erroneous rate. A correct solution can be
obtained by use of the WEFAC keyword (well efficiency factor), which is used to specify the factor of
producing time to total time.

52

8.2 Time stepping
As previously noted, the numeric solution is not continuous in time, but advanced in time in discrete
steps of length depending on the problem. In general, implicit solution schemes (which Eclipse uses
by default) allow for larger time steps than explicit schemes. The term “time step” in simulation is
more or less used to describe different kinds of time stepping. Although we will also adopt this sloppy
terminology, we will firstly define a more accurate notation.

1. The simulator will advance the solution from one point in time to another. The size of the step
is governed by the problem and the solution procedure, but some guidelines are often provided
by the user. These solution-dependent time steps are called ministeps by Eclipse.

2. The user will specify milestones (times or dates) of special interest. These milestones may be
e.g. times when a new well is put on production, when a well rate is changed, or simply to
force the simulator to dump output. These are the points in time which are referred to as time
steps (TSTEPS) in Eclipse, but are more correctly denoted milestones.

3. As we shall see when we discuss writing of results for visualisation purposes, a “snapshot” of
the simulation, i.e. a list of “all” relevant data in all grid cells, can be pretty large. Therefore,
such snapshots are only produced on user specified times (normally much larger intervals than
the milestones described above). For reasons which will become clear, these “snapshot times”
are called restart times.

In this section we discuss the milestones (TSTEPS).

Eclipse writes a progress report of the simulation, in a file called <root>.PRT (where the original data
file was <root>.DATA). How much Eclipse shall write to this file is determined by the user, and
described later, at this stage we only note that Eclipse writes data to the .PRT file at the milestones.

In addition, any change to well data (or other dynamic data) can only happen at the milestones.
An obvious and minimum required use of the milestones is to tell the simulator how far forward in
(real) time to simulate.

The simplest syntax is by the TSTEP keyword:

TSTEP
 step1 (step2 step3 ...) /

The specified steps are lengths of the time steps (time between milestones, not the milestones)

Example
TSTEP
 5 10 15 30 5*50 /

tells the simulator to advance the simulation 5 days, then 10 days, then 15, then 30, and finally take 5
time steps of 50 days each. By this scheme the milestones would be after
5, 15, 30, 60, 110, 160, 210, 260, 310, and 360 days.

In practice we often know the milestones by date, not by time intervals, so it is more common to
define the milestones by the DATES keyword. The milestones are then defined as
day month year , where

• day is a number 1,...,31,
• month is JAN, FEB, MAR, APR, JUN, JUL (or JLY), AUG, SEP, OCT, NOV, DEC
• year is the numerical year (no abbreviation).

Eclipse knows about month lengths and leap years, so DATES is an easier way to define the
milestones at the start of a year or month.

Each line in the DATES keyword contains exactly one date, and is terminated by a slash.

53

Example
DATES
 1 JAN 1998 /
 15 JAN 1998 /

1 MAR 1998 /
1 JUL 1998 /
1 JAN 1999 /

/

Order of actions
When determining where to put e.g. a well action in the SCHEDULE section to get it to happen at the
desired time, it can be helpful to observe that Eclipse reads the section only as far as necessary. I.e.
once it encounters a TSTEP or DATES, it will start to advance the solution to the specified next
milestone, using the data it regards as current.

Example

Start date has been defined as 1. Jan 2004 in the RUNSPEC section (ref the basic data input example).
An order of input could then be,

SCHEDULE

WELSPECS
...
COMPDAT
...
WCONPROD
...
-- The defined wells and rates are valid from start date, and will
-- now be used when advancing the solution to 1. FE B 2004
DATES
 1 FEB 2004 /
/

WELTARG
...
-- The current date is 1.FEB 2004. So the change de fined in WELTARG
-- will happen at this date

-- The solution will now be advanced first to 1.MAR 2004, then
-- further to 1.APR 2004, using the current rate de fined in WELTARG
DATES

1 MAR 2004 /
1 APR 2004 /

/
.
.

8.3 Convergence Control I (keyword TUNING)
This subject will be covered later, but deserves some mentioning here.
Only exceptionally can the solution be advanced from one milestone to the next (as described in 8.2)
in a single ministep. Eclipse has a default handling of its solution procedure, in this context mainly by
adjusting the ministep size. The TUNING keyword is used when the user wants to override Eclipse
default behaviour.
When advancing the solution we want to take as large ministeps as possible (to minimize computing
time). On the other hand there is an upper limit to the possible ministep size, which depends on the
solution procedure and the solution itself. The way Eclipse tries to optimize this procedure is by
looking at the ministep it has just finished. If the solution was found without problems, Eclipse will
take this as a signal that the length of the ministep can be increased. If on the other hand the solution

54

was only found after convergence problems, Eclipse will take that as a hint that the ministep size
should be reduced (chopped).
There are some parameters that governs this behaviour,
TSINIT Max. length of first following ministep (after the keyword) (default 1 day)
TSMAXZ Max. length of any ministep (default 365 days)
TSMINZ Min. length any ministep (default 0.1 day)
TSMCHP Min. length any choppable ministep (default 0.15 day)
TSFMAX Max. ministep increase factor (default 3)
TSFMIN Min. ministep cutback factor (default 0.3)
TSFCNV Cut factor after convergence failure (default 0.1)
TFDIFF Max. increase factor after convergence failure (default 1.25)

Example of how these parameters are used, assuming the default values.
When the simulation starts, the length of the ministep is 1 day (TSINIT). If the solution is found
without problems, the length of the ministep will be increased, by a factor TSFMAX, so the following
ministep will be 3 days. As long as the convergence is OK, the ministeps will be increased by a factor
3 (TSFMAX) every time, so the next ministeps would be 9, 27, 81 days. (Evolved time after these
ministeps would be 1 day, 4 days, 13 days, 40 days, 121 days.) The solution at 121 days, following the
81 days time step was found after convergence problems, so the ministep size is reduced, hence the
following step will be 81 * 0.3 (TSFMIN) = 24.3 days long. If the solution was not found at all, we
had a convergence failure, and the next step would be 81 * 0.1 (TSFCNV) = 8.1 days. In this manner
the length of the ministep will fluctuate between TSMINZ and TSMAXZ, increasing length when all
is well, chopping when problems are encountered.
Often we observe that every time the ministep length is increased beyond some value, the following
step has convergence problems, and the step length is chopped. In such cases it is much more optimal
to redefine TSMAXZ to a value which allows for OK convergence, and hence the simulation will
progress without convergence problems and chopping (which are computer time demanding). In the
example above, we observed that 81 days was too much. If we later saw that every time the ministep
length became larger than 60 days, the following step was chopped, then it would be wise to set e.g.
TSMAXZ = 50 days.
What these numbers should be is very case-dependent, and no rules of thumb can be given. The
essential information is in the run log or .PRT file. So this output should always be examined after a
run!

The keyword TUNING is used to set convergence flags. It is comprised of three records, the first one
handles primarily time step control, the second one contains internal convergence controls, and should
as a general rule never be modified. The third record contains controls on the iteration schemes, which
will be covered later.

At this stage we only look at the first record, and leave record 2 and 3 at default values.
The syntax of the first record is then,

TUNING
TSINIT TSMAXZ TSMINZ TSMCHP TSFMAX TSFMIN TSFCNV TFDIFF ... /

Note: TSINIT is the first ministep following the TUNING keyword, not the first step in the simulation
as such.

Example,
Set max length of any ministep to 45 days, reduce increase factor after OK convergence to 2.0, and
enter the other default values explicitly:

TUNING
--TSINIT TSMAXZ TSMINZ TSMCHP TSFMAX TSFMIN TSFCNV TFDIFF
 1.0 45.0 0.1 0.15 2.0 0.3 0.1 1.25 /
 /
 /

55

9. Regions
So far we have tacitly assumed that the reservoir can be regarded as a single entity in all aspects. This
will seldom or never be true. A single set of relative permeability curves will rarely be valid
everywhere, compaction will normally be dependent on soil type etc.
In general, Eclipse allows for subdividing the reservoir into sub-sets, or regions. The regions serve two
different purposes. One is to subdivide the reservoir into separate regions which are described by
different characterizations of various kinds. The most common of these are,

• Regions of validity for relative permeability curves, SATNUM
• Regions for different sets of PVT-data, PVTNUM
• Regions where different equilibration parameters exist, EQLNUM
• Regions for different compaction data, ROCKNUM

The other kind of regions is for reporting purposes only. We may be interested in e.g. how much water
flows from one part of the reservoir to another. The user may subdivide the reservoir into as many
regions as desired in any possible manner, and request separate reports for each region (see later). The
standard way of doing this is by the keyword FIPNUM (Fluid-In-Place regions), but additional user
defined regions are possible, ref. Eclipse documentation.

The way the regions are defined and used is very similar for the different kinds of regions, so we take
SATNUM as an example.

The SATNUM keyword defines the saturation regions. Each grid cell is assigned one SATNUM
number between 1 and NSATNUM, the total number of regions. Then if a certain grid cell belongs to
SATNUM region number M, this means that the relative permeability data for this grid cell will be
obtained from table number M. Hence instead of defining a single family of relative permeability
curves, we must now specify NSATNUM tables (of each kind).

Example
Assume our grid is 10 x 20 x 6 grid cells. One set of relative permeability curves is to be used in the
two upper layers (K=1 and K=2), another set in layers 3 and 4, and a third set in layers 5 and 6.
NSATNUM = 3, and we would specify the SATNUM regions (in the REGIONS section), as

SATNUM
 400*1 400*2 400*3 /

whereby the two upper layers (10x20x2 = 400 cells) are assigned to SATNUM region 1, the next two
layers to SATNUM region 2, and the last two layers to region 3.

Instead of the single relative permeability table we used in chapter 4, we will now need three, as,

SWOF
-- Sw krw kro Pcwo

 0.2 0.0 1.0 10.0
 0.3 0.0046 0.712 2.7
 0.45 0.029 0.371 0.78
 0.6 0.074 0.141 0.3
 0.8 0.167 0.004 0.033
 0.84 0.19 0.0 0.0
 0.9 0.25 0.0 0.0
 1.0 1.0 0.0 0.0 / End of table 1
 0.28 0.0 1.0 10.0
 0.3 0.0046 0.712 2.7
 0.45 0.029 0.371 0.78
 0.6 0.074 0.141 0.3
 0.8 0.167 0.004 0.033
 0.84 0.19 0.0 0.0
 0.9 0.25 0.0 0.0
 1.0 1.0 0.0 0.0 / End of table 2
 0.35 0.0 0.8 10.0
 0.45 0.029 0.371 0.78

56

 0.6 0.074 0.141 0.3
 0.8 0.167 0.004 0.033
 0.84 0.19 0.0 0.0
 0.9 0.25 0.0 0.0
 1.0 1.0 0.0 0.0 / End of table 3

During the simulation, the first table will be used for cells in layers 1 and 2, the second table for cells
in layer 3 and 4, and the third table for cells in layers 5 and 6. Eclipse needs to be notified that we now
have three saturation tables, by the flag NTSFUN in the TABDIMS keyword in the RUNSPEC section.

10. Simplified input and modification of Eclipse ar rays
We have earlier defined the default Eclipse input format for an array (e.g. PORO) as a list comprised
of one value per grid cell, with possible use of the n* - option.

Eclipse offers an alternative input format, that is more user-friendly, and often more efficient,
by the keywords BOX, EQUALS, ADD, MULTIPLY, COPY, ...
In general these commands work by first defining a box where the associated input applies, and then
defining the input. The BOX keyword is used to set such a box explicitly, but the box can also be
defined as a part of the input.

NOTE: When a box has been defined, it remains valid until a new box is defined.

When Eclipse reads data it immediately performs an action on the data array it is processing. This
action can be to overwrite an existing value, or do arithmetic to an existing value. With this knowledge
we can build data arrays by repeated assigning and reassigning values, assuring that the end result is
the final operations we performed.

Breakdown of the different edit-keywords,

BOX
A box is an index-cube, i.e. bounded by constant indices in all directions.
A cell with index (ix, jy, kz) is in the box (ix1 – ix2; jy1 – jy2; kz1 – kz2) if
ix1 ≤ ix ≤ ix2, jy1 ≤ jy ≤ jy2, kz1 ≤ kz ≤ kz2.

Defining the box above would be by the syntax,

BOX
ix1 ix2 jy1 jy2 kz1 kz2 /

When such a box has been defined, Eclipse takes array input exactly as usual, except only necessary
and sufficient data to fill the box are expected. (The standard array input format is hence a special case
where the box is the entire reservoir.)

Example
By the keyword

BOX
-- ix1 ix2 jy1 jy2 kz1 kz2
 3 6 10 12 5 5 /

we specify that until the box is redefined, input data will be for cells (I, J, K), with
I = 3, 4, 5, 6; J = 10, 11, 12; K = 5.
To set porosity φ = 0.26 in this box:

PORO

12*0.26 /

We have defined 12 entries, since the box is comprised of 4*3*1 = 12 cells.

57

The keyword ENDBOX (no associated data, no slash) terminates the current box definition, and sets
the current box to the entire grid.

EQUALS
This keyword is used to define a single value to a property in a box. The “property” must be identified
by its Eclipse array name.
Syntax for each line in the EQUALS keyword,

ArrayName Value BOX,

terminated by a slash. A terminating slash ends the keyword.

Example 1
An alternative way to define the porosity in the example above is,

EQUALS
-- Array Value ix1 ix2 jy1 jy2 kz1 kz2
 PORO 0.26 3 6 10 12 5 5 /
/

Notes

1. The two ways we have done this are equivalent, i.e. the current box
(3 – 6, 10 – 12, 5 – 5) is valid until redefined also in the last example.

2. Since the box is valid until redefined, the BOX can be omitted in the EQUALS line, and
will then default to the last defined box

3. The EQUALS keyword can be used in several places in the data file, but the array which is
defined or updated must belong to the correct section (So the current example with PORO
goes in the GRID section, an EQUALS for SATNUM would go in the REGIONS section
etc.)

Example 2
For a grid with NX = 10, NY = 20, NZ = 5, define three different regions, region 1 for layers 1 and 2,
region 2 for J = 1 – 10 in layers 3, 4, 5, and region 3 for J = 11 – 20 in layers 3, 4, 5.
Petrophysics for the three regions:

Region 1 2 3
φφφφ 0.21 0.24 0.23
K x 100 800 650
K y 100 800 650
K z 20 60 48

In the GRID section we specify,

EQUALS
-- array value ix1 ix2 jy1 jy2 kz1 kz2
 PORO 0.21 1 10 1 20 1 2 / Region 1

PERMX 100 / defaults to last defined box
PERMY 100 /
PERMZ 20 /
PORO 0.24 1 10 1 10 3 5 / Region 2
PERMX 800 / defaults to last defined box
PERMY 800 /
PERMZ 60 /
PORO 0.23 1 10 11 20 3 5 / Region 3
PERMX 650 / defaults to last defined box
PERMY 650 /
PERMZ 48 /
 / Empty record terminates EQUALS keywo rd

58

and in the REGIONS section:

EQUALS
-- array value ix1 ix2 jy1 jy2 kz1 kz2

FIPNUM 1 1 10 1 20 1 2 /
 FIPNUM 2 1 10 1 10 3 5 /

FIPNUM 3 1 10 11 20 3 5 /
 /

Note that we don’t have to specify the number of cells in the box when we include the box definition
in the EQUALS keyword.

ADD, MULTIPLY
The ADD and MULTIPLY keywords are very similar to EQUALS, but instead of specifying a value,
we modify an existing value, that must have been defined earlier.

Example
In a grid with NX = NY = 9, NZ = 3, there is a region with bad properties in the middle. Region 2 is
defined by IX = 4 – 6, JY = 4 – 6, KZ = 2. The rest is region 1.
In region 1, porosity is 0.3, horizontal permeability 2000 and vertical permeability 250. In region 2,
porosity is 0.2, and permeabilities are ¼ of the values in region 1.

In this example we will first define data for the whole grid, then redefine in the central area. Note that
there are many different ways to do this, and no “correct” or “best” solution. First defining one value
for a large box (here the entire grid) and then redefining a sub-box is often efficient.

In the GRID section:

PORO
 243*0.3 / (9*9*3 = 243)

PERMX
 243*2000 /

PERMY
 243*2000 /

PERMZ
 243*250 /

ADD
-- array value ix1 ix2 jy1 jy2 kz1 kz2
 PORO -0.1 4 6 4 6 2 2 /
 /

MULTIPLY
-- array value ix1 ix2 jy1 jy2 kz1 kz2
 PERMX 0.25 4 6 4 6 2 2 / repeat b ox in new keyword
 PERMY 0.25 / defaults to box above
 PERMZ 0.25 /
 /

In the REGIONS section

EQUALS
-- array value ix1 ix2 jy1 jy2 kz1 kz2

FIPNUM 1 1 9 1 9 1 3 /
FIPNUM 2 4 6 4 6 2 2 /
/

59

COPY
This keyword is used to copy an entire array (or a box) to another array. Thereafter the modification
keywords may be used if needed.
Syntax for each line of keyword:

SourceArray TargetArray (Box)

Each line is terminated by a slash, and an empty record (slash alone) terminates the keyword.

Example
We repeat the example above, this time using the COPY keyword:
First we define PORO and PERMX for the whole grid.
Then we modify the values for region 2

In the GRID section:

-- Real or dummy data for whole grid
PORO
 243*0.3 / (9*9*3 = 243)

PERMX
 243*2000 /

-- Modify to correct values in Region 2
ADD
-- array value ix1 ix2 jy1 jy2 kz1 kz2
 PORO -0.1 4 6 4 6 2 2 /
 /

MULTIPLY
-- array value ix1 ix2 jy1 jy2 kz1 kz2
 PERMX 0.25 / defaults to box defined above
 /

-- PERMY and PERMZ are copies of PERMY in entire gr id
COPY
-- From To BOX
 PERMX PERMY 1 9 1 9 1 3 /
 PERMX PERMZ /
 /

-- Lastly, PERMZ is modified to be 12.5% of hor. pe rmeability
MULTIPLY
 PERMZ 0.125 /
 /

COPYBOX
While COPY is used to copy one array to another in the same cells, COPYBOX is used to make an
exact copy of the same parameter in a box, in another, non-overlapping box. Obviously the two boxes
must be of the same size in all three directions.

