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Interdependencies of the chapters

Introduction

This is a library providing basic results from undergraduate-level set theory.
It introduces the notion of transitive classes (chapter 1), defines the notion
of ordinal numbers (chapter 2) and as a special case of the latter introduces
the set ω of finite ordinals (chapter 3). Moreover, this library provides a
formalization of the ordinal recursion theorem (chapter 4) which is used to
prove Zermelo’s well-ordering theorem (chapter 5), on the basis of which the
notion of cardinal numbers is introduced (chapter 6). Furthermore, some
results about finite and infinite sets are given (chapter 7).
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Chapter 1

Transitive classes

File: set-theory/sections/01_transitive-classes.ftl.tex

[readtex foundations/sections/10_sets.ftl.tex]

SET_THEORY_01_8167915266244608

Definition 1.1. Let A be a class. A is transitive iff every element of A is a
subset of A.

SET_THEORY_01_6964770955591680

Proposition 1.2. Let X be a system of sets. Then X is transitive iff for every
x ∈ X and every y ∈ x we have y ∈ X.

SET_THEORY_01_4219967964708864

Definition 1.3. A system of transitive sets is a system of sets X such that every
member of X is a transitive set.

SET_THEORY_01_2095807333400576

Proposition 1.4. Every transitive class is a system of sets.
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SET_THEORY_01_6524117649981440

Proposition 1.5. Let X be a system of sets. Then X is transitive iff
⋃

X ⊆ X.

Proof. Case X is transitive. Let x ∈
⋃

X. Take a member y of X such that x ∈ y.
Then y is a subset of X. Hence x is an element of X. End.

Case
⋃
X ⊆ X. Let x ∈ X.

Let us show that x ⊆ X. Let y ∈ x. Then y ∈
⋃

X. Hence y ∈ X. End. End.

SET_THEORY_01_620651482185728

Proposition 1.6. Let A be a transitive class. Then
⋃

A is transitive.

Proof. Let x ∈
⋃
A.

Let us show that x ⊆
⋃
A. Let y ∈ x. Take a member z of A such that x ∈ z. Then

z ⊆ A. Hence x ∈ A. Thus y is an element of some member of A. Therefore y ∈
⋃

A.
End.

SET_THEORY_01_6726468811882496

Proposition 1.7. Let X be a system of transitive sets. Then
⋃

X is transitive.

Proof. Let x ∈
⋃
X and y ∈ x. Take z ∈ X such that x ∈ z. Then z is transitive.

Hence x ⊆ z. Thus y ∈ z. Therefore y ∈
⋃

X.

SET_THEORY_01_4884401668227072

Proposition 1.8. Let X be a system of transitive sets. Then X ∪
⋃

X is tran-
sitive.

Proof. Let x ∈ X ∪
⋃
X.

Let us show that x ⊆ X ∪
⋃
X. Let u ∈ x. We have x ∈ X or x ∈

⋃
X. If x ∈ Xthen

u ∈
⋃
X. If x ∈

⋃
X then u ∈

⋃
X. Indeed

⋃
X is transitive. Hence u ∈

⋃
X. Thus

u ∈ X ∪
⋃
X. End.
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SET_THEORY_01_1399002962591744

Proposition 1.9. Let X be a system of sets. Then X is transitive iff X ⊆ P(X).

Proof. Case X is transitive. Let x ∈ X. Then x ⊆ X. Hence x ∈ P(X). End.

Case X ⊆ P(X). Let x ∈ X. Then x ∈ P(X). Hence x ⊆ X. End.

SET_THEORY_01_6995689103949824

Proposition 1.10. Let A be a transitive class. Then P(A) is transitive.

Proof. Let x ∈ P(A). Then x ⊆ A.

Let us show that x ⊆ P(A). Let y ∈ x. Then y ∈ A. Hence y ⊆ A. Thus y ∈ P(A).
End.



Chapter 2

Ordinal numbers

File: set-theory/sections/02_ordinals.ftl.tex

[readtex foundations/sections/11_binary-relations.ftl.tex]

[readtex set-theory/sections/01_transitive-classes.ftl.tex]

SET_THEORY_02_229593678086144

Definition 2.1. An ordinal number is a transitive set α such that every element
of α is a transitive set.

Let an ordinal stand for an ordinal number.

SET_THEORY_02_5852994258075648

Definition 2.2. Ord is the class of all ordinals.

SET_THEORY_02_2358097091756032

Proposition 2.3. Let α be an ordinal. Then every element of α is an ordinal.

Proof. Let x be an element of α. Then x is transitive.

Let us show that every element of x is a subset of x. Let y be an element of x. Then
y is a subset of x. Let z be an element of y. Every element of y is an element of x.
Hence z is an element of x. End.

7



2 Ordinal numbers 8

Thus every element of x is transitive. Therefore x is an ordinal.

SET_THEORY_02_7202164443185152

Proposition 2.4. Let α be an ordinal and x ⊆ α. Then
⋃
x is an ordinal.

Proof. (1)
⋃
x is transitive.

Proof. Let y ∈
⋃
x and z ∈ y. Take w ∈ x such that y ∈ w. Then w ∈ α. Hence w is

transitive. Thus z ∈ w. Therefore z ∈
⋃

x. Qed.

(2) Every element of
⋃
x is transitive.

Proof. Let y ∈
⋃
x. Let z ∈ y and v ∈ z. Take w ∈ x such that y ∈ w. We

have w ∈ α. Hence w is an ordinal. Thus y is an ordinal. Therefore y is transitive.
Consequently v ∈ y. Qed.

2.1 Zero and successors

SET_THEORY_02_8385964858671104

Definition 2.5. 0 = ∅.

Let α is nonzero stand for α ̸= 0.

SET_THEORY_02_8166925802668032

Definition 2.6. Let α be an ordinal. succ(α) = α ∪ {α}.

SET_THEORY_02_8483196888940544

Proposition 2.7. 0 is an ordinal.

Proof. Every element of 0 is a transitive set and every element of 0 is a subset of 0.

SET_THEORY_02_1624410224066560

Proposition 2.8. Let α be an ordinal. Then succ(α) is an ordinal.

Proof. (1) succ(α) is transitive.
Proof. Let x ∈ succ(α) and y ∈ x. Then x ∈ α or x = α. Hence y ∈ α. Thus
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y ∈ succ(α). Qed.

(2) Every element of succ(α) is transitive.
Proof. Let x ∈ succ(α). Then x ∈ α or x = α. Hence x is transitive. Indeed α is
transitive and every element of α is transitive. Qed.

