p176fig04.53 The on-center off-surround network within position and across depth helps to explain why brighter Kanizsa squares look closer.
|| inhibition vs. depth. p176c1h0.25 "... to qualitatively understand how this example of proximity-luminance covariance works. It follows directly from the boundary pruning by surface contour feedback signals (Figure 4.51) that achieves complementary consistency and initiates figure-ground perception. ...". p176c1h0.45 "... these inhibitory sigals are part of an off-surround network whose strength decreases as the depth difference increases between the surface that generates the signal and its recipient boundaries. ...". p176c1h0.8 "... Within FACADE theory, the perceived depth of a surface is controlled by the boundaries that act as its filling-in generators and barriers (Figure 3.22), since these boundaries select the depth-sselective FIDOs within whin filling-in can occur, and thereby achieve surface capture. These boundaries, in turn, are themselves strengthened after surface-to-boundary contour feedback eliminates redundant boundaries that cannot support sucessful filling-in (Figure 4.51). These surface contour feedback signals have precisely the properties that are needed to explain why brighter Kanizsa squares look closer! ..."