Example

COPYBOX
-- Parameter ----- From Box ----- ------ To Box ------
-- if1 if2 jf1 jf2 kf1 kf2 it1 it2 jt1 jt2 kt1 kt2
 PORO 1 10 1 10 1 2 1 10 1 10 4 5 /
 /

60

11. Eclipse output, formats and files
A complete specification of the reservoir state at any time, i.e. a list of all available data values in all
grid cells is huge even for moderate-sized grids. Outputting “all” data at all time steps (ministeps) is
therefore simply not an option.

NOTE: Eclipse does not write any results “by default”. Only data explicitly requested by the
user are written to result files. If a needed data vector was not requested in result specifications,
the simulation has to be re-run to obtain the desired data.

Basically, Eclipse output can be divided into three different types,

1. Textual output. Contains run summaries, feedback messages, warnings, and errors. Optionally
text listing of data arrays or aggregate values.

2. Output aimed at visualisation of time-dependent behaviour, i.e. single-valued functions of
time.

3. Output aimed at keeping track of the reservoir state (data array values in all cells) at user
defined times.

There are several options for how the files are written. At this time it is of special interest to note the
difference between unified and non-unified files. Non-unified, which is the default, means that Eclipse
writes a new file at every time step where output is requested. With unified files Eclipse stores all the
relevant results in a single file. There is no difference in contents, total storage space or input/output
efficiency by the two formats. Unified has the advantage of fewer files in a folder, while some external
software may require non-unified files. In addition, the Eclipse suite contains the program CONVERT,
which can change non-unified files to unified and vice versa.
Specification of whether unified or non-unified files are requested / used is done in the RUNSPEC
section with keywords UNIFOUT (request unified output) and UNIFIN (use unified input files).
If not specified non-unified files are used.

File names
The data file, which is the one we refer to when we say that “a data set is run by Eclipse” always has a
name that ends with “.DATA” or “.DAT”. This ending, or extension is called the file name tail. The
part of the name before the separating period is called the file name root. So if we run a case called
OSEBERG1.DATA, the root is “OSEBERG1”.
For historical reasons and compatibility it is recommended to use not more than 8 characters in the file
name root.
In the following discussion, we will denote the file name root that was used in the dataset name by
<root>. I.e., the data set we use as reference is <root>.DATA. (Obviously this cannot be the actual
name of the data file.)

Textual output
Eclipse will always write a file called <root>.PRT (“report file”), which contains simulation reports.
The first part of this file is a listing of the data input and interpretation phase. In addition to simple
progress reports, any irregularities in input will be reported here, at three levels of seriousness,

MESSAGE

normally just information from Eclipse, as e.g. “the grid contains 14678 active cells”.
WARNING

Something can be wrong, but not necessarily, so the run won’t terminate. The user is
encouraged to check the origin of warnings. A typical warning is that pressure-dependent
tables will be extrapolated if pressure goes above or below so-or-so. If the user is confident
that such pressure levels will not occur, the warning is not a problem.

ERROR
Error in input data that prevents the run to start or continue. If possible, a dataset with errors
will be read and initialised as far as possible, but the simulation proper will not start. If an
error is found in the dynamic part (SCHEDULE), the run will terminate immediately. (Note
that such errors are not found before they are encountered, which may be far into the run. Can

61

be very annoying, but can be avoided by use of NOSIM in the RUNSPEC section.)
If the simulation will not run, or stops unexpectedly, always suspect an error, and consult the
report file, where hints to what went wrong normally can be found.

By default all input is written back to the report file. This is normally not desired, e.g. by default
Eclipse will write all geometry data and petrophysics back, also if the data was read from an included
file (which is more often than not rather large).
Fortunately, Eclipse has a keyword, NOECHO (no slash) which turns off writing of data to report file,
and ECHO, which turns it back on. So routinely, NOECHO is inserted at the start of the GRID section,
and ECHO at the end, to prevent writing of the voluminous GRID data (see “Basic data input
example”).

When the model has been initialised Eclipse writes user-specified initial data to the report file
(see “RPTXXX keywords” below).

In the dynamic phase, a short convergence summary is written at each ministep. This includes current
time, length of current time step (ministep), why this length was chosen, how convergence performed,
average reservoir pressure and water cut. For details ref. Eclipse documentation.

NOTE: Eclipse batch run and LOG-files.
When starting Eclipse from the GeoQuest Launcher panel in a Windows-environment, a report log
(short summary) including the messages, warning, errors, and convergence reports will be written to a
console window. Sometimes we would prefer to have this output to a file instead. This is possible in the
MS Windows environment (in linux use standard file redirection) if we create a DOS batch file, e.g.
called ECL.BAT (tail must be BAT). In the simplest case, the file contains only one line which executes
eclipse: (assuming dataset name GF_CASE1),
CALL $eclipse -file GF_CASE1 > GF_CASE1.LOG
This command starts eclipse with data file GF_CASE1.DATA and writes the log to the file
GF_CASE1.LOG instead of to the command window. To execute the command, run the file ECL.BAT
as any other windows program (note: ECL.BAT must be in the same directory as the data file, in this
case GF_CASE1.DATA).
The concept can easily be extended to enabling automatic starting of several Eclipse runs in a row, by
inserting more lines of the same kind (different data sets of course) in the .BAT file, or running other
programs in between the Eclipse runs, to check or modify results etc. (The syntax of the execution line,
starting with “CALL” ensures that a command line will not be executed before the previous command
has finished.)

The RPTXXX keywords
In addition to the data referred to above, which is always written to the report file, the user may
specify which arrays to write to the file, and at which time steps if relevant. Most users find that
results are best processed graphically, hence keeping textual output to a minimum. But some times the
numeric values are needed, so it is nice to know how they can be made available. The appropriate
keywords are,

RPTRUNSP
RPTGRID
RPTPROPS
RPTREGS
RPTSOL
RPTSMRY
RPTSCHED

 (In addition there is RPTRST which will be covered later.)

RPTRUNSP, RPTREGS, and RPTSMRY are rarely used, ref. Eclipse documentation if needed.
Each of the other keywords is associated with a list of flags that turn writing of the specified feature on
or off. The number of flags is very long, so here we concentrate on the most common flags – for
complete specification ref. Eclipse documentation.

62

RPTGRID
All of the standard grid generation and petrophysics keywords may be specified.

Example
To output X-direction grid block sizes, grid block top depths, porosities and all permeabilities,

RPTGRID
 DX TOPS PORO PERMX PERMY PERMZ /

RPTPROPS
Rel. perm tables: SWOF, SGOF.
PVT-tables: PVDG, PVTG, PVDO, PVTO, PVTW.
Rock compaction: ROCK, ROCKTAB

Example
To output oil-water relative permeability, live oil and dry gas PVT tables, and compaction tables,

RPTPROPS

SWOF PVTO PVDG ROCKTAB /

RPTSOL
Output of equilibration data: EQUIL
Fluid in place reports are created by use of the flag FIP, which may take four values:
FIP=0 No FIP-reports
FIP=1 Initial fluid in place volumes are reported for the whole field
FIP=2 As FIP=1, and in addition initial FIP-volumes are reported for all FIPNUM regions
FIP=3 As FIP=2, in addition initial FIP-volumes are reported for all FIP regions (not covered here)

If an initial restart file is requested it must be specified in RPTSOL (see RESTART section). The
appropriate flag is RESTART.
For normal use, set RESTART=2 (Other values, ref. Eclipse documentation).

Example
In most runs, RPTSOL will be used to request an initial restart file and initial fluid in place reports for
all FIPNUM regions, as,

RPTSOL
 RESTART=2 FIP=2 /

RPTSCHED
Output of results from the simulation. Can also be used to control writing of restart files, which will be
covered later. As noted above, textual output of dynamic arrays (like pressure, saturation) is only
exceptionally needed or desired, as they are normally better analysed by a visualisation program.
About any array can be output to the report file, ref. Eclipse documentation. A couple of other useful
flags are,

NOTHING

clears the report flags (since RPTSCHED can occur as often as needed in the SCHEDULE
section, it is convenient to have a flag that clears previous flags).

FIP
Fluid in place reports, equal to the flag in RPTSOL, but now reported at every milestone
timestep.

RESTART
Controls generation of restart files, as an alternative to the RPTRST keyword, which will be
covered later.

WELLS=n
 Output of well reports (injection / production rates and totals)
 n can take one of the following values:

63

1. report well flows
2. report well and connection flows
3. report layer totals
4. report layer totals and well flows
5. report layer totals, well and connection flow

Example
To request Fluid-in-place reports for all FIPNUM-regions, and well reports including well totals, and
from each connection, set

RPTSCHED

FIP=2 WELLS=2 /

Time dependent vectors – SUMMARY data
Most if not all single-valued results can be stored for later visualisation in programs like GRAF or
Eclipse Office. The most common is to show evolution of some variable vs. time, but just about any
parameters can be used as X- or Y-axes, e.g. total water production vs. total oil production. Such data
are called SUMMARY data, and Eclipse will store one value of each data item at each ministep in
summary files (see below). How to visualise results in a post-processing program will not be covered
here. The important fact to notice is that Eclipse stores only those variables the user explicitly requests.
The data to store are listed in the summary section, a complete list of permitted variables can be found
in the Eclipse reference manual. We concentrate on the general syntax, and some of the most common
data.

SUMMARY data syntax
Most of the variable names are defined by four-letter abbreviations with strict rules. These names are
so common that all Eclipse users should know at least the most used of these rules.
Some exceptions occur, but as a general rule,

First character:
F Field
G Group
W Well
C Connection
R Region
B Block (Grid cell)

Second character:
O Oil
W Water
G Gas
L Liquid
P Pressure

If second character denotes a phase,
Third character:
P Production
I Injection

Fourth character:
R Rate
T Total

By these rules we can build many of the most common summary keywords, some examples,
FOPR Field Oil Production Rate
WWIT Well Water Injection Total
FGPT Field Gas Production Total
GLPR Group Liquid Production Rate

64

Some common keywords don’t follow the rules exactly:

Keyword XPR (X = F, R, or B) Pressure (average), (Field, Region or Block)
Keyword XWCT (X = F, G, W, C) Water Cut
Keyword XGOR (X = F, G, W, C) Gas Oil Ratio
Keyword XWGR (X = F, G, W, C) Water Gas Ratio
Keyword XGLR (X = F, G, W, C) Gas Liquid Ratio
Keyword WBHP Well Bottom Hole Pressure

For regions, the relevant data is not production / injection, but remaining fluids, ratios, and inter-
region flow. Since the field is one aggregate region, most of these keywords are valid for field or
region: (X can take the value F or R)

XOIP Oil in Place
XWIP Water in Place
XGIP Gas in Place

Inter-region flow is defined by,
First character: Always R
Second character: O (oil), W (water), G (gas)
Third character: Always F (flow)
Fourth character: R (rate) or T (Total)

(Not all combinations are supported; ref. ECLIPSE Techn. App.)

Then there are some useful keywords which are derived from those above. OIP = “oil in place”, and
subscript 0 means “at time zero”, while no subscript means “now” (X is F or R).

XOE Oil Efficiency =
0

0

OIP

OIPOIP −

XOEW Oil Efficiency from wells =
0

wellsfromProd.Oil

OIP

Lastly we mention a group of summary keywords for convergence and CPU (computer processor) use.
For completeness we list all (of the common ones), although some of the terms have yet not been
defined (time step means ministep).

ELAPSED Elapsed time in seconds
MLINEARS Number of linear iterations for each time step
MSUMLINS Total number of linear iterations since start of run
NEWTON Number of Newton iterations for each time step
MSUMNEWT Total number of Newton iterations since start of run
NLINEARS Average number of linear iterations per Newton iteration, for each time step
TCPU Current CPU usage in seconds
TCPUTS CPU time per time step in seconds
TCPUDAY CPU time per day
TIMESTEP Time step lengths

Data associated with the summary keywords
Some of the summary data keywords require additional data. Which and what is really logical from
the context, and some can be defaulted. Also note that Eclipse always requires a terminating slash
when keyword data is defined.

Field keywords have no associated data, and hence no terminating slash. Statement valid also for all of
the convergence report keywords.

65

Well keywords need the names of the wells, as e.g.

WOPR
 A-1H A-OP1 B-OP2 /

Note that wildcards are not permitted here.

An empty well list means, “store data for all wells”, so

WBHP
 /

will store bottomhole pressure for all wells in the run.

Connection keywords require both a well name and a connection. The connection must be a grid
block that has actually been defined as a connection in the SCHEDULE section. Since each record is
composite (both well name and connection), each must be terminated with a slash, and an empty
record terminates the keyword.

Example (Connection Oil Flow Rate):
COFR
 A-1H 12 15 4 /
 A-1H 12 15 5 /
 /

Well names cannot been defaulted, but if the connection indices are defaulted for a well, results will
be stored for all the connections in that well.

Group keywords are not of concern in these notes, as we don’t handle groups, but the rules are the
same as for wells.

For Region keywords, if the keyword data is associated with one region only, the region numbers
must be listed, as e.g. region oil in place:

ROIP

1 2 3 4 6 /

If an empty list is given, data is stored for all regions.

If the keyword data is associated with data from two regions, typically flow from one region to
another, then a list of region-pairs must be defined, each pair terminated by a slash, e.g. Region water
flux total:

RWFT

1 2 /
1 3 /
2 3 /
/

Block keywords include a list of slash-terminated block indices. An empty record terminates the
keyword, e.g. Block Pressure,

BPR
 3 3 6 /
 5 8 1 /
 1 1 10 /
 /

66

Summary files
Summary data are organized in summary files (which are binary, not text files). The file
<root>.SMSPEC contains information on how the data is organized, while the actual results reside in
a file <root>.UNSMRY if unified. If non-unified files are used, the files are called <root>.S0001,
<root>.S0002, <root>.S0003,...
The file <root>.S0001 contains results from all mini steps up to the first milestone, <root>.S0002
results from the first to the second milestone etc.

The EXCEL keyword
If we want access to the summary output data to e.g. manipulate them afterwards, the summary files
are not appropriate (not text files). The keyword EXCEL (no associated data) is then available, whereby
Eclipse writes a file in format readable by a spreadsheet program as Excel.

Restart data and restart files
A restart file is a “snapshot” of the reservoir state at a certain time. I.e. saturation and pressure values
for every grid cell are saved, in addition to other data characterising the reservoir and fluids at the time.
The reason for the name “restart data”, and the original motivation for saving the reservoir state in
such a manner, is to enable a “restart” of the simulation. In an ordinary run, when the simulation has
arrived at some date, to advance the solution a time step to next milestone, it takes the “current
reservoir state” and solves some problem to get the required solution. Whether the “current reservoir
state” is stored in computer memory as in a normal run, or read from a file shouldn’t matter at all, as
long as the “current reservoir state” is exactly the same in the two situations. The definition of the
restart file is just to ensure that the contents of the file matches this requirement.
 The reason for wanting to do such restarts is most easily given by an example. Assume we
have run a simulation case for 20 years with a defined well scenario. We now want to compare the
case to another case where we put an additional injection well on injection after 15 years. Obviously
the first 15 (simulated) years are equal in the two cases, so we would have to perform an identical
simulation for 15 years before we do the change. If total computing time for the run is in the order of
minutes this wouldn’t bother us at all, but if for example simulation of the first 15 years took a couple
of days of computing, then we would obviously see the rerun as a waste of time and seek alternative
ways to do this. If we have stored the reservoir state after 15 years in a restart file, then we could pick
up the state from there, add another well and run only the last five years anew. (Details on how to do
this will come later.)
 Since restart files contain a complete description of the reservoir state, they are also well
suited for graphic visualisation of the state, e.g. the saturation distribution in the reservoir at the time.
And by visualising several such restart data in a sequence, we can get a picture of how the reservoir
state changes with time.
 The dates at which restart data are stored in the restart files are called restart dates. Since
restart files tend to be large they are normally generated less frequently than the milestones. Also,
whether the objective is to use the restart files for proper restarts, or visualisation, they don’t need to
be generated too often, as they serve their purpose best when the difference between consecutive files
is not too small. Recommended intervals between restart dates are case-dependent, and would be
based on how rapid the reservoir state changes, and the size of each file. Note that it is possible to
specify that the restart files are only needed for visualisation purposes (not actual restarts), which
results in somewhat smaller files.
 Control of restart files can be done in RPTSCHED, but the alternative RPTRST is tailored for
this purpose, so in these notes we will use RPTRST.

RPTRST is, as the other RPTXXX keywords controlled by a series of flags,

BASIC=m

Requests output of basic (standard) restart files (“report time” = milestone)
m = 1 Restart files are created at every report time, but only the last one is kept.
 (For unified files this switch is not available, and m = 2 will be used)

67

m = 2 Restart files are created on every report time, and all are kept.
m = 3 Restart files are created every nth report time. n is defined in flag FREQ.
m = 4 Restart files are created at the first report step of every year, or every nth year
 if n has been set in flag FREQ.
m = 5 Restart files are created at the first report step of every month, or every nth month if n

has been set in flag FREQ.
m = 6 Restart file is created every time step (ministep)

FREQ=n
 Controls the frequency of creation of restart files when BASIC = 3, 4, 5.
NORST=m

Requests a graphics-only restart file (smaller, but rarely an issue with today’s memory)
m = 1 Standard graphics restart file
m = 2 Well arrays not included

ROCKC
 Output modified (i.e. actual values used at the time step) values of cell pore volumes and

transmissibility multipliers.

In a standard black oil simulation, pressure, gas and oil saturations, and gas resolution is written to the
restart file by default. These parameters are therefore not necessary to request.

Restart files will only be created at the requested dates if a time step is available. If for example
milestones are defined every second year, restart files will not be created more often than every second
year irrespective of what was requested in the RPTRST keyword. Also restart files will always be
created on a milestone time step. E.g., if an excerpt of the DATES keyword was,
DATES
1 AUG 1994 /
1 SEP 1994 /
1 NOV 1994 /
1 MAR 1995 /
...
and restart files are requested for the start of every year (BASIC=4), then the restart file will not be
written 1. Jan 1995, which is not a report time, but the first report time after that, namely 1. Mar. 1995.

Example
To request that graphics-only restart files are written every fourth month,

RPTRST
 NORST=1 BASIC=5 FREQ=4 /

Note that RPTRST can be used as often as we wish in the SCHEDULE section, so we don’t need to
keep the same restart creating frequency in the whole run, but can change it when needed.

Initial file and initial restart file
The initial file, or INIT-file contains all cell-value static data, like porosity, permeability,... It is useful
to have this information available for graphic visualisation, so it is recommended to always request
writing of an initial file. This is done in the GRID section, with the keyword INIT. (See example in
BASIC data input example.) The resulting file is named <root>.INIT .