SET_THEORY_02_8651096763400192

Proposition 2.9. Let α, β be ordinals. If succ(α) = succ(β) then α = β.

Proof. Assume succ(α) = succ(β).

(1) α ⊆ β.
Proof. Let γ ∈ α. Then γ ∈ α ∪ {α} = succ(α) = succ(β) = β ∪ {β}. Hence γ ∈ β or
γ = β. Assume γ = β. Then β ∈ α. Hence β = (β ∪ {β}) \ {γ} = (α ∪ {α}) \ {γ} =
(α \ {γ}) ∪ {α}. Therefore α ∈ β. Consequently α ∈ β ∈ α. Contradiction. Qed.

(2) β ⊆ α.
Proof. Let γ ∈ β. Then γ ∈ β ∪ {β} = succ(β) = succ(α) = α ∪ {α}. Hence γ ∈ α or
γ = α. Assume γ = α. Then α ∈ β. Hence α = (α ∪ {α}) \ {γ} = (β ∪ {β}) \ {γ} =
(β \{γ})∪{β}. Therefore β ∈ α. Consequently β ∈ α ∈ β. Contradiction. Qed.

2.2 The standard ordering of the ordinals

SET_THEORY_02_6654252130762752

Definition 2.10. Let α, β be ordinals. α is less than β iff α ∈ β.

Let α < β stand for α is less than β. Let α ≮ β stand for not α < β.

Let α is greater than β stand for β < α. Let α > β stand for β < α. Let α ≯ β stand
for not α > β.

SET_THEORY_02_2639956210089984

Definition 2.11. Let α, β be ordinals. α is less than or equal to β iff α < β or
α = β.

Let α ≤ β stand for α is less than or equal to β. Let α ≰ β stand for not α ≤ β.

Let α is greater than or equal to β stand for β ≤ α. Let α ≥ β stand for β ≤ α. Let
α ≱ β stand for not α ≥ β.
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SET_THEORY_02_3089369577553920

Proposition 2.12. Let α, β be ordinals. Then

α ≤ β implies α ⊆ β.

Proof. Case α ≤ β. Then α < β or α = β. Let x ∈ α. If α < β then x ∈ α ∈ β.
Hence if α < β then x ∈ β. If α = β then x ∈ β. Thus x ∈ β. End.

SET_THEORY_02_6229364135952384

Proposition 2.13. Let α be an ordinal. Then

α ≮ α.

Proof. Assume α < α. Then α ∈ α. Contradiction.

SET_THEORY_02_7098683017396224

Proposition 2.14. Let α, β, γ be ordinals. Then

(α < β and β < γ) implies α < γ.

Proof. Assume α < β and β < γ. Then α ∈ β ∈ γ. Hence α ∈ γ. Thus α < γ.

SET_THEORY_02_1718825707896832

Proposition 2.15. Let α, β be ordinals. Then α < β or α = β or α > β.

Proof. Assume the contrary. Define

A =

{
α′ ∈ Ord

∣∣∣∣ there exists an ordinal β′ such that neither α′ < β′ nor α′ = β′

nor α′ > β′

}
.

A is nonempty. Hence we can take a least element α′ of A regarding ∈. Define

B = {β′ ∈ Ord | neither α′ < β′ nor α′ = β′ nor α′ > β′}.

B is nonempty. Hence we can take a least element β′ of B regarding ∈.

Let us show that α′ ⊆ β′. Let a ∈ α′. Then a < β′ or a = β′ or a > β′. Indeed if
neither a < β′ nor a = β′ nor a > β′ then a ∈ A. If a = β′ then β′ < α′. If a > β′

then β′ < α′. Hence a < β′. Thus a ∈ β′. End.
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Let us show that β′ ⊆ α′. Let b ∈ β′. Then b < α′ or b = α′ or b > α′. If b = α′ then
α′ < β′. If b > α′ then α′ < β′. Hence b < α′. Thus b ∈ α′. End.

Hence α′ = β′. Contradiction.

SET_THEORY_02_610496856195072

Proposition 2.16. Let α, β be ordinals. Then

α ⊆ β implies α ≤ β.

Proof. Assume α ⊆ β.

Case α = β. Trivial.

Case α ̸= β. Then α < β or α > β. Assume α > β. Then β ∈ α. Hence β ∈ β.
Contradiction. End.

SET_THEORY_02_5689190964527104

Proposition 2.17. Let α be an ordinal. Then

α < succ(α).

SET_THEORY_02_4064972025888768

Proposition 2.18. Let α, β be ordinals. Then

β < succ(α) implies β ≤ α.

Proof. Assume β < succ(α). Then β ∈ succ(α) = α ∪ {α}. Hence β ∈ α or β ∈ {α}.
Thus β < α or β = α. Therefore β ≤ α.

SET_THEORY_02_8242798790705152

Proposition 2.19. Let α be an ordinal. There exists no ordinal β such that
α < β < succ(α).

Proof. Assume the contrary. Consider an ordinal β such that α < β < succ(α). Then
β < α or β = α. Hence α < α. Contradiction.
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2.3 Successor and limit ordinals

SET_THEORY_02_7129712109289472

Definition 2.20. A successor ordinal is an ordinal α such that α = succ(β) for
some ordinal β.

SET_THEORY_02_4240355610329088

Proposition 2.21. Let α be an ordinal. There exists no ordinal β such that
α < β < succ(α).

Proof. Assume the contrary. Choose an ordinal β such that α < β < succ(α). Then
α ∈ β ∈ α ∪ {α}. Hence β ∈ α or β = α. Then α ∈ α. Contradiction.

SET_THEORY_02_735071524880384

Definition 2.22. Let α be a successor ordinal. pred(α) is the ordinal β such
that α = succ(β).

SET_THEORY_02_7678388934279168

Definition 2.23. A limit ordinal is an ordinal λ such that neither λ is a successor
ordinal nor λ = 0.

SET_THEORY_02_4659024620421120

Proposition 2.24. Let λ be a limit ordinal and α ∈ λ. Then λ contains succ(α).

Proof. If succ(α) /∈ λ then α < λ < succ(α).

SET_THEORY_03_2217148434874368

Theorem 2.25 (Burali-Forti). Ord is a proper class.

Proof. Assume that Ord is a set. Ord is transitive and every element of Ord is
transitive. Hence Ord is an ordinal. Thus Ord ∈ Ord. Contradiction.
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2.4 Transfinite induction

SET_THEORY_02_4059354166722560

Definition 2.26.

< = {(α, β) | α and β are ordinals such that α < β}.

SET_THEORY_02_4859038791630848

Proposition 2.27. < is a strong wellorder on Ord.

