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This is a formalization of Zermelo’s Well-ordering Theorem, i.e. of the assertion
that under the assumption of the axiom of choice every set is equinumerous to
some ordinal number, where an ordinal number is regarded as a transitive set
whose elements are transitive sets as well. The proof of this theorem presented
here is oriented on [1].

On mid-range hardware Naproche needs approximately 4 Minutes to verify
this formalization plus approximately 15 minutes to verify the library files it
depends on.
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Definition. Let X be a system of nonempty sets. A choice function for X
is a map ¢ such that dom(g) = X and g(z) € z for any = € X.

Axiom (Choice). Let X be a system of nonempty sets. Then there exists
a choice function for X.

In the following, for any class A, we write A< to denote the collection of all
maps f : a — A for some ordinal a. Moreover, for any map G : A<>® — A we
say that a map F' : Ord — A, where Ord denotes the class of all ordinals, is
recursive regarding G if Fi(o) = G(F | «) for all a € Ord.

Theorem (Zermelo). Every set is equinumerous to some ordinal.

Proof. Let x be a set. Consider a choice function g for P(z) \ {0}. For any
F € (zU{z})<= if z \ range(F) # 0 then z \ range(F') € dom(g). Indeed
x \ range(F) is a subset of x for any F € (2 U {z})<*°. Define

_ Jg(z\range(F)) :x\range(F) # 0
CF) = {w : ¢\ range(F) =0

for F € (z U {x})<*°. Then for any F € (z U {z})<> if = \ range(F) # 0
then G(F) € z \ range(F'). G is a map from (z U {z})<> to z U {z}.



Indeed we can show that for any F' € (zU{z})<° we have G(F) € xU{z}.
Let F € (z U {z})<>®. If 2 \ range(F) # 0 then G(F) € z \ range(F). If
x \ range(F') = () then G(F) = z. Hence G(F') € x U {z}. End. Hence we
can take a map F' from Ord to x U {z} that is recursive regarding G. For
any ordinal « we have F' [ o € (xz U {z})<.

For any o € Ord we have
z\ Fla] #0 = F(a) €z \ Flo]

and
z\Flo]=0 = F(a)==x.

)
Proof. Let o € Ord. We have Fla] = {F(8) | 8 € a}. Hence Fla] =
{G(F | B) | B € a}. We have range(F | o) = {F(B) | 8 € a}. Thus
range(F [ «) = Fla].

Case z \ Fla] # (. Then z \ range(F | o) # (). Hence F(a) = G(F | a) €
x \range(F [ @) =z \ Fla]. End.

Case z\ F'[a] # 0. Then z\range(F | o) = (). Hence F (o) = G(F | a) = x.
End. Qed.

(1) For any ordinals «, 8 such that o < 8 and F(8) # x we have F(«), F(B) €
z and F(a) # F(B).

Proof. Let o, 8 € Ord. Assume o < 8 and F(8) # x. Then z \ F[8] # 0.
(a) Hence F(B) € =\ F[f]. We have Fla] C F[f]. Thus z \ Fla] # 0. (b)
Therefore F(a) € x\ Fla]. Consequently F(a), F(8) € « (by a, b). We
have F(«) € F[8] and F(B) ¢ F[f]. Thus F(a) # F(5). Qed.

(2) There exists an ordinal « such that F(«) = z.
Proof. Assume the contrary. Then F' is a map from Ord to z.

Let us show that F' is injective. Let o, € Ord. Assume o # (3. Then
a < fBorf < a. Hence F(a) # F(B) (by 1). Indeed F(a), F(8) # x. End.

Thus F' is an injective map from some proper class to some set. Contra-
diction. Qed.

Define ® = {« € Ord | F(«) = z}. ® is nonempty. Hence we can take a
least element a of ® regarding €. Take f = F' [ a. Then f is a map from
a to z. Indeed for no f € o we have F(8) = x. Indeed for all 5 € a we
have (8, ) € €.

(3) f is surjective onto x.

Proof. =\ F[a] = 0. Hence range(f) = fla] = Fla] = z. Qed.

(4) f is injective.

Proof. Let 8,7 € a. Assume 8 # ~. We have f(3), f(y) # x. Hence
f(B) # f(v) (by 1). Indeed S < 7y or v < . Qed.

Therefore f is a bijection between o and x. Consequently x and « are



equinumerous. O]
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