Also, the RPTRST keyword will not write a restart file at time zero (initial restart file). Such a restart
file contains information about all the dynamic data before any flow starts, and is normally useful. It
must be requested in the RPTSOL keyword by flag RESTART=2 (in SOLUTION section).

Restart files
If unified output has been requested, the restart data will be written to the file <root>.UNRST , and a
file <root>.RSSPEC will contain information about the files. If the files are non-unified, they follow
a similar naming convention to the summary files, with names,
<root>.X0000, <root>.X0001, <root>.X0002,...

68

Note that the numbering of the X-files is synchronized with the summary files. I.e. the X-files are not
numbered sequentially, but given a number that coincides with the corresponding S-file. Hence, a
sequence of X-files can be, <root>.X0000, <root>.X0010, <root>.X0015,
<root>.X0023,...
<root>.X0000 is always the initial restart file (if requested). <root>.X0010 is the first restart file in
the sequence (not counting the initial), and is created at milestone 10. The files <root>.S0010 and
<root>.X0010 are written at the same date. (Note that this was different in early versions of Eclipse.)

12. Restarting a simulation
As described above, a restart is what we do when we pick up the simulated state at some date (where
we have a restart file available), and start a new simulation from that date. Development of the state up
to the point where we do the restart is then assumed to be described by the run we restart from.
In Eclipse, restarts can be done as “standard” or from SAVE files. The “standard” way is more flexible,
but the SAVE way is normally faster. We will not discuss the SAVE way here.

In a “standard” restart, the simulation is defined in the usual manner, but initialised by the restart data.
I.e., the restart run needs all the standard initialisation data except the equilibration which is no longer
valid. The restarted run must be given a case name different from the original run. Then the procedure
to create a restart run is,

Assume the original run is called CASE1.DATA. We will restart this run from time step (milestone) 20,
where the state has been saved in a file CASE1.X0020 .
We will name the restarted run CASE1_R1.DATA. First create CASE1_R1.DATA as a copy of
CASE1.DATA. Then edit the contents of CASE1_R1.DATA:

• In section SOLUTION delete equilibration keywords (and enumeration and analytic aquifers if
used).

• Insert a keyword RESTART (in SOLUTION section) to specify which run to restart from, and at
which time step. In our example,
RESTART
 CASE1 20 /

• In the SCHEDULE section delete all well and time-stepping keywords up to and including the
restart time. (But see below, the SKIPREST keyword)

• Start run (from Eclipse panel you would choose CASE1_R1 as the case name)

The Eclipse post-processing software knows all about restarts, so if the last restart is given as file
name, it will automatically nest itself backwards to the correct beginning.

The SKIPREST keyword
The modifications to be done in the SCHEDULE section are error-prone, and many users have had
bad experiences with omitting too much or too little data. Eclipse has therefore provided a solution
which is highly recommended:
If a keyword SKIPREST is inserted at the beginning of the SCHEDULE section, Eclipse will skip all
data that is not needed for the defined restart, and enter the section at precisely the correct position.

69

13. Fault modelling – Non-neighbour connections
It is clear from Figure 7 (or equivalent Figure 16 below) that one characteristic of faults is that, which
grid cells are neighbours is different when a fault is present than not. The fault plane (in reality a
volume) is typically an area of crushed rock, with poorer properties than the non-fault volume. To
describe flow across a fault it is therefore necessary to define the possible flow paths, and the effective
(reduced) fault permeability.

The 7-point stencil

The numerical approximation to the differential
x

f

∂
∂

 in cell (I, J, K) was, using central differences,

),,1(),,1(

),,1(),,1(
),,(

KJICKJIC

KJIfKJIf
KJI

x

f

−−+
−−+

≈
∂
∂

 (24)

where C(I, J, K) means the cell centre coordinate for cell (I, J, K), and f(I, J, K) means “f evaluated at
the centre of cell (I, J, K)”.

Figure 15. The 7-point stencil schematic

We see that),,(KJI
x

f

∂
∂

 involves cells (I-1, J, K) and (I+1, J, K). In the same manner,),,(KJI
y

f

∂
∂

involves (I, J-1, K) and (I, J+1, K), and),,(KJI
z

f

∂
∂

 involves (I, J, K-1) and (I, J. K+1).

In total, evaluating f and its differentials in all three directions in the cell (I, J, K) involves the cell
itself and all the direct neighbours, (I±1, J, K), (I, J±1, K), (I, J, K±1), but not any diagonal neighbours.
This computational scheme is called the 7-point stencil, and is shown schematically in Figure 15. The
7-point stencil is the basic computational molecule for Eclipse. Other computational schemes exist,
with greater accuracy obtained by involving more points. In these notes we study only the 7-point
stencil.
 For a cell (I, J, K), the six other cells in the computational molecules are called its (logical)
neighbour cells.

The fault layout – non-neighbour connections
In Chapter 4 we saw that Eclipse converts input permeabilities to inter-block transmissibilities, which
are the connectivity parameters that are actually used during computations. The inter-block
transmissibilities are computed for all cell-pairs that are neighbours, as in the 7-point stencil. When the
grid contains a fault, these concepts will however need some modification.

(I, J, K)

(I+1, J, K)

(I-1, J, K) (I, J-1, K)

(I, J+1, K)

(I, J, K-1)

(I, J, K+1)

I
J

K

70

Figure 16. Sand to sand communication across a fault (vertical cross section)

In Figure 16 cell columns (I, J) and (I+1, J) are separated by a fault. A consequence of the fault is that
cells (I, J, 1) and (I+1, J, 1) are no longer in contact with each other, and hence the transmissibility
between these cells should be zero. On the other hand there is a direct flow path between cells (I, J, 3)
and (I+1, J, 1), so the transmissibility between these two cells should be nonzero.

The arrows in Figure 16 show all possible flow paths between cells that are physical neighbours across
the fault. Cells that are thus connected are said to be in sand-to-sand contact across the fault. The
sand-to-sand contacts in the Figure are,

 Upthrown side Downthrown side
Layer 2 1
 3 1
 3 2
 4 2
 4 3

During the initialisation phase, Eclipse will discover all sand-to-sand contacts, and modify the
necessary transmissibilities accordingly. So in this case the affected transmissibilities that enter the 7-
point stencil ((I, J, K) to (I+1, J, K), for K=1,2,3,4) will be set to zero, and nonzero transmissibilities
will be computed for all the cell pairs in the table.

Note that transmissibilities can be computed between any cell pair, not only cells which are logical
neighbours. The most common case is when cells are in sand-to-sand contact, but there is no
restriction at all regarding for which cell pairs nonzero transmissibilities can be defined.

Eclipse uses the term non-neighbour connection for such a case: The cells are not logical neighbours
(i.e. their cell indices are not neighbours), but the transmissibility between the cells is non-zero (i.e.
there is flow connectivity between the cells).

In the Figure 16 – example, cells (I, J, 2) and (I+1, J, 1) would be a non-neighbour connection, as
would the cells (I, J, 4) and (I+1, J, 2).

We use the shorthand notation NNC-cells for cells which are connected by a non-neighbour
connection.

Note: When defining NNC-cells across a fault, we are not restricted to cells which are in sand-to-sand
contact, any cell pair can be an NNC. In reality fault flow is much more complex than just sand-to-sand
flow, so it will often be necessary to define other NNCs than the ones Eclipse automatically constructs.

Layer

1

2

3

4

1

2

3

4

X
Z

(I, J)

(I+1, J)

71

We could e.g. define flow from cell (I, J, 1) to (I+1, J, 1) in the Figure, even though these cells are not
physical neighbours. Note also that this is an exceptional case, as these two cells are not non-neighbours,
as they are neighbours in the sense of indexing. Flow between the cells (I, J, 2) and (I+1, J, 3) would
however, be defined by an NNC. These are examples of more advanced modelling, and are outside the
scope of these notes.

Fault transmissibility multipliers
It is often needed to modify (mainly reduce) the flow conductivity across the fault. As we have seen
above, the fault flow is more complex than standard inter-cell flow, so modifying cell permeabilities is
not flexible enough to control fault flow – we need to work with the transmissibilities directly. Eclipse
offers several ways to do this, but we will only look at the method that is best suited for modifying
transmissibilities between sand-to-sand contact cells. Eclipse computes initial values for all sand-to-
sand transmissibilities honouring cell permeabilities and geometry (primarily the area of the shared
surface). While doing this Eclipse also builds a table of which cells are in contact with which.

Again referring to Figure 16, where the flow across the fault is in the X-direction, the fault
transmissibilities can be modified by the keyword MULTX . The keyword is most often used in the
GRID section, but can also be used in EDIT or SCHEDULE sections (ref. Eclipse documentation).
The easiest way to use MULTX is in combination with the EQUALS keyword. MULTX can be
specified as many times as needed, and the syntax of each line is,

 MULTX multiplier BOX /

The BOX is a cell box where the multipliers apply. When we specify a BOX for the MULTX keyword,
the affected cell pairs are constructed by, for each cell in the box the cell’s X-face (i.e. the right hand
face) is examined for sand-to-sand contact cells, and transmissibilities for all such contacts are
modified. This is easier to envisage by an example. Still referring to Figure 16, assume now that the
column denoted (I, J) is actually (6, 8). I.e. there is a fault between I= 6 and I= 7 for J=8. In practice
faults usually are several cells long, so assume that the shown fault picture is valid for J=4,5,...,10.
To modify transmissibilities associated with layer 3 on the upthrown side, we would use the keyword,

EQUALS

MULTX 0.025 6 6 4 10 3 3 /
/

Now, the transmissibility between cells (6, J, 3) and (7, J, 1), and between cells (6, J, 3) and (7, J, 2)
will be multiplied by 0.025, for all J = 4 – 10.
This is the really nice feature with MULTX compared to other, more manual methods to modify fault
transmissibilities. MULTX acts on all sand-to-sand contact cell pairs emerging from the cells defined
in the box, and we as users do not even need to know which cells are going to be affected – everything
is taken care of automatically.

If we wanted to modify the whole fault in the same fashion, we would use,

EQUALS

MULTX 0.025 6 6 4 10 1 4 /
/

Note that we have included layer 1, even though layer 1 has no sand-to-sand contact across the fault
(layer 1 on upthrown side – MULTX always acts in the direction of increasing I-index!), as Eclipse
has no problems figuring out this itself, and arrive at the correct solution.

A commonly occurring situation is that the flow conductivity is dependent on the layers on both side
of the fault. E.g. if layers 1 and 2 connect with the fault, we want the multiplier to be 0.1, but if layers
3 and 4 connect to the fault we want a multiplier of 0.02. The keyword would be,

72

EQUALS
MULTX 0.1 6 6 4 10 1 2 /
MULTX 0.02 6 6 4 10 3 4 /
/

 and the resulting multipliers:

 Upthrown side Downthrown side Multiplier
Layer 2 1 0.1
 3 1 0.02
 3 2 0.02
 4 2 0.02
 4 3 0.02

The examples so far and Figure 16, have dealt with faults and multipliers in the X-direction, and
MULTX applied to a group of cells and cells connected to this group in the direction of increasing I.
The complete family of transmissibility multiplier keywords cover all cases. The syntax is identical,
but the practical consequences are obviously different for the different cases.

MULTX Multipliers in +X direction (increasing I-index)
MULTY Multipliers in +Y direction (increasing J-index)
MULTZ Multipliers in +Z direction (increasing K-index)
MULTX– Multipliers in –X direction (decreasing I-index)
MULTY– Multipliers in –Y direction (decreasing J-index)
MULTZ– Multipliers in –Z direction (decreasing K-index)

The MULTZ and MULTZ– keywords are seldom used, and are not relevant for faults.

Note that if the negative index multipliers are used, they must be enabled by the keyword GRIDOPTS
in the RUNSPEC section.

Multipliers are cumulative, i.e. if the same cells are modified several times, the effect will be
cumulative. We demonstrate advanced use by an example. In the Figure 16 fault, we want the
transmissibility multipliers to be 0.1 between 3 (upthrown) and 1 (downthrown), but 0.01 between 3
and 2. So a MULTX on layer 3 won’t work, since we want to treat 3 to 1 different than 3 to 2. For
layers 2 to 1 we want a multiplier of 0.5, and connections from layer 4 should have no multiplier (i.e.
multiplier = 1.0). The following combination of MULTX and MULTX– does it, (refer to the Figure
while studying the example.)

EQUALS

MULTX 0.1 6 6 4 10 3 3 /
MULTX- 0.1 7 7 4 10 2 2 /
MULTX 10.0 6 6 4 10 4 4 /
MULTX- 0.1 7 7 4 10 3 3 /
/

Line 1: Multiplier set to 0.1 from layer 3, i.e. from (6, J, 3) to (7, J, 1) and (6, J, 3) to (7, J, 2)
Line 2: Multiplier set to 0.1 from layer 2 in cells I=7 , and affecting cells with decreasing index, i.e.

cells with I=6 . So the cell pairs affected are (7, J, 2) to (6, J, 3) and (7, J, 2) to (6, J, 4).
Since (6, J, 3) to (7, J, 2) already had a multiplier of 0.1 defined in line 1, this multiplier is
now further multiplied by 0.1, and therefore the current value is 0.01 (as desired). The
connection to layer 4 is wrong at this stage.

Line 3: Multiplier for cells (6, J, 4) to (7, J, 2) and (6, J, 4) to (7, J, 3) are set to 10.
Since (6, J, 4) to (7, J, 2) was 0.1 it is now 1.0 (as desired)

Line 4: Fixes the connection (6, J, 4) to (7, J, 3), which was 10.0, now 1.0.

In real models it is generally not possible to model all faults as simple as e.g. “between cells I=6 and
I=7 for J = 4 – 10.” To honour real fault geometry it is frequently necessary to let the fault trace be a

73

zig-zag line in the grid. In such cases the multipliers even for a single fault can become a long
sequence of lines, where all combinations of MULTX, MULTX–, MULTY, and MULTY– occur. In
some cases, editing and maintenance of the data file can be simplified by use of keywords FAULTS
and MULTFLT, which are described below. Note that these keywords do nothing different than the
“traditional” approach with the MULTX etc. keywords.

FAULTS – MULTFLT keywords (GRID section)
The FAULTS keyword is used to define the geometry of one or several named faults. Fault
transmissibility multipliers can then later be defined by the MULTFLT keyword, which assigns a
multiplier to the entire fault defined by the FAULTS keyword.
Note that the faults defined need not be real, complete faults. It is possible and recommended, to single
out layers or groups of layers of whole or parts of a real fault, such that these can receive individual
treatment later.

Syntax FAULTS:
Any number of lines, building the faults successively, each line terminated by a slash.
Syntax of each line,

Fault name ix1 ix2 jy1 jy2 kz1 kz2 Face

Fault name Max 8 characters, used to identify fault
ix1, ix2 Lower and upper I-index for the fault segment defined here
jy1, jy2 Lower and upper J-index for the fault segment defined here
kz1, kz2 Lower and upper K-index for the fault segment defined here
Face Face of the fault, which is the same as the direction the transmissibility multiplier
 would be. Face X corresponds to using MULTX, and faces Y and Z similar.
 (Z seldom/never used).

X–, Y–, Z– are also permitted (must set GRIDOPTS in RUNSPEC).

There are some restrictions on the index bounds which are really obvious. If for example the face is X,
then ix1 must be equal to ix2, etc. (purpose just to exclude impossible configurations).

Example
Assume we have a fault which looks as in Figure 17 (seen from above)
The model has 6 layers, and we want to define a transmissibility multiplier of 0.1 in the positive index
direction from layers 1-3 across the fault, and a multiplier of 0.015 from layers 4-6 across the fault.
We describe two different ways for defining the multipliers.

 1 2 3 4 5 6 7 8
1
2
3
4
5
6

Figure 17. Example XY-view of fault.

1. Using multipliers

EQUALS
--array value ix1 ix2 jy1 jy2 kz1 kz2
 MULTX 0.1 1 1 5 6 1 3 /
 MULTY 0.1 2 2 4 4 1 3 /
 MULTX 0.1 2 2 4 4 1 3 /
 MULTY 0.1 3 4 3 3 1 3 /
 MULTX 0.1 4 4 3 3 1 3 /
 MULTY 0.1 5 6 2 2 1 3 /

74

 MULTX 0.1 6 6 1 2 1 3 /
 MULTX 0.015 1 1 5 6 4 6 /
 MULTY 0.015 2 2 4 4 4 6 /
 MULTX 0.015 2 2 4 4 4 6 /
 MULTY 0.015 3 4 3 3 4 6 /
 MULTX 0.015 4 4 3 3 4 6 /
 MULTY 0.015 5 6 2 2 4 6 /
 MULTX 0.015 6 6 1 2 4 6 /
 /

2. Using FAULTS and MULTFLT keywords

FAULTS
-- f-name ix1 ix2 jy1 jy2 kz1 kz2 Face
 Flt_top 1 1 5 6 1 3 X /
 Flt_top 2 2 4 4 1 3 Y /
 Flt_top 2 2 4 4 1 3 X /
 Flt_top 3 4 3 3 1 3 Y /
 Flt_top 4 4 3 3 1 3 X /
 Flt_top 5 6 2 2 1 3 Y /
 Flt_top 6 6 1 2 1 3 X /
 Flt_btm 1 1 5 6 4 6 X /
 Flt_btm 2 2 4 4 4 6 Y /
 Flt_btm 2 2 4 4 4 6 X /
 Flt_btm 3 4 3 3 4 6 Y /
 Flt_btm 4 4 3 3 4 6 X /
 Flt_btm 5 6 2 2 4 6 Y /
 Flt_btm 6 6 1 2 4 6 X /
 /

MULTFLT
-- f-name Multiplier
 Flt_top 0.1 /
 Flt_btm 0.015 /

/

We see that if this is a one-time job, the effort in setting up the fault and multiplier data is about the
same in the two different approaches. The advantage with the latter method is seen if we want to
change the multipliers to e.g. test sensitivities. Then we only have to change a single line in method 2,
while more elaborate (and error prone) editing is required by method 1.

Defining a fault manually – the ADDZCORN keyword
As noted earlier, almost all grids of some complexity are constructed by dedicated software. This
certainly includes fault definition and final representation of faults on the grid. Nevertheless, there are
times when we would like to edit faults manually, either to do a minor fix that shouldn’t require a
complete grid rebuild, or non-production grids, where we would like to construct generic faults
without the need for the dedicated software. The means to do so in Eclipse are limited, and can seem
cumbersome and complicated, but still the users should be aware of the possibilities that exist.

The keyword ADDZCORN is used to move individual corners in cells. It can be set to continuous
mode, in which case adjacent corners are moved simultaneously, or cell corners can be moved without
affecting neighbour corners.