Proof. For any ordinals α, β we have (α, β) ∈ < iff α < β.

(1) < is irreflexive on Ord. Indeed for any ordinal α we have α ≮ α.

(2) < is transitive on Ord. Indeed for any ordinals α, β, γ if α < β and β < γ then
α < γ.

(3) < is connected on Ord. Indeed for any distinct ordinals α, β we have α < β or
β < α.

Hence < is a strict linear order on Ord.

(4) < is wellfounded on Ord.
Proof. Let A be a nonempty subclass of Ord. Then we can take a least element α of
A regarding ∈. Then α is a least element of A regarding <. Qed.

Hence < is strongly wellfounded on Ord. Indeed for any β ∈ Ord we have β = {α ∈
Ord | (α, β) ∈ <}. Thus < is a strong wellorder on Ord.

SET_THEORY_02_1042046129274880

Corollary 2.28. Let A be a subclass of Ord. If A is nonempty then A has a
least element regarding <.

SET_THEORY_02_1991423647809536

Corollary 2.29. Let A be a subclass of Ord. If A is nonempty then A has a
least element regarding ∈.
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SET_THEORY_03_8114657499807744

Proposition 2.30. < is a strong wellorder on any ordinal.

Proof. Let α be an ordinal. For all β, γ ∈ α we have (β, γ) ∈ < iff β < γ.

(1) < is irreflexive on α. Indeed for all β ∈ α we have α ≮ α.

(2) < is transitive on α. Indeed for all β, γ, δ ∈ α if β < γ and γ < δ then β < δ.

(3) < is connected on α. Indeed for any distinct β, γ ∈ α we have β < γ or γ < β.

Hence < is a strict linear order on α.

(4) < is wellfounded on α.
Proof. Let A be a nonempty subclass of α. Then we can take a least element β of A
regarding <. Indeed A is a subclass of Ord. Qed.

Hence < is strongly wellfounded on α. Indeed for any γ ∈ α we have γ = {β ∈ Ord |
(β, γ) ∈ <}. Thus < is a strong wellorder on α. [unfold off]

Note: In the proof below 11.24 refers to the Foundations library!

SET_THEORY_02_8493935460614144

Theorem 2.31. Let Φ be a class. Assume that for all ordinals α if Φ contains
all ordinals less than α then Φ contains α. Then Φ contains every ordinal.

Proof. Define B = {x | x is a set and if x ∈ Ord then x ∈ Φ}.

Let us show that for all sets x if B contains every element of x that is a set then B
contains x. Let x be a set. Assume that every element of x that is a set is contained
in B.

Case x /∈ Ord. Trivial.

Case x ∈ Ord. Then Φ contains all ordinals less than x. Hence Φ contains x. Thus
x ∈ B. End. End.

[prover vampire] Hence B contains every set (by 11.24). Thus Φ contains every
ordinal.

SET_THEORY_02_7892040431960064

Theorem 2.32. Let Φ be a class. (Initial case) Assume that Φ contains 0.
(Successor step) Assume that for all ordinals α if α ∈ Φ then succ(α) ∈ Φ.
(Limit step) Assume that for all limit ordinals λ if every ordinals less than λ is
contained in Φ then λ ∈ Φ. Then Φ contains every ordinal.

Proof. Let us show that for all ordinals α if Φ contains all ordinals less than α then
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Φ contains α. Let α be an ordinal. Then α = 0 or α is a successor ordinal or α is a
limit ordinal. Assume that Φ contains all ordinals less than α.

Case α = 0. Trivial.

Case α is a successor ordinal. Take an ordinal β such that α = succ(β). Then β ∈ Φ.
Hence α ∈ Φ (by successor step). End.

Case α is a limit ordinal. Then β ∈ Φ for all ordinals β less than α. Hence α ∈ Φ (by
limit step). End. End.

[prover vampire] Thus Φ contains every ordinal (by 2.31).



Chapter 3

Finite ordinals

File: set-theory/sections/03_finite-ordinals.ftl.tex

[readtex set-theory/sections/02_ordinals.ftl.tex]

SET_THEORY_03_4310076227584000

Definition 3.1.

ω =

{
n ∈ Ord

∣∣∣∣ n ∈ X for every X ⊆ Ord such that 0 ∈ X and for all
x ∈ X we have succ(x) ∈ X

}
.

SET_THEORY_03_3576717620805632

Proposition 3.2. 0 ∈ ω.

SET_THEORY_03_8807317141192704

Proposition 3.3. Let n ∈ ω. Then succ(n) ∈ ω.

SET_THEORY_03_344585425387520

Proposition 3.4. Let Φ ⊆ ω. Assume that 0 ∈ Φ and for every x ∈ Φ we have
succ(x) ∈ Φ. Then Φ = ω.

16



3 Finite ordinals 17

Proof. Suppose Φ ̸= ω. Consider an element n of ω that is not contained in Φ. Take
Φ′ = Φ \ {n}.

(1) 0 ∈ Φ′. Indeed 0 ∈ Φ and 0 ̸= n.

(2) For each x ∈ Φ′ we have succ(x) ∈ Φ′.
Proof. Let x ∈ Φ′. Then succ(x) ∈ Φ.

Let us show that succ(x) ̸= n. Assume succ(x) = n. Then x /∈ Φ. Indeed n /∈ Φ and
if x ∈ Φ then n = succ(x) ∈ Φ. Contradiction. End.

Thus succ(x) ∈ Φ′. Qed.

Therefore every element of ω lies in Φ′. Indeed Φ′ ⊆ Ord. Consequently n ∈ Φ′.
Contradiction.

SET_THEORY_03_4847727433220096

Corollary 3.5. ω is a set.

Proof. Define f(n) = succ(n) for n ∈ ω. Take a subset X of ω that is inductive
regarding 0 and f . Indeed f is a map from ω to ω. Then we have 0 ∈ X and for each
n ∈ X we have succ(n) ∈ X. Thus X = ω. Therefore ω is a set.

SET_THEORY_03_5885789275684864

Proposition 3.6. Let n ∈ ω. Then n = 0 or n = succ(m) for some m ∈ ω.

Proof. Assume the contrary. Consider a k ∈ ω such that neither k = 0 nor k =
succ(m) for some m ∈ ω. Take a class ω′ such that ω′ = ω \ {k}. Then ω′ is a set.

(1) 0 ∈ ω′. Indeed k ̸= 0.

(2) For all m ∈ ω′ we have succ(m) ∈ ω′.
Proof. Let m ∈ ω′. Then succ(m) ̸= k. Hence succ(m) ∈ ω′. Qed.