Using ADDZCORN to move all corners of a cell (or box of cells) simultaneously
The data is given in three groups,

1. The distance to move corners, DZ
2. The box to move, ix1 ix2 jy1 jy2 kz1 kz2
3. Continuity flags ix1A ix2A jy1A jy2A (default: No fault discontinuity introduced)

In addition there is a flag for keeping the top or bottom layers unchanged,

75

ALL: Move all corners (default)
TOP: Don’t move bottom of bottom layer
BOTTOM: Don’t move top of top layer.

Syntax: ADDZCORN can contain arbitrary many lines, each line with syntax,

DZ ix1 ix2 jy1 jy2 kz1 kz2 ix1A ix2A jy1A jy2A Top/Bottom-flag

Use of the continuity flags:
ix1A must be either the left hand boundary ix1, or the cell to the left of it (ix1-1). The value can be
interpreted as, the first corner in the range to move. Hence, if ix1A is equal to ix1, cell ix1 is moved,
but cell ix1-1 is left unchanged, whereby a discontinuity (fault) has been constructed. On the other
hand, if ix1A is equal to ix1-1, then the right hand side of cell ix1-1 is moved (all associated corners
are moved simultaneously), but the left hand edge of the cell is left unchanged. No discontinuity has
hence been introduced. See Figure 18 for a visualisation of the use of the left hand (lower index) flag
in the x-direction. The other flags act similar.

Figure 18. Example use of continuity flags in ADDZCORN, left hand x-direction

Example
We wish to move part of the grid downwards 20 m. The box to move is I = 5-10, J = 3-8. When
moving the box, the left and right hand boundaries shall be discontinuous (fault) like in the middle
example in Figure 18. The other two edges (J-direction) shall be continuous, like the lower example in
the figure. The syntax is,

ADDZCORN
-- DZ ix1 ix2 jy1 jy2 kz1 kz2 ix1A ix2A jy1A jy2 A TB-flag

20.0 5 10 3 8 1 6 5 10 2 9 /
/

Notes:

1. The continuity flags are only used when the box edge is continuous before the move. If a box
edge prior to the move is discontinuous, like the middle example in Figure 18, then the box
will be moved as discontinuous, and the rest of the grid left unchanged irrespective of the
value of the continuity flag

2. All the indices ix1, ix2,..., jy1A must be within the grid index limits. I.e. if e.g. ix2 is at the
right hand edge of the grid, it is an error to define ix2A = ix2+1. When the box extends to the
edge of the grid the concept of continuity at the edge of the box becomes irrelevant anyway.

3. Normally all the layers are moved simultaneously. If only some layers are moved, the user
must take care to avoid unintended overlaps or gaps after the move.

4. Note that the default values of the continuity flags imply continuity (no fault).

IX1=5

Original layout

IX1A = IX1 = 5

IX1A = IX1-1 = 4

3 4 5 6 7

76

Using ADDZCORN to move individual corners of a single cell
The way we used ADDZCORN above, all the eight corners of the cell were moved rigidly. At times it
is needed to move corners individually, either a single corner, or some of the corners. In Eclipse this is
done by a rather special syntax in the ADDZCORN keyword. If at least one of ix1, ix2, jy1, jy2 is set
to zero, this is a signal that we are operating in single-cell, individual corners mode.
When specifying ix1 ix2 or jy1 jy2 a nonzero value means, “move this corner of cell with defined
index”, where “this corner” is defined by the position of the nonzero index. This is best explained by
examples, where IV means a nonzero index value:
ix1 ix2
IV 0 Move left hand corner of cell with ix = IV
 0 IV Move right hand corner of cell with ix = IV
IV IV Move both left and right hand corners of cell with ix = IV
jy1 jy2
IV 0 Move “back” (northernmost) corner of cell with jy = IV
 0 IV Move “front” (southernmost) corner of cell with jy = IV
IV IV Move both “front” and “back” corner of cell with jy = IV

Figure 19. Examples of use of combinations of cell index and zeros to move individual corners

Some examples of use are shown in Figure 19. In the figure it has been assumed that only the defined
cell is affected. The continuity rules to surrounding grid are valid as in the section above, i.e. if the
continuity flags are set to the current cell, the movement will not affect neighbour cells, while if the
flags are set to the neighbour cell index, the movement will be continuous.

So the complete syntax for the middle example in Figure 19 would be, assuming all six layers are
moved,

ADDZCORN
-- DZ ix1 ix2 jy1 jy2 kz1 kz2 ix1A ix2A jy1A jy2 A TB-flag
 15.0 4 0 0 8 1 6 4 5 7 8 /

14. Aquifer Modelling (GRID section)
When a reservoir is produced by pure depletion, the only energy supply available is fluid and rock
expansion. The total fluid expansion energy is obviously proportional to the total fluid volume. Hence
if it as an example is possible to produce 5% of total fluid volume by pure expansion energy, then the
recovery fraction will be much lower if all of the fluid is oil (5% of oil present) than if the total
volume is to a large extent water (recovery 5% of oil + water).

Fortunately (in a recovery perspective) many reservoirs are connected to an aquifer, i.e. a huge
volume of water. When including such aquifers in the simulation model, it is of course possible to
model the water-filled volume explicitly, building the grid sufficiently large to cover the entire water
volume. This will normally require many grid blocks, and can increase the model size considerably.

I
3 4 5

7
8

J

Org. layout

Move left front:
4 0 0 8

Move right front and back:
0 4 8 8

77

An alternative is therefore to model the aquifer by some artificial means. There are several ways to do
this, but we will concentrate on the so-called numerical aquifers, which also can be modelled in
Eclipse. The reasons for using a special model for the aquifer, are

• Practical: it saves memory space and computer time
• No loss of accuracy. Since aquifers are large one-phase volumes, the computations are simple,

and as accurate on large grid blocks as on small.
• Detail water flow pattern is not needed in the water zone, only the energy (pressure) support from

aquifer to reservoir, and water flux between the two are needed.
Actually, the flux and energy support can be computed with sufficient accuracy in a one-dimensional
abstraction of the aquifer, which is how it is implemented. With this knowledge we see that a
sufficient description of an aquifer doesn’t require shape, only volumes. However, the interface
between the aquifer and the reservoir requires a shape definition, which is only logical.

Hence there are two aspects of setting up an aquifer, the aquifer definition (volume, properties), and
how it interfaces to the reservoir.

Aquifer definition
The way Eclipse does it, ordinary grid cells in the reservoir are used to define aquifers. The cells will
have all their properties redefined, but apart from that they are still part of the grid, and cannot be
regarded as having been removed from the grid. E.g. connectivity between grid cells is not changed
just because a cell is defined as an aquifer cell. This means that aquifer cells should be completely
isolated from the rest of the reservoir, i.e. completely surrounded by inactive cells.

Most aquifers can be satisfactory defined by one grid cell only. However, if the aquifer properties
and/or depth have large variation, it can be a good idea to try to capture this variation by using more
cells to define the aquifer. More than three or four cells should seldom or never be necessary.

To verify this it is a nice exercise to build a simple grid including a large water zone which is explicitly
modelled. Then model the water zone as a numerical aquifer using one, two, four and ten cells. Most
probably, the results from these cases will be as good as equal.

Figure 20 shows some examples of ways to use grid cells to define aquifers, and the connectivity to
expect.

Figure 20. Examples of use of inactive cells to define aquifers (grid viewed from above)

Cell A is a typical example of using an isolated inactive cell to define an aquifer. The cell has no
connection to the surrounding world at all, so the necessary flow connections will be defined by the
user.

Active cells

Inactive cells

D

C1 C2

A

B1 B2 B3

78

Cells B1, B2, B3 are connected to each other, but isolated from the rest of the grid. The three cells can
either be used to define a single aquifer, which obviously will have internal communication, or the
cells could define two or three different aquifers, such that the aquifers communicate with each other.
Cells C1 and C2 are isolated from each other, and from the rest of the world. They can be used to
define two different aquifers. Using such a configuration for a single aquifer would be meaningless, as
there would be no connectivity between the two different parts of the aquifer.
Cell D is not suited for use as an aquifer cell, since it is in direct contact with an active cell in the grid.
In addition to the connectivity defined by the user, fluid in cell D will flow directly into the reservoir,
which is probably not intended.

Having decided which (inactive) cells from the grid to use as aquifer cells, the keyword to define the
aquifer is AQUNUM (numerical aquifer). The keyword data is comprised of arbitrary many lines,
each line containing definition for exactly one aquifer cell on the original grid. The syntax for each
line is,

AQ-id AI AJ AK X-sect_area Length Poro Perm Depth P_init PVT-table SatNum

AQ-id

an integer identifying the aquifer. If several lines are used to define the same aquifer, only the
cell defined in the first line of definition will be in contact with the reservoir, as defined by the
AQUCON keyword below. (Note: Aquifers are identified by integers, not names)

AI AJ AK
The (I, J, K)-index for the grid cell to use as aquifer cell

X-sect_area Length
The gross volume of the aquifer cell is the product of these two numbers. Recall that the
aquifer is modelled as one-dimensional – flow is assumed to be in the direction defined by
Length, and flux out of the aquifer is through the cross sectional area defined by X-sect_area.

Poro Perm Depth
Normally we will define porosity, permeability and a typical depth for the aquifer, taken from
known properties of the water zone. If these items are defaulted, the values will be taken from
the grid cell as it is defined in the grid.

P_init
Initial pressure in the aquifer cell. It is recommended to default this value, whereby it will be
computed from the fluid gradients and the depth defined above.

PVT-table SatNum
 These items are best defaulted. (Ref Eclipse documentation if alternative is needed.)

Example.
We will define four different aquifers, corresponding to examples A, B, and C in Figure 20. Cell A has
aquifer-id 1, aquifer-id 2 is used for cells B, and aquifer-id 3 and 4 for cells C. The view in Figure 20
is assumed to be the top layer (K=1), at the edge of the reservoir (I=1 at left end, J=1 at top).

AQUNUM
-- AQ-ID AI AJ AK X-sect Length Poro Perm Dep th P_init
 1 3 1 1 2E7 3000 0.3 800 30 00 1* /
 2 3 3 1 6E6 2500 0.28 1000 25 00 1* /
 2 2 3 1 6E6 2500 0.28 800 28 00 1* /
 2 1 3 1 6E6 2500 0.28 500 31 00 1* /
 3 1 5 1 5E7 6000 0.25 300 35 00 1* /
 4 3 5 1 4E6 4000 0.24 100 27 00 1* /

/

Note that the dimensions, petrophysics, and depth of the aquifer cells bear no relation to what was
defined in the grid originally at all.
Flow between aquifer 2 and the reservoir is only to/from aquifer cell (3, 3, 1), since this cell is the first
to be defined in the keyword. Also note the reason for using three cells for aquifer 2, to capture the
depth increase (higher fluid pressure, larger compressive energy) and decrease in permeability with
depth.

79

Aquifer connection to reservoir
Each aquifer connects to the reservoir in one aquifer cell only. This cell will, however typically
connect to a large number of grid cells in the reservoir. To mimic the aquifer to reservoir flux, also the
side of the reservoir grid blocks which the influx is coming must be specified.

The AQUCON keyword is used to specify which cells (in the reservoir) a given aquifer (defined by
the aquifer id) connects to. The data is comprised of arbitrary many lines (building up the entire
definition of all connections), each line with syntax,

AQ-id ix1 ix2 jy1 jy2 kz1 kz2 Face TranMult (4*)

AQ-id refers to the id used in AQUNUM
ix1 ix2 jy1 jy2 kz1 kz2 defines the grid box which the aquifer connects to. Normally the two indices
are equal in one of the directions, so that the box is not a volume, but corresponds to a surface.
Face is the reservoir grid block face to which the aquifer is connected. The choices are,

I– Left hand face of cell (face in negative I-direction)
I+ Right hand face (positive I-direction)
J– Back face (negative J-direction)
J+ Front face (positive J-direction)
K– Top face (negative K-direction)
K+ Bottom face (positive K-direction)

TranMult is used to define a transmissibility multiplier between the aquifer cell and reservoir. The
relevant transmissibility will be computed from the aquifer cell permeability and the receiving grid
cell permeability, and can be modified by setting TranMult different from 1.0 (the default value).

Example
Aquifer 1 (cell A in Figure 20) shall be connected to the northern edge of the reservoir grid. The
relevant cells are the row J = 1, I = 7-12, and assuming the grid is comprised of six layers which all
connect to the aquifer, K = 1-6. Since the aquifer connects to the northern face of the cells, the
appropriate face is ‘J–‘ . We set the transmissibility multiplier to 0.75. The syntax for this connection
would be,

AQUCON
-- AQ-ID ix1 ix2 jy1 jy2 kz1 kz2 Face TranMult
 1 7 12 1 1 1 6 J- 0.75 /

/
By normal use, the reservoir grid surface defined by the index box and ‘face’ is a reservoir edge, or
connects to inactive blocks only. This condition should always be satisfied (although a flag exist to
relax the condition (not recommended!), see Eclipse documentation).
The keyword AQUDIMS must be set in the RUNSPEC section.

15. Local Grid Refinement
In many problems we need a higher resolution (finer grid) than our grid permits. An example is where
we model gas coning near a horizontal well. With a high resolution description as in Figure 21, we can
track the gas front accurately, and give a good estimate for time and position of the gas breakthrough
in the well. Also, the cells are sufficiently small that they can be classified as either gas filled or oil
filled.

Figure 21. Gas cone near a horizontal well, fine grid, vertical cross section.

80

When the same problem is modelled on a coarser grid, we see that the shape of the cone is completely
lost, and the front is no longer clearly defined, as all the relevant cells have an intermediate gas
saturation (saturation larger in darker cells). Also neither the time of the breakthrough nor the exact
place where it happens can be deducted from the simulation.

Figure 22. As figure 21, but on a coarse grid.

Using the resolution of Figure 21 on the entire grid is typically not possible due to memory limitations
and computing time. One possibility is to extend the fine grid in all directions with coarser cells, as in
Figure 23. This is, however, not a recommended solution, since the resulting long and narrow cells are
sources of computational errors, especially when the size difference between large and small cells in
the grid becomes too large.

In such situations it is much better to use local grid refinement (LGR). As the name implies, this
means that part of the existing grid is replaced by a finer one, and that the replacement is done locally.
An example of how this looks can be seen in Figure 24.

Figure 23. Extending resolution of fine cells non-uniformly, XY-view

81

Figure 24. Example where one cell in original grid has been replaced with an LGR

The LGRs which will be discussed in this context are regular cartesian. The appropriate keyword is
then CARFIN (Cartesian refinement). Basically a box in the grid is replaced by another box with
more cells, but there are some constraints (see nx ny nz below). The keyword is followed by one line
of data, terminated by a slash. Note that only one LGR can be defined in one CARFIN keyword. The
keyword must be repeated for each new LGR. Keyword ENDFIN terminates current CARFIN.
The syntax is then,

CARFIN
-- -- Box to refine -- Cells in LGR
-- LGR-name I1 I2 J1 J2 K1 K2 nx ny nz Max Wells

LGR-name

Each local grid must have a unique name. All later references to the LGR is by its name

The “Box to refine” is a standard grid box which we have encountered many times now.

nx ny nz

These numbers define the total number of cells in each direction in the LGR. The numbers can
however not be chosen entirely freely. Basically, the constraint is that the cell edges in the old
(coarse) grid must coincide with edges in the refined grid. Or, the number of refined cells in
each of the old cells must be an integer. So e.g. two coarse cells cannot be divided into five
fine cells, as that would give 2.5 fine cells in each coarse block.

MaxWells
As we shall see eventually, most well keywords must be redefined when wells are defined on
a local grid. Therefore, the maximum number of wells permitted on the LGR must be given
already when the local grid is defined.

Example
The box I = 13-15, J = 4-5, K = 3 shall be refined. On the coarse grid, the dimensions of the box are,
 NCI = 3, NCJ = 2, NCK = 1. Therefore nx must be divisible by three, and ny must be divisible by two.
It’s often easier to think in terms of how many fine cells go into each coarse cell. In this case, we
divide each coarse cell into three cells in the x-direction, 5 cells in the y-direction, and 4 cells in the z-
direction. That way, nx = 9 (three coarse cells, three fine in each), ny=10 (two coarse cells, five in
each), and nz=4. So the CARFIN keyword becomes,

CARFIN
-- -- Box to refine -- Cells in LGR
-- LGR-name I1 I2 J1 J2 K1 K2 nx ny nz Max Wells
 ExLGR1 13 15 4 5 3 3 9 10 4 1 /

82

We see that an LGR must be defined on a BOX (no irregular shape allowed). Moreover LGRs must
not overlap. They are not even allowed to touch each other without special treatment (see below).
LGRs can be nested, but that is not discussed here.

When the simulation includes local grid refinements, this must be notified in the RUNSPEC section by
the LGR keyword (see page 82).

15.2 LGR on an irregular volume – Amalgamation
If we want an LGR on a volume that is not a regular BOX, this can be done by amalgamating several
local grids into one. Each of the LGRs must be defined in the standard manner, and hence be on a
regular BOX. There is no limit to the number of LGRs that can be amalgamated.

J \ I 10 11 12 13

5

6

7

8

Figure 25. Example LGR on irregular area (XY view)

To define an LGR on an area as in Figure 25, first define one LGR for each regular area, such that the
boxes touch each other but do not overlap. Then amalgamate these, as,

CARFIN
-- -- Box to refine -- Cells in LGR
-- LGR-name I1 I2 J1 J2 K1 K2 nx ny nz Max Wells
 LGR1 10 12 6 6 1 1 12 4 4 1 /

CARFIN
-- -- Box to refine -- Cells in LGR
-- LGR-name I1 I2 J1 J2 K1 K2 nx ny nz Max Wells
 LGR2 12 12 7 8 1 1 4 8 4 1 /

AMALGAM

LGR1 LGR2 /
/

Wildcards are permitted in the AMALGAM keyword, so the last keyword could have been written,

AMALGAM

‘LGR*’ /
/

The LGRs must be compatible, as in the example both LGRs have nx = 4.
It is possible to define PORO, PERM, ... on LGRs, and also more complex geometry. The default is to
inherit the properties from the parent cell, which we will be content with here.

15.3 Wells on local grids – Horizontal wells
The keywords for defining wells and completions for wells on a local grid are equivalent to the
standard keywords, except,

1. The name of the LGR must be supplied (so Eclipse knows where it is working)
2. The completion indices are with reference to the LGR, not the original grid.

83

Example
A horizontal well is defined on a standard grid as in Figure 26. Assume the well is at a depth equal to
the centre of layer 2.
Figure 27 shows the same configuration using local grid refinement. We set up the appropriate well
keywords for both cases.

Figure 26. A horizontal well on a standard grid (XY view)

Figure 27. As Figure 26, but using LGR near the well

For the standard grid (Figure 26) we would use (with well name WH1),

WELSPECS
-- Wname Gname IWH JWH Z_BHP Phase N/A N/A ShutIn XFlow
 WH1 G1 3 2 1840.0 OIL 1* 1* STOP YES /

/

COMPDAT
-- Wnm* IC JC KTOP KBTM OPEN? SatTbl N/A Dw K h Skin N/A Dir r0
 WH1 3 2 2 2 OPEN 0 1* 0.3 1* 0 1* X 1* /
 WH1 4 2 2 2 OPEN 0 1* 0.3 1* 0 1* X 1* /
 WH1 5 2 2 2 OPEN 0 1* 0.3 1* 0 1* X 1* /
 WH1 6 2 2 2 OPEN 0 1* 0.3 1* 0 1* X 1* /

/

WCONPROD
...
...

We note that the COMPDAT keyword is tailored for vertical wells, where a range of completions can
be defined at once, by the KTOP – KBTM interval. For horizontal wells, there is no such shortcut, so
the COMPDAT keyword frequently grows to a large number of lines when horizontal wells are
modelled. This will get even worse on local grids.

1 2 3 4 5 6 7

1

2

3

84

It may be surprising that Eclipse does not have a similar shortcut for horizontal wells as for vertical.
The truth is, “nobody” inputs this data for hand anyway. Since well and production data are so complex
and voluminous in real-life simulations these data are almost always generated by external software,
typically the SCHEDULE program. Since “nobody” needs a simple input syntax for horizontal wells
anyway, the Eclipse team hasn’t taken the trouble to implement it.

For horizontal wells, the well head index (IC, JC) refers to the heel of the well (which is the end of the
well that is closest to the surface)

For the LGR case (Figure 27), the appropriate keywords would be (first the LGR definition, then the
well keywords)

In the RUNSPEC section add a keyword

LGR
-- MAXLGR MAXCLLGR MAXAMLGC MAXAMLGF MAXLGRAM LSTACK INTERP?
 1 500 1* 1* 1* 1* 1* /
(Max nbr. of LGRs in model; Max nbr of cells in one LGR; Max nbr. of amalg. coarse cells; Max nbr. of LGR
amalgamations; Max nbr. of LGRs in one amalgamation; NSTACK for LGRs (NSTACK is defined on page
100); Pressure interpolation? (INTERP or NOINTERP (default)))

In the GRID section,

CARFIN
-- -- Box to refine -- Cells in LGR
-- LGR-name I1 I2 J1 J2 K1 K2 nx ny nz Max Wells
 WH1LGR 3 6 2 2 2 2 20 5 5 1 /

In the SCHEDULE section,

WELSPECS
...

-- LGR wells must be defined with special keywords WELSPECL and COMPDATL
WELSPECL
-- Wname Gname LGRname IWH JWH Z_BHP Phase N/A N/A ShutIn XFlow
 WH1 G1 WH1LGR 3 3 1840.0 OIL 1* 1* STOP YES /
 /

COMPDAT
...

COMPDATL
--Wnm* LGRname IC JC KTOP KBTM OPEN? SatTbl N/A D w Kh Skin N/A Dir r0
 WH1 WH1LGR 3 3 3 3 OPEN 0 1* 0 .3 1* 0 1* X 1* /
 WH1 WH1LGR 4 3 3 3 OPEN 0 1* 0 .3 1* 0 1* X 1* /
 WH1 WH1LGR 5 3 3 3 OPEN 0 1* 0 .3 1* 0 1* X 1* /
 WH1 WH1LGR 6 3 3 3 OPEN 0 1* 0 .3 1* 0 1* X 1* /
 .
 .
 .
 WH1 WH1LGR 14 3 3 3 OPEN 0 1* 0 .3 1* 0 1* X 1* /
 WH1 WH1LGR 15 3 3 3 OPEN 0 1* 0 .3 1* 0 1* X 1* /
 WH1 WH1LGR 16 3 3 3 OPEN 0 1* 0 .3 1* 0 1* X 1* /
 WH1 WH1LGR 17 3 3 3 OPEN 0 1* 0 .3 1* 0 1* X 1* /
 WH1 WH1LGR 18 3 3 3 OPEN 0 1* 0 .3 1* 0 1* X 1* /
/

WCONPROD
...

Note that all references to cell indices are relative to the local numbering scheme in the LGR.
Note: For complex well paths ECLIPSE sometimes gets the well path all wrong. The user can override
the default well-path-construction by the keyword COMPORD, whereby the completion order can be
set exactly as defined by the user.

85

15.4 Horizontal wells and friction
So far we haven’t mentioned the effect of friction between well casing and flowing fluids. Vertical or
moderately deviated wells are so short that the friction doesn’t matter, but in long horizontal wells it
may have a significant impact on the well flow. The friction results in an additional pressure drop
along the well, which is calculated based on the well diameter and the roughness of the casing. The
length of the well is always measured from the bottomhole reference point, which for a horizontal well
was the heel.
Note: When a well is defined as a friction well, item 12 in the WELSPECS keyword must be set to
‘SEG’ (the segmented density calculations must be used). (If the well was defined by WELPSECL,
the relevant item is item 13.)

The keyword for defining friction data is WFRICTN. This keyword can be used for wells on the
standard grid, and for wells on a single LGR. For wells on an amalgamated LGR, keyword
WFRICTNL must be used (this keyword can also be used on single LGRs).

Each WFRICTN (or WFRICTNL) is used to define one (and one only) friction well, so the
keyword must be repeated for each well.

The keyword is divided into two parts, the first part for the well as such , the second part for
data along the well. Each record is terminated with a slash, an empty record terminates the keyword.

We describe WFRICTN here, the difference for WFRICTNL is treated at the end.

Record 1,
WellName TubingDiameter Roughness FlowScaleFactor /

TubingDiameter is normally the same as the diameter defined in the COMPDAT keyword, but since
the diameter is used for different calculations in the two cases it is more flexible to define this item
also here. The diameter can vary along the well, in which case it can be redefined in the next record.

Roughness, a number, obtained from measurements

FlowScaleFactor, a scaling factor. In this context we set it default, which is 1.0

Subsequent records

I0 J0 K0 Distance0 Distance1 WellDirection IJK_end TubingDiameter /

I0 J0 K0

Indices for the current cell or start of a range of cells. (“Start” here always means “nearest the
reference point”, i.e. the heel)

Distance0
Distance from the reference point to the start of the perforations defined in this record

Distance1
 Distance from the reference point to the end of the perforations defined in this record
WellDirection
 The direction the well penetrates the cell(s) defined in this record (X, Y, Z; alt. I, J, K)
IJK_end

If a range of cells is defined (not a single cell), the direction of the range is defined in the item
above. So the end of the range is defined by a single index, not a triplet.

TubingDiameter
 Specify here if different from the value defined in record 1.

Notes
When Eclipse computes the effect of the friction, it needs the effective friction lengths. These are
obtained from the Distance0 and Distance1 items. With a fixed reference point P0, Distance0 is the
distance from P0 to the start of the perforations, and Distance1 is the distance from P0 to the end of
the perforations. The friction length is the difference Distance1 – Distance0. If Distance0 is defaulted,
it is set to Distance1 of the previous record. If Distance1 is defaulted it is set to Distance0 (this record)

86

plus the diameter of the cell, which is the length of the cell in the direction set in WellDirection. I.e., if
the distances are defaulted, Eclipse computes them as if the well path crosses the cell in the direction
defined by WellDirection, and the well is continuously perforated (the perforation length is equal to
the cell diameter).
If the actual well path is aligned along one of the cell directions, the default calculation is correct. In
such cases, the automatic range definition can be used, by specifying IJK_end. Once a well direction
has been specified, Eclipse knows which cells are affected. If e.g. WellDirection is set to ‘X’, then J0
and K0 will be the same along the segment, only I will change, so the IJK_end will be the I-index for
the cell at the end of the range.
Default-values: Those values which are not needed can be defaulted. (If Distance0 and Distance1 are
given, WellDirection and IJK_end are not needed, if Distance1 is defaulted, WellDirection is needed,
and IJK_end if appropriate).
The Distance0 and Distance1 terms are especially relevant if the grid approximation to the well path
deviates much from the actual well path, so that Eclipse-computed friction lengths will come out
wrong.

Figure 28. Actual well path (grey) and grid approximation (black) (XY-view)

A typical approximation is shown in Figure 28. The actual well path must be approximated by a path
passing through only cell centres. The best fit is therefore something like the black zig-zag-line. We
see that both perforation lengths and the length of the well itself is quite different if measure along the
zig-zag path than along the actual path. Assuming that the left hand end of the well is the heel, we see
that in the last few cells before the toe (right hand end) actual distance is equal to grid well distance,
but for the rest of the well there is some difference. When this well is defined as a friction well, the
appropriate friction lengths should therefore not be auto-computed by Eclipse.
The grid blocks are 100 m in the x-direction, and 150 m in the y-direction, and the well is assumed
horizontal in layer 3.
We let cell (3, 6, 3) be the well heel, i.e. the bottomhole reference point, i.e. the point which we
measure all lengths from.

Then one way of defining the friction in the well would be,

WFRICTN
-- Wellname TubingDiam Roughness Scale
 WH1 0.35 3E-4 /
-- I0 J0 K0 Dist0 Dist1 WellDir IJK_end TubingD iam
 3 6 3 0.0 50.0 /
 4 6 3 50.0 155.0 /
 5 5 3 155.0 265.0 /
 6 5 3 265.0 375.0 /
 7 5 3 375.0 485.0 /
 8 5 3 485.0 595.0 /
 9 4 3 595.0 705.0 /
...
...
 14 2 3 1* 1* X 19 /
 /

1 5 10 15 20

5

87

In all records, except the last we have explicitly defined the tubing lengths, which are a little longer
than the cell diameter of 100m, since the well path is partly diagonal to the grid. Since the distances
have been defined, the rest can be defaulted.

In the last record, we are starting on the well segment which is parallel to the x-axis, in grid cell
(14, 2, 3). When Dist0 is defaulted, the “current” friction length is taken as the last known value
(Dist1 from the record above). When Dist1 is defaulted, it is computed as:
First the cell diameters are computed. Since the well direction is X, the diameter is 100m. Then we
have defined a range – with direction X and start cell (14, 2, 3), the end index 19 means I=19, such that
the end cell becomes (19, 2, 3). The range is hence six cells, and the total length is 600m (6*100),
which is added to the Dist0.

Amalgamated grids
When WFRICTNL is used, the only difference is that in all records after the first, the first item is the
LGR-name. The rest of the items are as before. If a range is used it must not span more than one LGR.

16. Numerical Solution of the Flow Equations
The objective is to give a “bird’s eye view” of how the flow equations are solved, without going into
too much details. For such a discussion, the actual flow equations are not needed – it suffices to look
at a representative equation containing the necessary features. The model equation will be,

2

2

2

2

2

2

z

u

y

u

x

u

t

u

∂
∂+

∂
∂+

∂
∂=

∂
∂ (25)

Using central differences for the spatial approximation and forward difference in time, the finite
difference approximation to Equation (25) is,

2

1,,,,1,,

2

,1,,,,1,

2

,,1,,,,1,,
1
,,

)(

2

)(

2

)(

2

z

uuu

y

uuu

x

uuu

t

uu kjikjikjikjikjikjikjikjikji
n

kji
n

kji

∆

+−
+

∆

+−
+

∆

+−
=

∆

− −+−+−+
+

 (26)

In Equation (26), superscripts have been used to denote the time step.
However, no time step has been indicated on the right hand side of the equation.

If the right hand side is evaluated at time step n, then the equation can be solved explicitly for the
solution 1

,,
+n

kjiu , which makes finding the solution at time n+1 for all cells (i, j, k) easy.

On the other hand, if the right hand side is evaluated at time n+1, then all the terms except n kjiu ,, are

unknown, and the system defined by Equation (26) when i,j,k take all values must be solved all at once,
which is probably not straightforward. We denote this an implicit formulation of the problem, with an
implicit solution procedure.

From numerical analysis it is known that the implicit solution is much more stable than the explicit
solution, and the time steps can be larger. So even if an implicit solution scheme is harder to
implement than an explicit scheme, it is generally worth the effort. As an example of the benefit, a
stable scheme means that it will be self-correcting. I.e., if the solution at one time step has become
erroneous for some reason, then the numerical solution will approach the “correct” solution at
subsequent time steps. An explicit scheme does not in general have this property, which means that
once an error starts to develop, it will grow with time, so that the solution gets worse and worse.

Both explicit and implicit schemes have been used in reservoir simulation through the years, but
explicit schemes are not widely used any more. The default scheme in Eclipse is the implicit scheme,
but IMPES (see below) is available as an option.

88

From Equation (26) it is apparent that the cells that enter each calculation are given by the 7-point
stencil. I.e. to compute u in cell (i, j, k), we need the values in cells (i±1, j, k), (i, j±1, k), and (i, j, k±1).

As an example, we will build the system structure for a grid with 4 cells in the x-direction, 3 in the y-
direction, and 2 in the z-direction, i.e. nx=4, ny=3, nz=2. When we organize the system of equations
we need to organize all the cells in one vector. We do this by the natural ordering, which is the same
as the book order.

Then cell (1, 1, 1) will depend on (2,1,1), (1,2,1), and (1,1,2). But in the natural ordering that is
equivalent to cell 1 depends on cells 2, 5 and 13. In the same manner, cell (2,1,1) will depend on
(1,1,1), (3,1,1), (2,2,1), and (2,1,2), i.e.: cell 2 depends on cells 1, 3, 6, and 14. (Ref. Figure 29)

Figure 29. Natural ordering of a 4 x 3 x 2 grid

Continuing this way we can draw a table (matrix) which depicts all the connections.

 1 5 10 15 20
1 x x x x
 x x x x x
 x x x x x
 x x x x
5 x x x x x
 x x x x x x
 x x x x x x
 x x x x x
 x x x x
10 x x x x x
 x x x x x
 x x x x
 x x x x
 x x x x x
15 x x x x x
 x x x x
 x x x x x
 x x x x x x
 x x x x x x
20 x x x x x
 x x x x
 x x x x x
 x x x x x
 x x x x

Figure 30. Coefficient matrix for a 4 x 3 x 2 grid (x means “nonzero element”)

1 2
3 4

5 6 7 8

9
10 11 12

13

17

21
22

23 24

89

This structure is characteristic for problems using the 7-point scheme and natural ordering. The
features are,

• The matrix is sparse, most of the entries are zero
• Along the main diagonal there are three rows, i.e. a three-diagonal main.
• At each of the sides of the main diagonal there are two single bands – for this reason this kind of

matrix is called a 7-diagonal matrix.
• The main diagonal is “blocked”, each block comprised of nx x nx lines / rows (nx = 4 in this

example).
• The first side-band is at a distance nx (4 in example) from centre.
• The second band is at a distance nx*ny (12 in example) from centre. (This band is missing in

two-dimensional problems.)
Verify that the set-up leads to this structure always, and picture the scheme for larger problems.

Comments

• The structure in Figure 30 is a result of the way we numbered the cells (natural ordering). Other
orderings are also commonly used, the objective being to get a structure which is optimally suited
for some solution procedure. We won’t pursue this aspect, but note that all such (sensible)
ordering schemes results in a sparse banded matrix.

• Solution of systems of equations with a sparse banded structure has received a great deal of
attention through the years, and many efficient and specialized routines exist.

• The black oil equations are actually a little more complex than our model example, e.g.
o Each “element” in the matrix is actually a 3 x 3 matrix (2 x 2 for two phase problems), as

the primary variables are not scalars, but typically the vector (Sw, Sg, po).
o The black oil equations contain strongly nonlinear terms, as e.g. the mobility

gwol
pBp

Sk

llll

lrl
l ,,,

)()(

)(
==

µ
λ

The system in Figure 30 is therefore not a linear system of equations as known from
linear algebra.

• The “nice” structure of the matrix is a result of strict adherence to the 7-point stencil. Recall from
the discussion on faults that honouring sand-to-sand contact flow gives rise to non-neighbour
connections, which in this context are characterised by not adhering to the 7-point stencil. NNC-
terms will generate non-zero elements outside the 7 standard bands, and also zero elements on the
tridiagonal, which can have a deteriorating effect on convergence properties. For grids with very
many faults, so many off-diagonal terms are generated that the matrix often can no longer defend
to be called sparse.
The specialized methods which have been developed to solve the 7-diagonal system are therefore
often not suited for the real problems that evolve in grids with NNCs. The solution method used
by e.g. Eclipse is perhaps not the fastest for all problems, but it has proven itself to be robust, i.e.
it manages to solve most problems that arise.

Before we continue to describe the solution scheme used by Eclipse, we will look at another scheme
that has been, and still is, very popular in reservoir simulators.

The IMPES method
IMPES is an acronym for implicit pressure, explicit saturation. The method is hence an intermediate
between explicit and implicit methods, and has some of the advantages of pure implicit methods but
with less labour. As the acronym implies, IMPES is a numeric method where saturations are updated
explicitly, while the pressure equation is solved implicitly.

First we generalize the expression Equation (13) (pg. 28) a little. Firstly, in that example we assumed
one-dimensional flow and disregarded gravity. In three dimensional problems with gravity the term

x

p

∂
∂

 becomes zp ∇−∇ γ (γ is the gravity term). This term is defined as the fluid potential ψ,

zp ∇−∇=∇ γψ (as usual with subscripts o, w, g when referring to phases).

90

Further, using the fluid potential, the right hand side of Equation (13) generalized to three dimensions
becomes (only x-direction term shown here)

() () kjii
i

x
ii

i

x

i

zy
x

K

x

K

x
∆∆













−








∆
−−









∆∆ −
−

+
+

1
2/1

1
2/1

1 ψψ
λ

ψψ
λ

 (27)

As a shorthand notation we define a variant of transmissibility, Tx by this expression as,

() () kjii
i

x
ii

i

x

i
xxx zy

x

K

x

K

x
T ∆∆













−








∆
−−









∆∆
=∆∆ −

−
+

+
1

2/1
1

2/1

1 ψψ
λ

ψψ
λ

ψ (28)

(∆ with a subscript means “difference in the direction of the subscript”, e.g.