Thus every element of ω is contained in ω′. Therefore k ∈ ω′. Contradiction.

SET_THEORY_03_5057540872208384

Proposition 3.7. Every element of ω is an ordinal.
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SET_THEORY_03_764451995254784

Proposition 3.8. ω is a limit ordinal.

Proof. ω is transitive.
Proof. Define Φ = {n ∈ ω | for all m ∈ n we have m ∈ ω}.

(1) 0 ∈ Φ.

(2) For all n ∈ Φ we have succ(n) ∈ Φ.
Proof. Let n ∈ Φ. Then every element of n is contained in ω. Hence every element
of succ(n) is contained in ω. Thus succ(n) ∈ Φ. Qed.

Therefore ω ⊆ Φ. Consequently ω is transitive. Qed.

Every element of ω is an ordinal. Hence every element of ω is transitive. Thus ω is
an ordinal.

ω is a limit ordinal.
Proof. Assume the contrary. We have ω ̸= 0. Hence ω is a successor ordinal. Take an
ordinal α such that succ(α) = ω. Then α ∈ ω. Thus ω = succ(α) ∈ ω. Contradiction.
Qed.

SET_THEORY_03_5517271459954688

Proposition 3.9. Let λ be a limit ordinal. Then

ω ≤ λ.

Proof. Assume the contrary. Then λ < ω. Consequently λ ∈ ω. Hence λ = 0 or
λ = succ(n) for some n ∈ ω. Thus λ is not a limit ordinal. Contradiction.

SET_THEORY_03_1991057988386816

Definition 3.10. 1 = succ(0).

SET_THEORY_03_5809204518453248

Definition 3.11. 2 = succ(1).
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SET_THEORY_03_4388003120152576

Proposition 3.12. 1 = {0}.

SET_THEORY_03_930896899211264

Proposition 3.13. 2 = {0, 1}.



Chapter 4

Recursion

File: set-theory/sections/04_recursion.ftl.tex

[readtex set-theory/sections/02_ordinals.ftl.tex]

SET_THEORY_04_7107446027845632

Definition 4.1. Let A be a class and α be an ordinal.

A<α = {f | f is a map from β to A for some ordinal β less than α}.

SET_THEORY_04_1955917673267200

Definition 4.2. Let A be a class.

A<∞ = {f | f is a map from α to A for some ordinal α}.

SET_THEORY_04_7841726894964736

Lemma 4.3. Let A be a class and f be a map to A such that dom(f) is a
transitive subclass of Ord and α ∈ dom(f). Then f ↾ α ∈ A<∞.

20
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SET_THEORY_04_5597213870784512

Definition 4.4. Let H be a map and G : A<∞ → A for some class A such that
H is a map to A. H is recursive regarding G iff dom(H) is a transitive subclass
of Ord and for all α ∈ dom(H) we have

H(α) = G(H ↾ α).

SET_THEORY_04_2876133366300672

Proposition 4.5. Let A be a class and G be a map from A<∞ to A. Let H,H ′

be maps to A that are recursive regarding G. Then

H(α) = H ′(α)

for all α ∈ dom(H) ∩ dom(H ′).

Proof. Define Φ = {α ∈ Ord | if α ∈ dom(H) ∩ dom(H ′) then H(α) = H ′(α)}.

For all ordinals α if every ordinal less than α lies in Φ then α ∈ Φ.
Proof. Let α ∈ Ord. Assume that every y ∈ α lies in Φ.

Let us show that if α ∈ dom(H) ∩ dom(H ′) then H(α) = H ′(α). Suppose α ∈
dom(H) ∩ dom(H ′). Then α ⊆ dom(H),dom(H ′). Indeed dom(H) and dom(H ′)
are transitive classes. Hence for all y ∈ α we have y ∈ dom(H) ∩ dom(H ′). Thus
H(y) = H ′(y) for all y ∈ α. Therefore H ↾ α = H ′ ↾ α. H and H ′ are recursive
regarding G. Hence H(α) = G(H ↾ α) = G(H ′ ↾ α) = H ′(α). End.

Thus α ∈ Φ. Qed.

[prover vampire] Then Φ contains every ordinal (by theorem 2.31). Therefore we have
H(α) = H ′(α) for all α ∈ dom(H) ∩ dom(H ′).

SET_THEORY_04_3600210873810944

Theorem 4.6 (Recursion theorem). Let A be a class and G be a map from
A<∞ to A. Then there exists a map F from Ord to A that is recursive regarding
G.

Proof. Every ordinal is contained in the domain of some map H to A such that H is
recursive regarding G.
Proof. Define

Φ =

{
α ∈ Ord

∣∣∣∣ α is contained in the domain of some map to A that is recursive
regarding G

}
.
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Let us show that for every ordinal α if every ordinal less than α lies in Φ then α ∈ Φ.
Let α be an ordinal. Assume that every ordinal less than α lies in Φ. Then for all
y ∈ α there exists a map h to A such that h is recursive regarding G and y ∈ dom(h).
Define H ′(y) = “choose a map h to A such that h is recursive regarding G and
y ∈ dom(h) in h(y)” for y ∈ α. Then H ′ is a map from α to A. We have H ′ = H ′ ↾ α.
Define

H(β) =

{
H ′(β) : β < α

G(H ′ ↾ β) : β = α

for β ∈ succ(α). Then H ↾ β ∈ A<∞ for all β ∈ dom(H).

(a) dom(H) is a transitive subclass of Ord.

(b) For all β ∈ dom(H) we have H(β) = G(H ↾ β).
Proof. Let β ∈ dom(H). Then β < α or β = α.

Case β < α. Choose a map h to A such that h is recursive regardingG and β ∈ dom(h)
and H ′(β) = h(β).

Let us show that for all y ∈ β we have h(y) = H(y). Let y ∈ β. Then H(y) = H ′(y).
Choose a map h′ to A such that h′ is recursive regarding G and y ∈ dom(h′) and
H ′(y) = h′(y). [prover vampire] Then h′(y) = h(y) (by proposition 4.5). Indeed
y ∈ dom(h) ∩ dom(h′). End.

Hence h ↾ β = H ↾ β. Thus H(β) = H ′(β) = h(β) = G(h ↾ β) = G(H ↾ β). End.

Case β = α. We have H ↾ α = H ′ ↾ α. End. Qed.

Hence H is a map to A such that H is recursive regarding G and α ∈ dom(H). Thus
α ∈ Φ. End.

[prover vampire] Therefore Φ contains every ordinal (by theorem 2.31). Consequently
every ordinal is contained in the domain of some map H to A such that H is recursive
regarding G. Qed.

Define F (α) = “choose a map H to A such that H is recursive regarding G and
α ∈ dom(H) in H(α)” for α ∈ Ord. Then F is a map from Ord to A.

F is recursive regarding G.
Proof. (a) dom(F ) is a transitive subclass of Ord.

(b) For all α ∈ Ord we have F (α) = G(F ↾ α).
Proof. Let α ∈ Ord. Choose a map H to A such that H is recursive regarding G
and α ∈ dom(H) and F (α) = H(α).

Let us show that F (β) = H(β) for all β ∈ α. Let β ∈ α. Choose a map H ′ to A
such that H ′ is recursive regarding G and β ∈ dom(H ′) and F (β) = H ′(β). [prover
vampire] Then H(β) = H ′(β) (by proposition 4.5). Indeed β ∈ dom(H) ∩ dom(H ′).
Therefore F (β) = H ′(β). End.

Hence H ↾ α = F ↾ α. Thus F (α) = H(α) = G(H ↾ α) = G(F ↾ α). Qed. Qed.
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Theorem 4.7. Let A be a class and G be a map from A<∞ to A. Let F, F ′ be
maps from Ord to A that are recursive regarding G. Then F = F ′.

Proof. F and F ′ are recursive regarding G. [prover vampire] Then F (α) = F ′(α) for
all α ∈ dom(F ) ∩ dom(F ′) (by proposition 4.5). Indeed let α ∈ dom(F ) ∩ dom(F ′).
We have dom(F ) = Ord = dom(F ′). Hence F (α) = F ′(α) for all α ∈ Ord. Thus
F = F ′.
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Theorem 4.8. Let A be a class. Let a ∈ A and G : Ord × A → A and
H : Ord×A<∞ → A. Then there exists a map F from Ord to A such that

F (0) = a

and for all ordinals α we have

F (succ(α)) = G(α, F (α))

and for all limit ordinals λ we have

F (λ) = H(λ, F ↾ λ).

Proof. Define

J(f) =


a : dom(f) = 0

G(pred(dom(f)), f(pred(dom(f)))) : dom(f) is a successor ordinal

H(dom(f), f) : dom(f) is a limit ordinal

for f ∈ A<∞.

Then J is a map from A<∞ to A. Indeed we can show that for any f ∈ A<∞ we
have J(f) ∈ A. Let f ∈ A<∞. Take α ∈ Ord such that f : α → A. If α = 0 then
J(f) = a ∈ A. If α is a successor ordinal then J(f) = G(pred(α), f(pred(α))) ∈ A.
If α is a limit ordinal then J(f) = H(α, f) ∈ A. End.

Hence we can take a map F from Ord to A that is recursive regarding J . Then
F ↾ α ∈ A<∞ for any ordinal α.

(1) F (0) = a.
Proof. F (0) = J(F ↾ 0) = a. Qed.

(2) F (succ(α)) = G(α, F (α)) for all ordinals α.
Proof. Let α be an ordinal. Then F (succ(α)) = J(F ↾ succ(α)) = G(pred(succ(α)), (F ↾
succ(α))(pred(succ(α)))) = G(α, (F ↾ succ(α))(α)) = G(α, F (α)). Qed.
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(3) F (λ) = H(λ, F ↾ λ) for all limit ordinals λ.
Proof. Let λ be a limit ordinal. Then F (λ) = J(F ↾ λ) = H(λ, F ↾ λ). Qed.
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Theorem 5.1 (Zermelo). Every set is equinumerous to some ordinal.

Proof. Let x be a set.

[prover vampire] Every element of (x ∪ {x})<∞ is a map. Define

G(F ) =

{
choose u ∈ x \ range(F ) in u : x \ range(F ) ̸= ∅
x : x \ range(F ) = ∅

for F ∈ (x ∪ {x})<∞. [prover eprover]

Then G is a map from (x ∪ {x})<∞ to x ∪ {x}. Indeed we can show that for any
F ∈ (x∪{x})<∞ we have G(F ) ∈ x∪{x}. Let F ∈ (x∪{x})<∞. If x \ range(F ) ̸= ∅
then G(F ) ∈ x\range(F ). If x\range(F ) = ∅ then G(F ) = x. Hence G(F ) ∈ x∪{x}.
End. Hence we can take a map F from Ord to x∪{x} that is recursive regarding G.
For any ordinal α we have F ↾ α ∈ (x ∪ {x})<∞.

25
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For any α ∈ Ord
x \ F [α] ̸= ∅ implies F (α) ∈ x \ F [α]

and
x \ F [α] = ∅ implies F (α) = x.

Proof. Let α ∈ Ord. We have F [α] = {F (β) | β ∈ α}. Hence F [α] = {G(F ↾ β) |
β ∈ α}. We have range(F ↾ α) = {F (β) | β ∈ α}. Thus range(F ↾ α) = F [α].

Case x\F [α] ̸= ∅. Then x\range(F ↾ α) ̸= ∅. Hence F (α) = G(F ↾ α) ∈ x\range(F ↾
α) = x \ F [α]. End.

Case x \ F [α] ̸= ∅. Then x \ range(F ↾ α) = ∅. Hence F (α) = G(F ↾ α) = x. End.
Qed.

(1) For any ordinals α, β such that α < β and F (β) ̸= x we have F (α), F (β) ∈ x and
F (α) ̸= F (β).
Proof. Let α, β ∈ Ord. Assume α < β and F (β) ̸= x. Then x \ F [β] ̸= ∅. (a)
Hence F (β) ∈ x \ F [β]. We have F [α] ⊆ F [β]. Thus x \ F [α] ̸= ∅. (b) Therefore
F (α) ∈ x \ F [α]. Consequently F (α), F (β) ∈ x (by a, b). We have F (α) ∈ F [β] and
F (β) /∈ F [β]. Thus F (α) ̸= F (β). Qed.

(2) There exists an ordinal α such that F (α) = x.
Proof. Assume the contrary. Then F is a map from Ord to x.

Let us show that F is injective. Let α, β ∈ Ord. Assume α ̸= β. Then α < β or
β < α. Hence F (α) ̸= F (β) (by 1). Indeed F (α), F (β) ̸= x. End.

Thus F is an injective map from some proper class to some set. Contradiction. Qed.

Define Φ = {α ∈ Ord | F (α) = x}. Φ is nonempty. Hence we can take a least
element α of Φ regarding ∈. Take f = F ↾ α. Then f is a map from α to x. Indeed
for no β ∈ α we have F (β) = x. Indeed for all β ∈ α we have (β, α) ∈ ∈.