)()()()(1 nn
t tftftfttff −=−∆+=∆ +)

The definition (28) is for the x-direction differences. Similar terms for the y- and z- direction
differences are obtained by cycling x, y, and z in the definition. The total flow is then given by,

ψψψψ zzzyyyxxx TTTT ∆∆+∆∆+∆∆=∆∆ (29)

For simplicity the phase subscripts have been omitted, these will be used when necessary.
Then the black oil difference equations become,

wolbSCqT lltijkijklll ,),(, =∆=+∆∆ φψ (water, oil) (30)

)(, oosggtijkijkgoosgg bSRbSCqTRT φφψψ +∆=+∆∆+∆∆ (gas) (31)

In Equations (30), (31),
l

l B
b

1= and
t

zyx

t

V
C

kjiijk
ijk ∆

∆∆∆
=

∆
= (for a rectangular cartesian grid).

It is easily verified that the product rule for differentiating can be applied to differences, as in

FGGFGF t
n

t
n

t ∆+∆=⋅∆ +1)((32)

ABBA

BABABABA

BABAABABAB

t
n

t
n

nnnnnnnn

nnnnnn
t

∆+∆

=−+−

=−=−=∆

+

++++

+++

1

1111

111)()()(

Using Equation (32) on the right hand side of Equations (30), (31) gives,

)()()(1
lt

n
llt

n
lllt bSSbbS φφφ ∆+∆=∆ + l=o,w (33)

)()()(1
ost

n
oot

n
osoost bRSSbRbSR φφφ ∆+∆=∆ + (34)

Now we want to eliminate gwolSlt ,,, =∆ from Equations (30), (31), using (33) and (34). We also
eliminate gas saturation by 1=++ gow SSS

)()()(
1 1

, wt
n
wwt

n
wijkwww

ijk

bSSbqT
C

φφψ ∆+∆=+∆∆ + (35)

)()()(
1 1

, ot
n
oot

n
oijkooo

ijk

bSSbqT
C

φφψ ∆+∆=+∆∆ + (36)

)()()()1()()(

)(
1

11

,

sot
n
oot

n
sogt

n
w

n
ootwt

n
g

ijkgoosgg
ijk

RbSSRbbSSSSb

qTRT
C

φφφφ

ψψ

∆+∆+∆−−+∆−∆−

=+∆∆+∆∆

++
 (37)

91

This is a system of three equations in the two unknowns ot S∆ and wt S∆ that can be solved by a linear
combination of Equations (35) – (37). One such combination is,

)]37.([
1

)]36.([
1

)]35.([
1

1111
Eq

b
Eq

b

R

b
Eq

b n
g

n
g

s
n
o

n
w

++++
+













−+ .

Performing this summation and reorganizing, the right hand side of the sum becomes,













∆+∆+∆+∆+∆
++++ stn

g

n
o

n
o

gtn
g

n
g

otn
o

n
o

wtn
w

n
wn

t R
b

bS
b

b

S
b

b

S
b

b

S
1111

φφ (38)

In this expression, saturations only occur at time step n, i.e. explicitly.

By the chain rule, lt
l

l
lt p

p

b
b ∆

∂
∂

=∆ .

Since capillary pressure is a function of saturation, and the saturations are treated explicitly (i.e. the
saturation is the same over a time step), capillary pressure will not change during a time step, so that

pppp tgtotwt ∆=∆=∆=∆ , the last equal sign being a definition.

The three first terms in expression (38) are very similar, so define a value Ct by,

p

R

b

bS

p

b

b

S
C s

n
g

n
o

n
ol

gwol
n
l

n
l

t ∂
∂

+












∂
∂

=
+

=
+∑ 1

,,
1

 (39)

Using (39), Equation (38) can be rewritten as,

pC tt
n

t ∆+∆ φφ (40)

Equation (40) has the form of “change of porosity due to compressibility”. Now introduce rock
compression Cr by pC t

n
rt ∆=∆ φφ (41)

Then Equation (40) becomes pCC t
n

tr ∆+ φ)(

Developing the left hand side of the sum that led to Equation (38) and using (41) we finally arrive at
the pressure equation,

()

pCC
t

V

qBqRBBqB

TRTBTRBBTB

t
n

tr
ijk

g
n
go

n
s

n
g

n
ow

n
w

owsgg
n
goo

n
s

n
g

n
oww

n
w

∆+
∆

=

+−++

+∆∆+∆∆+∆∆−+∆∆
+++++

+++++

φ

ψψψψ

)(

)(

)(

11111

11111

 (42)

In Equation (42), saturations and all variables that are saturation-dependent have been found at time
step n. Equation (42) is then solved implicitly for pressure (including pressure-dependent variables).

The explicit nature of the saturation computations will normally dictate relatively small time
steps, especially when saturation changes rapidly.

Mass Balance
In production reservoir simulation, conservation of mass is a must. It is therefore standard procedure
to use mass balance as a convergence control criterion. E.g. for the solution procedure above, one
would not eliminate gas saturation as we did, but compute all saturations independently. Then the
consistency requirement 1=++ gow SSS would be used as a control criterion for mass conservation. If

the sum of saturations was not sufficiently close to unity, the procedure would be iterated until
convergence was satisfactory.

92

Solution of Non-linear Equations – the Newton-Raphs on method
As noted, the black oil equations are non-linear, so standard techniques for solving linear systems are
not applicable to the difference form of the equations. We will first look at the Newton-Raphson
method, a popular and powerful technique for solving non-linear problems, and as an introduction
describe this method for scalar problems.

We want to solve the non-linear equation f(x) = 0, where y = f(x) is some function, e.g. the one shown
in Figure 31.

The method is best described as an algorithm,

1. Choose some arbitrary starting point x0. Find y0 = f(x0).

2. Find the tangent to y = f(x) in the point (x0, y0).

3. Find the intersection x1 between the tangent from (2) and the x-axis.

4. If f(x1) = 0, or sufficiently close to 0, x1 is the sought solution.
Else continue procedure as in (2), (3), (4) until convergence, defining points x2, x3, x4,...
approaching the solution.

In Figure 31 we can see how the points x0, x1, x2,... approach the zero of y = f(x),and can easily
convince ourselves that this procedure will converge to the solution.

Figure 31. Solving a nonlinear problem with the Newton-Raphson method

The tangent equation is

)()(')(000 xxxfxfy −⋅+=

The point x1 is found by setting y = 0 in this equation, so that

)('

)(
0

0
01

xf

xf
xx −= (43)

(We must require the derivative f’(x0) nonzero, but this is only logical since a zero derivative means
the tangent is horizontal, and hence cannot intersect the x-axis.)
The “stop-criterion” is |f(xi)| < ε, where ε is some predefined error tolerance.

The algorithm as a computer code would look like,

x = x0;
do
 x = x – f(x) / diff_f(x);
while(abs(f(x)) > epsilon);

x0x1x2

f(x)0

f(x)1

y=f(x)

93

At each iteration, we can define the difference between “this” and “previous” x as ∆xk. E.g. at the first
iteration, 010 xxx −=∆ . Then Eq. (43) can be written

 ,0)()(' =+∆ kkk xfxxf (44)
which is a more suitable form to generalize to several dimensions

Newton-Raphson for systems
The method described above can be generalized to systems of non-linear equations. The notation and
implementation become more complex, but the underlying idea is very much the same.

The nonlinear problem is,

0)(

0)(

0)(

2

1

=

=
=

x

x

x

nF

F

F

M
 (45)

where x = x1,...,xn, and the initial guess is x0.

The system equivalent of the derivative of f is the total differential of the Fi. So assuming the x-value
after k iterations is xk, the equivalent of the tangent in Equation (44) is,

0)()(=+∆⋅ kkk

d

d
xFxx

x
F

, or expanded,

0)()()()(

0)()()()(

0)()()()(

2
2

1
1

2
2

2
2

2
1

1

2

1
1

2
2

1
1

1

1

=+∆
∂
∂

++∆
∂
∂

+∆
∂
∂

=+∆
∂
∂

++∆
∂
∂

+∆
∂
∂

=+∆
∂
∂

++∆
∂
∂

+∆
∂
∂

k
n

k
n

k

n

nkknkkn

kk
n

k

n

kkkk

kk
n

k

n

kkkk

Fx
x

F
x

x

F
x

x

F

Fx
x

F
x

x

F
x

x

F

Fx
x

F
x

x

F
x

x

F

xxxx

xxxx

xxxx

L

M

L

L

 (46)

The equivalent of Equation (44) is to solve Equation (46) with respect to the),...,(1

k
n

kk xx ∆∆=∆x .

Then the solution vector can be updated by kkk xxx ∆+=+1 , and the procedure continues until

ε<)(kxF , where ⋅ is some norm, e.g. iFmax=F , ∑= iFF , or { } 2/12)(∑= iFF .

Unfortunately, solving Equation (46) with respect to the ∆xk generally requires a lot more work than
solving Equation (44). Equation (46) is a linear system of equations, so the multitude of methods
developed to solve such systems are available.

Application to the black oil equations
To get the difference form of the black oil equations as in (45), we rewrite Equations (30), (31)
slightly, Define functions F1, F2, F3 by,

)(,1 wwtijkijkwww bSCqTF φψ ∆−+∆∆= (47)

)(,2 ootijkijkooo bSCqTF φψ ∆−+∆∆= (48)

)(,3 oosggtijkijkgoosgg bSRbSCqTRTF φφψψ +∆−+∆∆+∆∆= (49)

Then Equations (30), (31) are equivalently formulated as

Fi = 0, i=1,2,3 (50)
(with the Fi defined by Equations (47) – (49)).

94

We take phase pressures and fluid saturations for the three phases as primary unknowns, so that our
independent vector variable in a three phase problem is, v = (pw, po, pg, Sw, So, Sg).
(In practice we could use v = (pw, Sw, Sg), and determine po and pg from capillary pressure, and So
from Sw + So + Sg = 1.)
The first equation in the system (46) then becomes,

0

0,,,,,

0

11

1
111111

1
111111

=+∆⋅∇⇔

=+∆⋅














∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

⇔

=+∆
∂
∂+∆

∂
∂+∆

∂
∂+∆

∂
∂+∆

∂
∂+∆

∂
∂

FF

F
S

F

S

F

S

F

p

F

p

F

p

F

FS
S

F
S

S

F
S

S

F
p

p

F
p

p

F
p

p

F

gowgow

g
g

o
o

w
w

g
g

o
o

w
w

v

v

v

 (51)

Assume now that we are iterating on v, and the solution at the current iteration is vk. We use the
shorthand notation CCc∈ to mean “cell c is in the computational cube”, i.e. the 7-point stencil
centred at c.
Then the “next” Newton-Raphson iteration towards the solution to the problem (50) is,

()∑
∈

==+∆⋅∇
CCc

k
m

k
cm mFF 3,2,1,0vv (52)

This is a system of linear equations we can solve, e.g. with the techniques described in the next
chapter.

Overview of equation solving (time step advancement) in Eclipse
The complete procedure for advancing the solution one time step by the Newton-Raphson method is
then,

1. Formulate the problem (50), with current values of the v-vector as start-values
2. Solve problem by Newton-Raphson

a. Formulate “tangent equation”, Equation (52)
b. Solve Equation (52) for ∆vk.

3. Check error criterion ε<)(kvF (53)

4. If solution has converged, OK, else update v-vector and repeat from 1).

The solution is hence found by iteration according to the Newton-Raphson scheme. These iterations
are called non-linear iterations, Newton iterations (in Eclipse terminology) or outer iterations. Note
that when the error criterion (53) is fulfilled, the solution procedure has converged, and the correct
solution has been found. We stress this before introducing a new player in the game.

Point 2b), Solve Equation (52) is not a trivial task. Typically, about 80% of the total processor time
used when doing a simulation is spent on this problem. Details will come later, but for now we just
state that the only viable way to solve the linear problem is by iteration. So in each Newton iteration,
the linear problem is solved by doing a number of linear iterations, also called inner iterations. The
linear problem has converged when a similar error criterion to (53) is fulfilled. But there is a great
difference. In this case only a sub-problem to the actual task has been solved, and convergence of the
linear problem only means we are one step closer to the final solution. In that view, it is not always
critical if the linear equations are not completely converged, as long as Equation (53) is fulfilled in the
end. We will return to this discussion in the section on convergence and time step control.

The fact that we operate with two different kinds of iterations can be confusing. The algorithm below
is an attempt to clarify,

95

// Pseudo-algorithm for Newton-Raphson for systems

initialise(v);
do {
 //Non-linear iterations
 formulate_non_linear_system(v);
 make_total_differential(v);
 do {
 // Linear iterations:
 update_linear_system_variables(v);
 }
 while((linear_system_has_not_converged(v));
 update_non_linear_system_after_linear_convergenc e(v);
}
while((non_linear_system_has_not_converged(v));

17. Iteration methods for linear systems
As noted above, each non-linear iteration requires the solving of a linear system of equations, and a
substantial part of the total computing time is spent in solving this system. Through the years a great
deal of effort has been put into development of methods that solve linear systems more efficiently, and
it is fair to say that a major reason Eclipse quickly became so popular was its linear solver, which
made it possible to do real-size three dimensional reservoir simulations with implicit solvers that
permitted large time steps. In this chapter we will describe the technique (developed by Appleyard,
Cheshire and others in the 1980s), after first looking at fundamental methods that preceded it.

Notation:
Boldface capitals will denote (n x n) matrices.
If A is a matrix, aij will be the element of A in column i, row j.
Boldface small letters are used for vectors.

The problem to solve is always

bxA =⋅ (54)
where A is a sparse n x n matrix, and the unknown vector is x, so that we seek,

bAx ⋅= −1 (55)

If A is tridiagonal, the problem (55) can easily be solved exactly by the Thomas algorithm. Apart from
that special case, iteration techniques are the only applicable candidates for solving (55), and are what
we will concentrate on.

Equation (54) expanded becomes,

nibxa i

n

j
jij ,...,1,

1

==∑
=

; or solved for xi: 









−−= ∑∑

+=

−

=

n

ij
jij

i

j
jiji

ii
i xaxab

a
x

1

1

1

1
 (56)

Direct, simple approach
Update all xi by previous iteration values. Working from row 1 and downwards, we get (with
superscript denoting the iteration counter)
Start with some initial value (“guess”) for x, called x0. Then for k=1,2,3,...














−−= ∑∑

+=

−

=

+
n

ij

k
jij

i

j

k
jiji

ii

k
i xaxab

a
x

1

1

1

1 1
 (57)

Continue until convergence, i.e. the system has been solved to required precision.
The method (57) has very poor convergence (and is probably not used at all).

96

The Gauss-Seidel method
A simple improvement to scheme (57) is to use the updated x-variables as soon as they become
available. This approach is actually easier to implement.
The difference from Equation (57) is small but important,














−−= ∑∑

+=

−

=

++
n

ij

k
jij

i

j

k
jiji

ii

k
i xaxab

a
x

1

1

1

11 1
 (58)

This scheme, called Gauss-Seidel, has much better convergence properties than (57).

Accelerators – the point SOR method
Equation (58) still has much room for improvement. Imagine that the update performed on a single
iteration by Equation (58) changes the solution vector in the correct manner (“pushes it in the right
direction”), but e.g. not enough. So if we could “push it a little further” the system would obviously (?)
converge in fewer iterations. Such arguments are the foundation for many acceleration techniques. We
first look at one called point SOR, where SOR means “successive over-relaxation”.

The scheme is,

)(

1

11

1

1

1

11

k
i

k
i

k
i

k
i

n

ij

k
jij

i

j

k
jiji

ii

k
i

xyxx

xaxab
a

y

−+=














−−=

++

+=

−

=

++ ∑∑

ω

 (59)

So first a temporary y-variable is found exactly as in (58), and then the x-variable is updated by
“pushing” the update a little further than the Gauss-Seidel scheme, by a relaxation parameter ω. Note
that if ω = 1, point SOR is identical to Gauss-Seidel. Whether point SOR really is an improvement
over Gauss-Seidel depends entirely on the relaxation parameter. No general rules for defining ω can be
given, except that the optimal ω is between 1 and 2. With a lucky or good choice of ω the system can
converge very quickly, while other values can actually give a performance degradation.
In conclusion, point SOR can be very efficient if a good relaxation parameter is found, but the method
is problem dependent, and not very robust. (I.e. it doesn’t solve all systems).

The point SOR method has seen many improvements, e.g. block SOR and different versions of line
SOR. Mostly the methods are efficient, especially those which are tailored to a specific matrix
structure, but the efficiency is always dependent on the relaxation parameter, which may be a
disadvantage. We will not discuss the other SOR methods here, but go directly to the relaxation
method used in Eclipse.

Conjugate Gradients – ORTHOMIN
Motivation
In the point SOR it was loosely referenced to “pushed in the right direction”. If the problem is one,
two, or three-dimensional we should have no difficulty in visualising the direction from the current
solution vector to the final one. But the problems we encounter are n-dimensional, with n normally
very large. So which direction to move the current vector in, and criteria for if we are moving in a
sensible direction or not can be hard to formulate. These questions are directly addressed in the
conjugate gradient method, which combined with ORTHOMIN (orthogonal minimisation) is a
support pillar in the linear solver in Eclipse.

The orthomin procedure defines a sequence of “search vectors”, q0, q1, q2,... Each q defines a “search
direction” in the n-dimensional solution space, such that

• When a new q-vector is constructed, it should be orthogonal to all previously used q-vectors.
• Each qk should optimally be the best search direction available at the present stage of the process

Two q-vectors are orthogonal if 0=⋅ jk AqAq when k ≠ j.

97

As usual we start with an initial guess x0. Then at each iteration, x is updated by,

kkkk qxx ω+=+1 (60)

(Note the similarity to point SOR, Equation (59).)

The relaxation parameter ωk is tried optimized, but note that in contrast to the SOR methods, ωk here is
updated at each iteration.

The residual r k+1 is a measure for the current error, and is zero if xk+1 is an exact solution to the system:

kkkkkkkk AqrqAAxbAxbr ωω −=−−=−= ++ 11 (61)

We now determine ωk by finding 1min +kr

ω
:

kkkkkkkkkkk AqAqAqrrrrrr ⋅+⋅−⋅=⋅= +++ 21121)(2 ωω (62)

The minimum value is found where the derivative is zero:

kk

kk
k

kkkkk

k
k

k

AqAq

Aqr

AqAqAqr

rr

⋅
⋅=⇒

=⋅+⋅−⇒

=
∂

∂ ++

ω

ω
ωω

022

0:min
2121

 (63)

We see that the solution found in (63) is the only solution to the minimisation problem. Moreover, it

must be a minimum since ±∞→∞→+ ω when
21kr .