(3) f is surjective onto x.
Proof. x \ F [α] = ∅. Hence range(f) = f [α] = F [α] = x. Qed.

(4) f is injective.
Proof. Let β, γ ∈ α. Assume β ̸= γ. We have f(β), f(γ) ̸= x. Hence f(β) ̸= f(γ) (by
1). Indeed β < γ or γ < β. Qed.

Therefore f is a bijection between α and x. Consequently x and α are equinumerous.
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Corollary 5.2. For every set x there exists a strong wellorder on x.

Proof. Let x be a set. Choose an ordinal α that is equinumerous to x. Take a bijection
f between x and α. Define R = {(u, v) | u, v ∈ x and f(u) < f(v)}.
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Let us show that R is a strong wellorder on x. < is a strong wellorder on α. For all
u, v ∈ x we have (u, v) ∈ R iff f(u) < f(v).

(1) R is irreflexive on x. Indeed for all u ∈ x we have f(u) ≮ f(u).

(2) R is transitive on x. Indeed for all u, v, w ∈ x if f(u) < f(v) and f(v) < f(w)
then f(u) < f(w).

(3) R is connected on x.
Proof. Let u, v ∈ x. Assume u ̸= v. Then f(u) ̸= f(v). Hence f(u) < f(v) or
f(v) < f(u) (by proposition 2.15). Indeed f(u), f(v) are ordinals. Qed.

Hence R is a strict linear order on x.

(4) R is wellfounded on x.
Proof. Let A be a nonempty subclass of x. Then we can take a least element β of
f [A] regarding <. Indeed f [A] is a nonempty subclass of α. Then f−1(β) is a least
element of A regarding R. Qed.

We can show that for all v ∈ x there exists a set y such that y = {u ∈ x | (u, v) ∈ R}.
Let v ∈ x. Define y = {u ∈ x | (u, v) ∈ R}. Then y is a set such that y = {u ∈
x | (u, v) ∈ R}. End. [prover vampire] Hence R is strongly wellfounded on x (by
definition 11.18). Indeed R is a binary relation. Thus R is a strong wellorder on x.
End.
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Definition 6.1. Let x be a set. The cardinality of x is the ordinal κ such that
κ is equinumerous to x and every ordinal that is equinumerous to x is greater
than or equal to κ.

Let |x| stand for the cardinality of x.
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Definition 6.2. A cardinal number is an ordinal κ such that κ = |x| for some
set x.

Let a cardinal stand for a cardinal number.
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Proposition 6.3. Let κ be a cardinal. Then |κ| = κ.

Proof. κ is an ordinal that is equinumerous to κ. Hence |κ| ≤ κ. Consider a set x

28
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such that κ = |x|. Then |κ| is an ordinal that is equinumerous to x. Hence κ ≤ |κ|.
Thus |κ| = κ.
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Proposition 6.4. Let x, y be sets. Then x and y are equinumerous iff |x| = |y|.

Proof prover vampire.

Case x and y are equinumerous. Take a bijection f between x and y. Consider
a bijection g between y and |y|. Then g ◦ f is a bijection between x and |y| (by
corollary 8.11). Hence x and |y| are equinumerous. Thus |y| ≥ |x|.

f−1 is a bijection between y and x. Consider a bijection h between x and |x|. Then
h ◦ f−1 is a bijection between y and |x| (by corollary 8.11). Hence y and |x| are
equinumerous. Thus |x| ≥ |y|.

Therefore |x| = |y|. End.

Case |x| = |y|. Consider a bijection f between x and |x| and a bijection g between |y|
and y. Then g ◦ f is a bijection between x and y. Hence x and y are equinumerous.
End.

[checktime 2]

SET_THEORY_06_5513850721927168

Proposition 6.5. Let x, y be sets and f : x ↪→ y and a ⊆ x. Then |f [a]| = |a|.

Proof. f ↾ a is a bijection between a and f [a]. f [a] is a set. Hence |a| = |f [a]|.

[/checktime]

Proposition 6.6. Let κ be a cardinal and x ⊆ κ. Then |x| ≤ κ.

Proof. Assume |x| > κ. Then κ ⊆ |x|. Take a bijection f between |x| and x. Then
f ↾ κ is an injective map from κ to x. idx is an injective map from x to κ. Hence
x and κ are equinumerous (by theorem 13.5). Indeed x is a set. Thus |x| = κ.
Contradiction.
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Proposition 6.7. Let x, y be sets. Then there exists an injective map from x
to y iff |x| ≤ |y|.

Proof. Case there exists an injective map from x to y. Consider an injective map f
from x to y. Take a bijection g from |x| to x and a bijection h from y to |y|. Then
g is an injective map from |x| to x and h is an injective map from y to |y|. [prover
vampire] Hence h ◦ f is an injective map from x to |y|. Thus (h ◦ f) ◦ g is an injective
map from |x| to |y|. [prover eprover] Therefore |x| = ||x|| = |((h ◦ f) ◦ g)[|x|]|. We
have ((h ◦ f) ◦ g)[|x|] ⊆ |y|. Hence |x| ≤ |y|. End.

Case |x| ≤ |y|. Take a bijection g from x to |x| and a bijection h from |y| to y. We
have |x| ⊆ |y|. Hence g is an injective map from x to |y|. Take f = h ◦ g. [prover
vampire] Then f is an injective map from x to y. Indeed h is an injective map from
|y| to y. End.
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Corollary 6.8. Let x be a set and y ⊆ x. Then |y| ≤ |x|.

Proof. Define f(v) = v for v ∈ y. Then f is an injective map from y to x. Hence
|y| ≤ |x|.
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Proposition 6.9. Let x, y be nonempty sets. Then there exists a surjective map
from x onto y iff |x| ≥ |y|.

Proof. Case there exists a surjective map from x onto y. Consider a surjective map f
from x onto y. Define g(v) = “choose u ∈ x such that f(u) = v in u” for v ∈ y. Then
g is an injective map from y to x. Indeed we can show that g is injective. Let v, v′ ∈ y.
Assume g(v) = g(v′). Take u ∈ x such that f(u) = v and g(v) = u. Take u′ ∈ x such
that f(u′) = v′ and g(v′) = u′. Then v = f(u) = f(g(v)) = f(g(v′)) = f(u′) = v′.
End. Hence |x| ≥ |y|. End.

Case |x| ≥ |y|. Then we can take an injective map f from y to x. Then f−1 is a
bijection between range(f) and y. Consider an element z of y. Define

g(u) =

{
f−1(u) : u ∈ range(f)

z : u /∈ range(f)

for u ∈ x. Then g is a surjective map from x onto y. Indeed we can show that
every element of y is a value of g. Let v ∈ y. Then f(v) ∈ range(f). Hence
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g(f(v)) = f−1(f(v)) = v. End. End.