Construction of the q-vectors
At iteration step k, the next q, qk+1, is constructed from the most recent residual and a linear
combination of all previous q-vectors,

j
k

j

k
j

kk qrq ∑
=

++ +=
0

11 α (64)

where k

jα are parameters to be determined.

Since 01 =⋅+ jk AqAq for all j = 0,1,...,k, we get k equations for determining the unknown k

jα :

ij
k

j

k
j

ikik AqAqAqArAqAq ⋅+⋅=⋅= ∑
=

++

0

110 α (65)

The term 0=⋅ ij AqAq if i ≠ j, so all terms in the sum vanish, except when i = j :

ii

ik
k
i

iik
i

ik

AqAq

AqAr

AqAqAqAr

⋅
⋅−=⇒

⋅+⋅=
+

+

1

10

α

α
 (66)

The orthomin algorithm has then been established:

98

Set initial guess x0, and r = b – Ax, q0 = r . Set iteration counter k = 0.

while(not converged) {
 Set ωk by Equation (63)
 Update x by x = x + ωkqk
 Update r by r = r - ωkAqk

 If not converged {
 Update α by Equation (66)
 Update q by Equation (64)
 }
 Increase k
}

The orthomin procedure can be shown to converge in maximum n iterations (where n was the matrix
dimension). This is however a theoretical limit, and much too large to be of interest for typical
problems. Experience has shown that the method converges in maximum a few tens of iterations. As a
rule of thumb, if orthomin hasn’t converged in about 50 iterations, it is recommended to reduce the
time step. Also, for orthomin to function according to the theory it is necessary to store all previous q-
vectors. Since each vector is n-dimensional (i.e. large), there will normally be a memory limitation to
how many q-vectors that can be stored. If this maximum has been reached, the procedure will discard
vectors from the beginning to create necessary storage. But then the search direction that was
discarded will most likely be the optimal search direction available. With a (small) finite number of q-
vectors stored there is hence a risk that the procedure will be running in loops.
But we shouldn’t stress these problems too much – by experience the method generally has excellent
performance.

Preconditioning
Another or additional method to accelerate solving of linear systems is the so-called preconditioning.
For Eclipse (and other simulators), ORTHOMIN alone is not sufficient to solve the linear equations
with needed efficiency – preconditioning is also needed, and for Eclipse is at least as important as the
iteration method to acheive speed-up.

Basically, the argument is, can the original problem be replaced by an equivalent problem that is easier
to solve? Problems where A is a diagonal matrix are trivially solved, and the objective of
preconditioning is to change the system so that the coefficient matrix becomes “close to diagonal”.

Our problem was bxA =⋅ . Multiplying this equation by the identity matrix I =B -1B changes nothing:

bBxABbBxAB =⇒= −−))((11 (67)

Bx is a vector of similar complexity as x, so almost no extra work is required to compute Bx.
If AB -1 ≈ I the system (67) will be easy to solve (i.e. it converges very quickly if an iteration method is
used). Obviously if this is going to work, the effort to define and invert B must be substantially smaller
than solving the original problem, hence ideally,

• B ≈ A
• B is easily inverted.

But if B ≈ A, inverting B is as difficult as inverting A, and we are no better off. So the challenge is to
construct an effective preconditioner B without too much extra work.

Before we describe how this is done in Eclipse we will look at how preconditioning affects orthomin.

99

Preconditioning and Orthomin
If A has been preconditioned, the equations in the ORTHOMIN description are changed by replacing
A with AB -1 and x with Bx. Then Equations (60) – (66) become,

kkkkkkkk qBxxqBxBx 111 −++ +=⇒+= ωω (68)

kkkk qABrr 11 −+ −= ω (69)

)()(11

1

kk

kk
k

qABqAB

qABr
−−

−

⋅
⋅=ω (70)

)()(

)()(
11

111

ii

ik
k
i

qABqAB

qABrAB
−−

−+−

⋅
⋅−=α (71)

Note that q always appears as B-1q. We can therefore redefine the q-vector to B-1q, whereby the
Equations (68) – (71) become almost identical to their origins.

The pseudo-algorithm for orthomin with preconditioning is then,

Set initial vector x0. Define r 0 = b – Ax0 and q0 = B-1r 0.
Set iteration counter k = 0.
while(not converged or k > max permitted number of iterations) {

kk

kk
k

AqAq

Aqr

⋅
⋅=ω

kkkk qxx ω+=+1

kkkk Aqrr ω−=+1

for(i = 0,...,k) {

)()(

)()(11

ii

ik
k
i

AqAq

AqrAB

⋅
⋅−=

+−
α

 }

i
k

i

k
i

kk qrBq ∑
=

+−+ +=
0

111 α

}

(We have omitted the non-essential required modification if only a limited number of q-vectors can be
stored.)

The question of how to determine a good or optimal preconditioner B is still open. Eclipse does this by
a technique called Nested Factorisation, which is the last element of the Eclipse linear solver
procedure.

Determining a preconditioner – Nested Factorisation
Recall the structure for the 7-point stencil scheme, which was a 7-diagonal matrix. We rewrite the
example of Figure 30 with a slightly different notation,

100

D U1 U2 U3
L1 D U1 U2 U3
 L1 D U1 U2 U3
 L1 D U2 U3

L2 D U1 U2 U3
 L2 L1 D U1 U2 U3
 L2 L1 D U1 U2 U3
 L2 L1 D U2 U3
 L2 D U1 U3
 L2 L1 D U1 U3
 L2 L1 D U1 U3
 L2 L1 D U3

L3 D U1 U2
 L3 L1 D U1 U2
 L3 L1 D U1 U2
 L3 L1 D U2
 L3 L2 D U1 U2
 L3 L2 L1 D U1 U2
 L3 L2 L1 D U1 U2
 L3 L2 L1 D U2
 L3 L2 D U1
 L3 L2 L1 D U1
 L3 L2 L1 D U1
 L3 L2 L1 D

Figure 32. Labelling the seven diagonals in a 7-diagonal matrix

The nonzero entries in the matrix have been labelled D for the main diagonal, and L1, L2, L3 for the
lower diagonals, U1, U2, U3 for the upper diagonals. The way the matrix was set up, the D, L1, and
U1 correspond to communication between the centre cell (i, j, k) and the neighbours in the x-direction
(i±1, j, k). This is a result of the natural ordering, and as noted earlier, the structure of the matrix is a
result of the ordering used.

In the natural, or “book” ordering, by Eclipse terminology, the x-direction would be denoted as
“direction 1”, the y-direction as “direction 2”, and the z-direction as “direction 3”. I.e. “direction 1” is
the one where the index changes fastest, “direction 2” is used for the second fastest, and “direction 3”
for the slowest.

All permutations of “direction 1” – “direction 2” – “direction 3” will give the 7-diagonal matrix
structure seen in Figure 32, but the communication direction will be different between the D, L1-3,
and U1-3. E.g., if the z-direction is chosen as “direction 1”, L1, D, and U1 will correspond to
communication between (i, j, k) and (i, j, k±1).
So irrespective of the ordering scheme, the coefficient matrix will be (using D for the matrix
comprised of all the D-elements etc.),

A = D + L1 + U1 + L2 + U2 + L3 + U3

(Reminder: All the “elements” in Figure 32 are actually 2x2 matrices for two-phase flow, 3x3 for
three-phase.)

Without proof we state that in general the most efficient ordering scheme with respect to solving the
system is such that “direction 1” is the direction of highest average transmissibility, “direction 2”
next highest, and “direction 3” lowest transmissibility.

This criterion for setting the ordering scheme is used as default by Eclipse, which means that in most
simulations, “direction 1” will be the z-direction (z-permeability is normally lowest, but the average
cell thicknesses are typically much smaller than X,Y lengths.)

Users can change the ordering by the SOLVDIRS keyword. (Generally not recommended.)

101

The technique called nested factorisation is a step-by-step procedure to build the preconditioning
matrix B. The method may look complex and laborious, but keep in mind that it is an iterative
construction, such that the right hand sides of the following equations are to be understood as “the
values known from previous iteration”.

B is built iteratively by a sequence of factorisations,

B = (P + L3)P-1(P + U3) (72)
P = (T + L2)T-1(T + U2) (73)
T = (G + L1)G-1(G + U1) (74)

G is a diagonal matrix, defined by,

G = D – L1G-1U1 – colsum(L2T -1U2) – colsum(L3P-1U3). (75)

The procedure is initialised by constructing G cell by cell using (75), and then the updates (72) – (75)
are performed iteratively until convergence (B changes less than tolerance between two iterations).

“colsum” means the column sum of the matrix.
The way G is defined implies that colsum(A) = colsum(B), which ensures no mass balance errors.

18. Convergence Control II – TUNING parameters
Summing up the discussion of the previous chapters,

At time step tn, we have a solution v = (pw, po, pg, Sw, So, Sg).
To advance the solution to time tn+1, with ∆t = tn+1 – tn, we must solve a nonlinear problem. The
solution procedure was,

Define nonlinear problem F(v, tn+1) = 0.

1. Solve nonlinear problem by Newton-Raphson, using v0 = v(tn) as start value.
a. Construct “tangent” – total differential of non-linear problem.

⇒ linear system Ax = b.
b. Solve linear system

i. Precondition matrix
ii. orthomin – iterations
iii. End iterations when system has converged

2. Continue iterations until system has converged.

In this solution procedure, there are many parameters which have influence on how the iteration
procedure performs.

1. ∆t.
All iteration processes perform best if the starting value is close to the sought solution. E.g.
returning to the first non-linear problem we solved with Newton-Raphson (Figure 31), it is
easy to imagine that if f(x) has many zeros, and we start far from the sought one, we are going
to get the wrong result. If ∆t is small, the solution will probably not change that much over a
time step, so that the iteration starting value v(tn) is close to the sought solution v(tn+1). In
general we want ∆t as large as possible, but it is always an option to reduce the time step size
if convergence problems do occur.

2. Iteration control on outer (Newton) iterations.
a. The error tolerance, when has the process converged?
b. The maximum number of iterations.

Normally the process will converge after not too many iterations.
But what if it doesn’t? It may happen that we are facing a problem that will never
converge. We can’t allow the computer to continue iterating till the end of history, so
at some time we must say “enough is enough”.

c. What to do if the problem for some reason didn’t converge?

102

3. Iteration control on inner (linear) iterations
a. Error tolerance
b. Maximum number of linear iterations
c. How many search directions (q-vectors) to keep in memory?

In principle all q-vectors should be kept for good performance, but in practice
available computer memory doesn’t permit this.

d. What to do if linear system does not converge.

Time step control was discussed in section 8.3, and some more follows below.

The other parameters can all be controlled by the user, and although Eclipse has a good
automatic time step and convergence control, for large problems user action will often be required to
achieve optimal performance.

In general it is not recommended to change the default values for error tolerances. These are
defined in the second record of the TUNING keyword, which as a rule of thumb should never be
altered. (No rule without exceptions of course.)

The third record of the TUNING keyword has the syntax (using Eclipse terminology),

NEWTMX NEWTMN LITMAX LITMIN MXWSIT ...

NEWTMX Maximum number of Newton iterations in a time step (default 12)
NEWTMN Minimum number of Newton iterations in a time step (default 1)
LITMAX Maximum number of linear iterations in each Newton iteration (default 25)
LITMIN Minimum number of linear iterations in each Newton iteration (default 1)
MXWSIT Maximum number of iterations within well flow calculation (default 8)

The parameter controlling the number of q-vectors to store is not defined in TUNING. Since this
parameter directly affects the amount of computer memory to reserve, it must logically be defined in
the RUNSPEC section, with keyword NSTACK:

Example
NSTACK

16 /

sets the number of search directions to keep to 16. (The reason for the name is that the memory area
where the vectors are stored is organized as what in computer terminology is called a stack.)
The default value of NSTACK is 10.

Obviously, the way LITMAX and NSTACK are related, defining an NSTACK larger than LITMAX is
going to be a waste of memory space, since the total number of q-vectors that are defined throughout
the process can’t be larger than the number of linear iterations.

I.e.: Always use NSTACK ≤ LITMAX.

The default values for time step and iteration control work fine in many simulations, especially for
small or medium sized problems. Three phase simulations are more likely to create convergence
problems than one- or two-phase problems. How to improve performance in simulations is often a
result of trial and error, and is definitely assisted by experience with the simulator.

It should be mentioned that Eclipse will often try to advice on how to improve convergence
when problems occur. But these advises are not based on some artificial intelligence analysis of the
problem, so should be read with some scepticism. E.g. if LITMAX is set to 100, and Eclipse advises
you to “increase LITMAX”, the advice can safely be disregarded.

Relative roles of time step, LITMAX and NEWTMX
To move the simulation from time t1 to t2, where we have experienced convergence problems, all
three parameters ∆t, LITMAX and NEWTMX can contribute to improved performance, so which
buttons to turn? Eclipse will always attempt to use as large time steps as possible, but clearly

103

simulating from t1 to t2 in one step, with 100 Newton iterations, each using 50 linear iterations, will
take longer time than dividing the time step in two, if the iterations at each time step are reduced to
something like 70 Newton iterations with 30 linear iterations at each step. (First alternative uses a total
of 100 * 50 = 5000 iterations, second alternative uses 2 * 70 * 30 = 4200 iterations).

Typical values for actually used number of iterations are in the order of 10-20 linear iterations
in each Newton iteration, and rarely more than 10 Newton iterations at each time step. If the
simulation persistently requires (substantially) more than this at every time step, it is probably wise to
reduce the maximum permitted time step.

Eclipse will report any convergence irregularities in the PRT-file, and to the output window (or log-
file). In addition many convergence related parameters can be output as summary data (chapter 11).
Linear convergence failure will normally not be dramatic, while non-linear convergence failure is.
This can easily be seen if we go back to the original Newton-Raphson problem, Figure 31. The
objective is to find the intersection between f(x) and the x-axis. The linear iterations are used to solve
each linear problem, corresponding to finding the intersection between a tangent and the x-axis.
Failure in this task means that one or more of the xi on the x-axis will not be in its correct position. But
it shouldn’t be hard to imagine that the procedure will continue to work, and a solution eventually
found, even if some of the xi may be wrong. Convergence failure of the non-linear equations, however,
means that the intersection was never found – i.e. the problem had no solution, or at least we couldn’t
find it. This is of course serious, and we can hardly accept it.
Eclipse’s way of handling the convergence irregularities reflect our view.

• A linear convergence failure will be reported as a warning (and a suggestion to increase
LITMAX and/or NSTACK), but the procedure continues in the hope that it will be self-
correcting (as we intuitively see the model problem in Figure 31 will be).

o By the same kind of argument, it is not always necessary or important to force full
convergence of the linear equations. If the linear solution is “good enough” to be used
further in the procedure after a number of iterations, the procedure will not necessarily
be accelerated by running still a few dozens of linear iterations to improve the linear
solution marginally. These kinds of questions are very difficult to decide. In general,
the best simulation performance can be expected when all linear equations are fully
converged at each non-linear iteration.

• Non-linear convergence failure should not be taken lightly. Eclipse will then have to accept an
erroneous solution, without knowing how bad it is (it could be so close to the sought solution that
no harm is done, or it could be really way off – Eclipse only knows that it didn’t come within the
convergence tolerance). Eclipse (and the user) can only hope that the simulation will come “back
on track” when the simulation is continued, but to increase the chances of success, the time step
size is dramatically reduced for the following time steps.

o Most simulations are run several times, with variation of the data. Often time intervals
where convergence problems can be expected can be identified. In such cases it is
often wise to reduce the time step before the simulator enters the interval.

o How much the time step will be reduced (chopped) after the convergence failure is
determined in the first record of TUNING

o There is an absolute minimum for both time step size and chopable time step size. If
convergence failure occurs and the time step cannot be reduced, the chances of
finding the way back to the narrow path are slim. Such situations should be avoided at
“any” cost!

• As a rule of thumb, rapid changes of reservoir state will require smaller time steps. The classic
example is the start of water injection in the oil zone. Since water saturation at the start of the
injection is at minimum value, water mobility is zero, so the injected water cannot flow before
water saturation is increased, which it will not before the water flows. Solving this problem is
definitely easier with a small time step, so one recommendation would be to reset the time step to
some small value (e.g. one day) before each major well event.

o No rule without exceptions. Although very rare, situations exist where the solution is
so irregular that the convergence problems increase as the time step is reduced, and
the most effective is to take one large time step crossing the troublesome interval in
one go. (As said – this is exceptional, but should be mentioned...)

104

• A simulation that runs with alternating periods of time step increase and convergence failure /
time step chopping / small time steps, will normally be much less efficient than a run with albeit
shorter average time steps, but with no convergence problems. The optimal time step is the
largest possible with no problems, but as exemplified above, this may vary (strongly) during the
run, so it is absolutely not a trivial question.

TUNING keyword summarized

TUNING has three records
Record 1: Time step control
Record 2: Convergence tolerance parameters, recommended left at default values
Record 3: Iteration control.
Each record contains a number of parameters and is terminated by a slash.

The keyword syntax, with record 2 left default is,.

TUNING
TSINIT TSMAXZ TSMINZ TSMCHP TSFMAX TSFMIN TSFCNV TFDIFF ... /
 /
NEWTMX NEWTMN LITMAX LITMIN MXWSIT .../

TSINIT Max. length of next ministep (after this keyword) (default 1 day)
TSMAXZ Max. length of any ministep (default 365 days)
TSMINZ Min. length any ministep (default 0.1 day)
TSMCHP Min. length any choppable ministep (default 0.15 day)
TSFMAX Max. ministep increase factor (default 3)
TSFMIN Min. ministep cutback factor (default 0.3)
TSFCNV Cut factor after convergence failure (default 0.1)
TFDIFF Max. increase factor after convergence failure (default 1.25)

NEWTMX Maximum number of Newton iterations in a time step (default 12)
NEWTMN Minimum number of Newton iterations in a time step (default 1)
LITMAX Maximum number of linear iterations in each Newton iteration (default 25)
LITMIN Minimum number of linear iterations in each Newton iteration (default 1)
MXWSIT Maximum number of iterations within well flow calculation (default 8)

In addition, the number of search directions stored for use in the linear solver procedure is defined by
the NSTACK keyword in the RUNSPEC section.

The TUNING keyword can be used anywhere in the SCHEDULE section, and as many times as
desired. The parameters will be valid until the next TUNING keyword is encountered.

If the user only wants to change TSINIT, the size of the next time step, the keyword NEXTSTEP is an
alternative to re-including the entire TUNING keyword.

19. Non-neighbour Connections and System Structure
We return to the structure of the system matrix as in Figures 29 and 30. In this section we will discuss
how the structure shown in Figure 30 is affected by a fault, or more generally, by the presence of non-
neighbour connections. The model segment we will study is shown in Figure 33.

105

Figure 33. A grid with ZYX ordering

This time we use the ordering most often used by Eclipse, where “direction 1” is Z, “direction 2” is Y,
and “direction 3” is X. The cell ordering is then seen in Figure 33.

This configuration will result in the system matrix shown in Figure 34.

 1 5 10 15 20 25 30
1 x x x x
 x x x x x
 x x x x x
 x x x x
5 x x x x
 x x x x x
 x x x x x
 x x x x
 x x x x x

10 x x x x x x
 x x x x x x
 x x x x x
 x x x x x
 x x x x x x

15 x x x x x x
 x x x x x
 x x x x x
 x x x x x x
 x x x x x x

20 x x x x x
 x x x x x
 x x x x x x
 x x x x x x
 x x x x x

25 x x x x
 x x x x x
 x x x x x
 x x x x
 x x x x

30 x x x x x
 x x x x x
 x x x x

Figure 34. System structure for grid in Figure 33

Next we look at what happens if there is a fault between the rows i = 2 and i = 3 in the grid. The
configuration is shown in Figure 35. (When working through this example we assume the sand to sand
contact is as in the figure.)

1

2

3

4

5

6

7

8

9

13

14

15

16

17

21

22

23

24

25

29

30

31

32

106

Figure 35. Grid as in Figure 33, but with fault

Note that some connections will disappear (cells are not in contact), while new contacts appear due to
the fault. Connections which are present in Figure 33, but not in Figure 35 are marked with a “-” in the
system, Figure 36, while new connections due to NNC-cells are marked with an “n”.

 1 5 10 15 20 25 30
1 x x x x
 x x x x x
 x x x x x
 x x x x
5 x x x x
 x x x x x
 x x x x x
 x x x x
 x x x x x

10 x x x x x n -
 x x x x x n n -
 x x x x n n x
 x x x x x
 x x x x x n -

15 x x x x x n n -
 x x x x n n x
 x n n x x x x
 - n n x x x x x
 - n x x x x x

20 x x x x x
 x n n x x x x
 - n n x x x x x
 - n x x x x x
 x x x x x

25 x x x x
 x x x x x
 x x x x x
 x x x x
 x x x x

30 x x x x x
 x x x x x
 x x x x

Figure 36. System structure for faulted grid

The most important consequence of the presence of the non-neighbour connections is that the 7-
diagonal structure has been destroyed. Some elements have disappeared, while others have been added.
In this particular example the difference isn’t that large, but in general the NNC-entries can end up
anywhere in the matrix, so techniques which utilise the 7-band structure can no longer be used. The
zero-elements on the bands also pose problems.

Eclipse handles the NNC-entries as perturbations of the original structure, and project these entries
onto the original bands. Effectively, the “alien” elements are moved to the right hand side of the

107

equation and lags one iteration behind in the procedure. This approach works satisfactory when the
number of “irregular” entries is small, but if the number of NNCs become large (like more than 10%
of ordinary connections) it should come as no surprise that convergence rate is severely reduced.

Obviously fault throws generate non-neighbour connections. In addition, the most common sources for
NNCs are wells, aquifers, and local grid refinements.

108

A. GRF files in GRAF
The graphics post-processor GRAF is used for visualising summary data, and has been part of the
Eclipse suite since the very beginning. Even though it has been “modernized” a bit, no one can argue
that as an interactive tool it is at best cumbersome to use. However, GRAF has some very powerful
batch processing capabilities, and utilizing these can make the program quite efficient in use.
The batch processing is enabled by the menu choice 8.2, execute GRF file. GRAF then reads batch
commands from a so-called GRF file, and processes the commands to create and modify a set of
pictures as requested by the user. The user will typically have one or several “standard” GRF files
available, and by a quick editing of the appropriate file can generate the needed pictures quickly.
For a detail description of GRF commands, the user should consult the GRAF manual, but most of the
more common commands are used in the examples below, which are conveniently commented.

A simple straightforward GRF file

-- Standard input characterisation
SET CONTINUATION '&'
--
SET INPUT UNFORMATTED
SET INPUT MULTIPLE
SET WSP UNFORMATTED
SET GRIDFILE EGRID
-- Load command. Loads the summary files EKS1.S000, EKS1.S001,...
-- Origin is used as a mnemonic, and is the name al l create commands
-- later will use as reference (esp. relevant if se veral cases are loaded)
LOAD SUMMARY EKS1 ORIGIN EKS1 NORESTART
--
-- PICTURE is an entire page
CREATE PICTURE 1
-- Every picture may contain several GRAPHS, which are separate plot
-- windows.
CREATE GRAPH 1
-- All curves are generated by “CREATE LINE” comman d, Y-axis VS X-axis.
-- X-axis is typically TIME or YEARS. The axes are ordered as they are
-- created, so X-axis is AXIS 1, first Y-axis is AX IS 2,...
-- Y-axis is the property to plot. All plot propert ies must be recognizable
-- Summary keywords (which have been loaded)
CREATE LINE FOPR VS YEARS EKS1
-- Another curve in the same plot. To use the same Y-axis as for FOPR,
-- specify OLDY 2, which means use the (old) AXIS 2 as Y-axis
CREATE LINE FWPR VS YEARS EKS1 OLDX 1 OLDY 2
-- FPR (Field pressure) has incompatible units with existing axis, so
-- specify new Y-axis. (Becomes AXIS 3)
CREATE LINE FPR VS YEARS EKS1 OLDX 1 NEWY
--
-- Create a new picture, containing two GRAPHS, i.e . two “windows”
-- First GRAPH contains four curves, second one.
CREATE PICTURE 2
CREATE GRAPH 1
CREATE LINE WOPR WP1 VS YEARS EKS1
CREATE LINE WOPR WP2 VS YEARS EKS1 OLDX 1 OLDY 2
CREATE LINE WOPT WP1 VS YEARS EKS1 OLDX 1 NEWY
CREATE LINE WOPT WP2 VS YEARS EKS1 OLDX 1 OLDY 3
--
CREATE GRAPH 2
CREATE LINE WWCT WP1 VS YEARS EKS1
END

109

Advanced GRF file
The following GRF file contains many “advanced” uses, and shows how a little work up front can
save a lot of time later.

SET CONTINUATION '&'
--
SET INPUT UNFORMATTED
SET INPUT MULTIPLE
SET WSP UNFORMATTED
SET GRIDFILE EGRID
--
SET INPUT UNIFIED
--
-- In this example we define some variables at the start of the file.
-- If we later use the file for a different run, wi th another name, and
-- other well names, only these lines at the head o f the GRF file need
-- to be changed.
-- Two different runs will be loaded, and for simpl icity we use the same
-- ORIGIN name as the CASE name.
-- Variables in GRAF are identified by a trailing % .
ASSIGN CASE1% = EX3A
ASSIGN CASE2% = EX3B
ASSIGN WELLP1% = WP1A
ASSIGN WELLP2% = WP2AH
ASSIGN WELLI1% = WI1
ASSIGN WELLI2% = WI2B
--
LOAD SUMMARY CASE1% ORIGIN CASE1% NORESTART
LOAD SUMMARY CASE2% ORIGIN CASE2% NORESTART
--
CREATE PICTURE 1
CREATE GRAPH 1
CREATE LINE FOPR VS YEARS CASE1%
CREATE LINE FWPR VS YEARS CASE1% OLDX 1 OLDY 2
CREATE LINE FOPR VS YEARS CASE2% OLDX 1 OLDY 2
CREATE LINE FWPR VS YEARS CASE2% OLDX 1 OLDY 2
CREATE GRAPH 2
CREATE LINE FOPT VS YEARS CASE1%
CREATE LINE FWPT VS YEARS CASE1% OLDX 1 OLDY 2
CREATE LINE FOPT VS YEARS CASE2% OLDX 1 OLDY 2
CREATE LINE FWPT VS YEARS CASE2% OLDX 1 OLDY 2
--
--
CREATE PICTURE 2
CREATE GRAPH 1
CREATE LINE WOPR WELLP2% VS YEARS CASE1%
CREATE LINE WOPR WELLP2% VS YEARS CASE2%
CREATE GRAPH 2
CREATE LINE WOPR WELLP1% VS YEARS CASE1%
CREATE LINE WOPR WELLP1% VS YEARS CASE2%
CREATE GRAPH 3
CREATE LINE WOPT WELLP2% VS YEARS CASE1%
CREATE LINE WOPT WELLP2% VS YEARS CASE2%
CREATE GRAPH 4
CREATE LINE WOPT WELLP1% VS YEARS CASE1%
CREATE LINE WOPT WELLP1% VS YEARS CASE2%
--
.
.
.
-- Modification commands are used to change the def ault appearance of
-- the picture or graphs

110

MODIFY PICTURE 1
-- The BOUNDARY is the rectangle enclosing the enti re picture
BOUNDARY POSITION 0.005 0.103 0.995 0.955
-- Redefine Picture title
TITLE IS Field Fluid Production rates and totals
-- Move title to desired position (can be done inte ractively first)
TITLE POSITION 0.307 0.688
MODIFY GRAPH 1
-- The VBOUNDARY is the View Boundary, i.e. the rec tangle enclosing all
-- the GRAPHS
-- The GBOUNDARY is the GRAPH boundary, the rectang le enclosing each GRAPH
-- window.
-- Advice: To get the different BOUNDARY coordinate s, first set the
-- rectangle interactively in GRAF for one picture. Then request writing
-- of GRF file, and use copy & paste to resize othe r pictures to the same
-- size.
VBOUNDARY POSITION 0.005 0.053 0.495 0.995
GBOUNDARY POSITION 0.096 0.069 0.988 0.843
-- Modify GRAPH title and position
GTITLE IS Field oil & water rates
GTITLE POSITION 0.163 0.776
-- Change character size in title
GTITLE HEIGHT 0.024
-- Move curve legends
CONTENTS POSITION 0.17 0.701
-- Change contents and character size for legend
MODIFY LINE 1
TITLE IS Oil rate CASE1%
TITLE HEIGHT 0.02
MODIFY LINE 2
TITLE IS Water rate CASE1%
TITLE HEIGHT 0.02
MODIFY LINE 3
TITLE IS Oil rate CASE2%
TITLE HEIGHT 0.02
MODIFY LINE 4
TITLE IS Water rate CASE2%
TITLE HEIGHT 0.02
-- Change axis 2 (the Y-axis)
MODIFY AXIS 2
-- Set min and max values on the axis
MIN 2000
MAX 4000
-- Set primary and secondary tickmarks
PTSPACE 1000
STSPACE 250
-- Set Tickmark label spacing
SCSPACE 1000
-- Use a field width of 6 characters on axis label
FORMAT 6
--
END

111

B. Some Considerations Regarding Grid Consistency
In a corner point grid, each cell is uniquely defined by its eight corners. A proper cell fulfils the
following requirements, using the standard corner indexing (i.e. in a grid oriented parallel to the world
axes the four top corners are indexed in the order nw, ne, sw, se, thereafter the four bottom corners are
numbered in the same order).

1. The top and bottom surfaces should be oriented the same way. This can be checked by the
winding number. Define a winding vector from the face centre to a corner, and the winding
angle as the angle between the initial and current winding vector. Starting at corner 1 and
passing through corners 2, 4, 3 and back to 1 (in that order) the winding vector should sweep
through a complete circle such that the winding angle is increasing monotonically. When
moving from corner i to i+1 the winding number is incremented if the winding angle
increases, decremented if it decreases. Hence for a proper face with four corners the winding
number should be plus or minus four. For a proper cell the top face and bottom face winding
numbers should be equal, normally +4.

2. All corners i should satisfy, (depth of corner i+4) ≥ (depth of corner i)
3. If two corners c1 and c2 are on the same coordinate line, c1 belongs to a cell in layer k1, and

c2 belongs to a cell in layer k2, with k2 > k1, then (depth of c2) ≥ (depth of c1).
4. Optionally, if gaps are not permitted in the grid, then the coordinates of corners (i, j, k, c+4)

and (i, j, k+1, c) should be equal.
These requirements ensure,

1. Coordinate lines do not intersect each other and maintain their internal ordering
2. No cells or part of cells should have negative thicknesses or negative volumes
3. Cells from different layers do not overlap
4. No gaps between layers allowed.

A grid where all cells fulfil the four requirements above is said to be consistent.

Eclipse will not permit active cells with negative volume, but apart from that just about anything is
accepted. Inactive cells are not checked at all.

One consequence of Eclipse’s lack of strictness has been the development of a “sloppy” attitude
among grid builders. This does not need to be a serious drawback, as the grids may be quite useable
for simulation anyway. But in some situations consistent grids are necessary. Occasionally, a grid is
extended such that initially inactive parts of the grid become active. The extension may be very
difficult to carry through if the inactive part is far from consistent.
Other simulators may be more restrictive than Eclipse, and may hence not accept a corner point grid
that has been constructed and used by Eclipse. One particular case where consistency is mandatory is
when the grid is planned used also to do rock mechanics simulations, which will be discussed below.

Hence there may be good reasons to plan and construct every grid such that they are consistent (also
in the inactive parts) already from the outset.

Grids planned for use in rock mechanics simulations
A major difference between flow simulation and simulation of soil behaviour is the concept of active /
inactive cells. A flow simulator characterizes any cell with vanishing pore volume as inactive, as such
cells are not needed or used when solving for the flow state. When each cell represents a volume of
material (soil), the concept of inactive obviously has no meaning, as a volume of soil will contribute to
overall displacement and stress state, whether it is fluid-filled or not. By the same argument, void
space as e.g. gaps cannot be permitted in a grid representing physical soil. It is thereby clear that grids
for use in rock mechanics simulations must satisfy more strict requirements than grids used in flow
simulation.

112

Embedding
Standard boundary conditions for a coupled rock mechanics – reservoir simulation run is to require a
free top surface, else the edges are constrained to no displacement allowed. These boundary conditions
are only realistic if applied to edges far from the reservoir, i.e. the model grid must be extended to
include the entire overburden (such that the top free surface is the earth surface or sea bottom), and
sufficient underburden and sideburdens that the boundaries do not influence displacement of the
reservoir itself.
 Hence, a reservoir grid is always extended to include a substantial volume of surrounding non-
porous rock before the grid is ready for use in rock mechanics simulations. (The reservoir grid is
embedded in the final grid).

When the reservoir grid has been finalised in advance, this embedding is normally done by adding grid
blocks to all sides of the reservoir, typically extending grid block directions and with increasing block
sizes towards the edges, a task that can be done with dedicated software. (For an Eclipse – Visage
coupling the embedding can be done in the Visage suite program VisGen.) Although some constraints
can be put on the grid extension process, the embedding is normally carried out without any attempt to
honour actual rock topology in the extension area. A typical embedding of a simple reservoir grid is
shown in Figure A1, where the original reservoir grid is shown as the thin blue slab in the middle of
the final grid.

Figure A1. Embedding of Reservoir Grid

Since few if any reservoir engineers have such an embedding in mind when building the reservoir grid,
the extension process can frequently run into problems. The commonly occurring problems are tied to
non-consistent grids as discussed above, and the use of non-vertical coordinate lines, which will be
discussed here.

113

Non-vertical coordinate lines
Coordinate lines can have any (non-horizontal) direction, and non-vertical coordinate lines are
primarily used to honour actual fault geometries. Figure A2 shows a cross section of a fault block
which bounding faults sloping in different directions.

Figure A2. Coordinate lines and sloping faults (cross section view)

The coordinate lines A and B pose no problems in the reservoir grid (indicated by shades of grey). But
if an underburden is added below the grid, lines A and B will intersect somewhere below the reservoir.
Since the thickness of the over / underburden is normally several reservoir thicknesses, this problem is
almost certain to emerge in the embedding process whenever not all coordinate lines are parallel.
Fixing the problems at this stage is not a trivial task – especially if non-consistencies have to be fixed
at the same time.

Hence the obvious recommendation is, for grids which are to be used in coupled simulations, to build
the entire grid including the embedding with the final purpose in mind from the outset. This will often
enforce compromises between desires / requirements for the reservoir grid and the embedded grid, but
such conflicts are better solved when regarding all aspects of the problem simultaneously. (Certainly
this advice is not easily applied to existing grids which have taken a considerable time to build, and
where a request to redo the job is not welcomed…)
 As an example, the situation depicted in Figure A2 cannot be resolved accurately. The
intersecting coordinate lines cannot be accepted, so an adjustment of the fault slopes such that the
coordinate lines A and B only just don’t intersect in the underburden is perhaps to live with.

Honouring material properties of non-reservoir rock .
Aquifers
Aquifers should be handled differently in a coupled model than in flow simulation. Analytic or
numeric aquifers are a convenient means of simulating aquifer pressure support to the reservoir, but
cannot been used in such a setting when including rock mechanics effects. The aquifer is also a
volume of porous soil, and hence it influences directly both the stress state and the reservoir pressure.
Aquifers are a prime example of why we encourage to build the grid with the final embedded model as
goal from the outset, not as a two-stage process.
Figure A3 is an example where the reservoir is connected to a large aquifer extending into the
sideburden. This volume should obviously be modelled as fluid-bearing porous rock, not as soil
inactive to flow as would result from a build-on embedding process. Note that a traditional numerical
aquifer would not work here, since there is no way the node displacements in the aquifer volume could
be accurately computed or accounted for by such an approach.

A B

114

Figure A3. Honouring Geometry of non-reservoir soil (cross section view)

On the other hand, fluid flow in the aquifer is one-phase, so the aquifer can be modelled sufficiently
accurate with grid block sizes of the same order that is normally used in the extension grid. The
aquifer could be modelled as horizontal (using standard embedding procedure), but accounting for
depth and thickness variation adds value – also honouring the non-horizontal non-porous to porous
rock interface contributes to a more accurate description.

Other features
There may be other features in the over / under / sideburdens that could be advisable to capture in the
grid. One example could be a (soft) shaly layer in the overburden, as indicated in Figure A3. The shale
may have significantly different material properties from surrounding hard rock, and as such may have
a non-neglectable influence on strain / displacement / failure. To capture this influence the layer
should be modelled explicitly, even though this will increase the size of the finite element grid.

In Figure A3, suggested layering for the extension grid to over and underburden has been indicated by
the thin solid lines.

Aquifer

Reservoir

Shale

Underburden

Overburden