[checktime 2]
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Proposition 6.10. Let x, y be sets and f : x → y and a ⊆ x. Then |f [a]| ≤ |a|.

Proof. Case a is empty. Obvious.

Case a is nonempty. f ↾ a is a surjective map from a onto f [a] and f [a] is nonempty.
Hence |f [a]| ≤ |a| (by proposition 6.9). Indeed a and f [a] are sets. End.

[/checktime]
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Proposition 6.11. Let x, y be nonempty sets. |x| < |y| iff there exists an
injective map from x to y and there exists no surjective map from x onto y.

Proof. There exists an injective map from x to y and there exists no surjective map
from x onto y iff |x| ≤ |y| and |x| ≱ |y| (by proposition 6.7, proposition 6.9). |x| ≤ |y|
and |x| ≱ |y| iff |x| ≤ |y| and |x| ≠ |y|. |x| ≤ |y| and |x| ≠ |y| iff |x| < |y|.
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Proposition 6.12. Let x, y be sets and f : x → y and b ⊆ range(f). Then
|f∗(b)| ≥ |b|.

Proof. Case b is empty. Obvious.

Case b is nonempty. f ↾ f∗(b) is a surjective map from f∗(b) onto b. Hence |f∗(b)| ≥ |b|
(by proposition 6.9). Indeed b and f∗(b) are nonempty sets. End.
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Proposition 6.13. Let x, y be sets and f : x ↪→ y and b ⊆ range(f). Then
|f∗(b)| = |b|.

Proof. f ↾ f∗(b) is a bijection between f∗(b) and b. Indeed b = f [f∗(b)] = (f ↾
f∗(b))[f∗(b)] = range(f ↾ f∗(b)). Hence |f∗(b)| = |b|.
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Proposition 6.14. Let x, y be sets such that |y| < |x|. Then x \ y is nonempty.

Proof. Assume the contrary. Then x ⊆ y. Hence |x| ≤ |y|. Contradiction.
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Theorem 6.15 (Cantor). Let x be a set. Then

|x| < |P(x)|.

Proof. Let us show that there exists no surjective map from x onto P(x). Assume the
contrary. Take a surjective map f from x onto P(x). Define C = {u ∈ x | u /∈ f(u)}.
Then C ∈ P(x). Hence we can take a u ∈ x such that f(u) = C. Then u ∈ C iff
u ∈ f(u) iff u /∈ C. Contradiction. End.

Thus |x| ≱ |P(x)|. Therefore |x| < |P(x)|.
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Theorem 6.16. For every ordinal α there exists a cardinal greater than α.

Proof. Let α be an ordinal. Take κ = |P(α)|. Then κ > |α|.

Let us show that κ > α. Assume the contrary. Then |P(α)| = κ ≤ α. Hence
κ = |P(α)| = ||P(α)|| ≤ |α|. Contradiction. End.
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Proposition 7.1. |∅| = 0.
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Proposition 7.2. Let a be an object. Then |{a}| = 1.

Proof. Define f(x) = 0 for x ∈ {a}. Then f is a map from {a} to 1. f is injective
and surjective onto 1. Hence f is a bijection between {a} and 1. Consequently {a}
and 1 are equinumerous. Thus |{a}| = |1| = 1.
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Proposition 7.3. Let a, b be distinct objects. Then |{a, b}| = 2.

Proof. Define

f(x) =

{
0 x = a

1 x = b

33
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for x ∈ {a, b}. Then f is a map from {a, b} to 2. f is injective and surjective
onto 2. Hence f is a bijection between {a, b} and 2. Consequently {a, b} and 2 are
equinumerous. Thus |{a, b}| = |2| = 2.
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Theorem 7.4. Let n ∈ ω. Then |n| = n.

Proof. Define Φ = {n′ ∈ ω | |n′| = n′}.

(1) 0 ∈ Φ. Indeed |0| = |∅| = 0.

(2) For all n′ ∈ Φ we have succ(n′) ∈ Φ.
Proof. Let n′ ∈ Φ. Then |n′| = n′. We have | succ(n′)| ≤ succ(n′).

Let us show that succ(n′) ≤ | succ(n′)|. Assume the contrary. Then | succ(n′)| <
succ(n′). Take a bijection f between | succ(n′)| and succ(n′). | succ(n′)| is nonzero.
Hence we can take a m ∈ ω such that | succ(n′)| = succ(m). Then f−1(n′) ≤ m.

We can show that f−1(n′) < m. Assume the contrary. Then f−1(n′) = m. f ↾ m
is a bijection between m and f [m] (by proposition 8.13). Indeed f is an injective
map from | succ(n′)| to succ(n′) and m ⊆ | succ(n′)|. We have f [m] ⊆ n′ and n′ ⊆
f [m]. Hence f [m] = n′. Thus f ↾ m is a bijection between m and n′. Therefore
n′ = |n′| ≤ m < | succ(n′)| < succ(n′). Consequently m = n′. Then we have
succ(n′) = | succ(n′)| < succ(n′). Contradiction. End.

Define

g(i) =

{
f(i) : i ̸= f−1(n′)

f(m) : i = f−1(n′)

for i ∈ m.

g is a map from m to n′. Indeed we can show that g(i) ∈ n′ for each i ∈ m.
Proof. Let i ∈ m.

Case i ̸= f−1(n′). Then g(i) = f(i) ∈ succ(n′). If g(i) = n′ then f(i) = n′ =
f(f−1(n′)). Hence if g(i) = n′ then i = f−1(n′). Thus g(i) ̸= n′. Therefore g(i) ∈ n′.
End.

Case i = f−1(n′). Then g(i) = f(m) ̸= f(f−1(n′)) = n′. Hence g(i) ∈ n′. End. Qed.

g is surjective onto n′. Indeed we can show that for all k ∈ n′ there exists a l ∈ m
such that k = g(l).
Proof. Let k ∈ n′. Then f−1(k) ̸= f−1(n′).

Case f−1(k) = m. Then k = f(f−1(k)) = f(m) = g(f−1(n′)). End.

Case f−1(k) ̸= m. Then f−1(k) ∈ m. Indeed f−1(k) ∈ | succ(n′)| = succ(m) =
m ∪ {m}. Hence k = f(f−1(k)) = g(f−1(k)). End. Qed.
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g is injective. Indeed we can show that for all i, j ∈ m if i ̸= j then g(i) ̸= g(j).
Proof. Let i, j ∈ m. Assume i ̸= j.

Case i, j ̸= f−1(n′). Then g(i) = f(i) ̸= f(j) = g(j). End.

Case i = f−1(n′). Then j ̸= f−1(n′). Hence g(i) = g(f−1(n′)) = f(m) ̸= f(j) = g(j).
Indeed m ̸= j. End.

Case j = f−1(n′). Then i ̸= f−1(n′). Hence g(i) = f(i) ̸= f(m) = g(f−1(n′)) = g(j).
Indeed i ̸= m. End. Qed. End. End.

Thus ω ⊆ Φ (by proposition 3.4). Consequently n ∈ Φ. Therefore |n| = n.
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Corollary 7.5. Every element of ω is a cardinal.
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Proposition 7.6. |ω| = ω.

Proof. We have |ω| ≤ ω.

Let us show that |ω| is not less than ω. Assume the contrary. Then |ω| ∈ ω. Take
n = |ω| and a bijection f between n and ω.

Define

g(k) =

{
succ(f(k)) : k < n

0 : k = n

for k ∈ succ(n). Then g is a map from succ(n) to ω.

g is injective. Indeed we can show that for all k, k′ ∈ succ(n) if k ̸= k′ then g(k) ̸=
g(k′).
Proof. Let k, k′ ∈ succ(n). Assume k ̸= k′.

Case k, k′ < n. Then f(k) ̸= f(k′). Hence succ(f(k)) ̸= succ(f(k′)). Thus g(k) ̸=
g(k′). End.

Case k < n and k′ = n. We have succ(f(k)) ̸= 0. Hence g(k) ̸= g(k′). End.

Case k = n and k′ < n. We have succ(f(k′)) ̸= 0. Hence g(k) ̸= g(k′). End. Qed.

g is surjective onto ω. Indeed we can show that for any m ∈ ω there exists a k ∈
succ(n) such that m = g(k).
Proof. Let m ∈ ω. Then f−1(m) ∈ n.

Case m = 0. Then m = g(n). End.

Case m ̸= 0. Take m′ ∈ ω such that m = succ(m′). Then m = succ(m′) =
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succ(f(f−1(m′))) = g(f−1(m′)). Indeed f−1(m′) < n. End. End.

Hence g is a bijection between succ(n) and ω. Then we have |n| = | succ(n)|. Thus
n = succ(n). End.

SET_THEORY_07_2717623053713408

Corollary 7.7. ω is a cardinal.

SET_THEORY_07_5346658235711488

Definition 7.8. Let x be a set. x is finite iff |x| < ω.

SET_THEORY_07_8295412068777984

Definition 7.9. Let x be a set. x is infinite iff x is not finite.

SET_THEORY_07_8808604616359936

Definition 7.10. Let x be a set. x is countable iff |x| ≤ ω.

SET_THEORY_07_2935263915409408

Definition 7.11. Let x be a set. x is uncountable iff x is not countable.

SET_THEORY_07_5679866426949632

Definition 7.12. Let x be a set. x is countably infinite iff |x| = ω.

SET_THEORY_07_3806229474312192

Proposition 7.13. Let x be a set. Then x is finite iff |x| = n for some n ∈ ω.
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Proposition 7.14. Let x be a set. Then x is infinite iff |x| ≥ ω.

Proof. |x| ≥ ω iff |x| ≮ ω.

SET_THEORY_07_4281623468048384

Proposition 7.15. Let x be a set. Then x is uncountable iff |x| > ω.

SET_THEORY_07_4231078585827328

Definition 7.16. Card is the collection of all infinite cardinals.

SET_THEORY_07_4285360123150336

Proposition 7.17. Card is a proper class.

Proof. Suppose that Card is a set. Then
⋃
Card is a set.

Let us show that
⋃
Card contains every ordinal. Let α be an ordinal. Choose an

infinite ordinal β such that β ≥ α. Choose a cardinal κ greater than β. Then
α ∈ κ ∈ Card. Hence α ∈

⋃
Card. End.

Therefore Ord ⊆
⋃
Card. Thus Ord is a set. Contradiction.

SET_THEORY_07_8189062544359424

Proposition 7.18. Let α be an infinite ordinal. Then | succ(α)| = |α|.

Proof. For any β ∈ succ(α) we have β < ω or ω ≤ β < α or β = α. Define

f(β) =


succ(β) : β < ω

β : ω ≤ β < α

0 : β = α

for β ∈ succ(α).

Then f is a map from succ(α) to α. Indeed we can show that f(β) ∈ α for all
β ∈ succ(α).
Proof. Let β ∈ succ(α).

Case β < ω. Then f(β) = succ(β) < ω ≤ α. End.
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Case ω ≤ β < α. Then f(β) = β < α. End.

Case β = α. Then f(β) = 0 < α. End. Qed.

f is surjective onto α. Indeed we can show that for any β ∈ α there exists a γ ∈
succ(α) such that β = f(γ).
Proof. Let β ∈ α. Then β = 0 or 0 < β < ω or β ≥ ω.

Case β = 0. Then β = f(α). End.

Case 0 < β < ω. Take an ordinal β′ such that β = succ(β′). Then β′ < ω. Hence
β = f(β′). End.

Case β ≥ ω. Then β = f(β). End. Qed.

f is injective. Indeed we can show that for all β, γ ∈ succ(α) if β ̸= γ then f(β) ̸=
f(γ).
Proof. Let β, γ ∈ succ(α). Assume β ̸= γ.

Case β < ω. If γ = α then f(β) = succ(β) ̸= 0 = f(γ). If ω ≤ γ < α then
f(β) = succ(β) < ω ≤ γ = f(γ). End.

Case ω ≤ β < α. If γ = α then f(β) = β ≥ ω > 0 = f(γ). If γ < ω then
f(β) = β ≥ ω > succ(γ) = f(γ). End.

Case β = α. If γ < ω then f(β) = 0 ̸= succ(γ) = f(γ). If ω ≤ γ < α then
f(β) = 0 < ω ≤ γ = f(γ). End. Qed.

Hence f is a bijection between succ(α) and α. Therefore succ(α) and α are equinu-
merous. Consequently | succ(α)| = |α|.

SET_THEORY_07_8700732632989696

Proposition 7.19. Every infinite cardinal is a limit ordinal.

Proof. Let κ be an infinite cardinal. Suppose that κ is not a limit ordinal. κ ̸= 0.
Hence κ is a successor ordinal. Thus we can take an ordinal α such that κ = succ(α).
We have α > κ ≥ ω. Hence | succ(α)| = |α|. Thus α < |κ| and κ is equinumerous to
κ. Contradiction.
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