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Proposition 1.1. || = 0.
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Proposition 1.2. Let a be an object. Then |{a}| = 1.

Proof. Define f(z) = 0 for z € {a}. Then f is a map from {a} to 1. f is injective
and surjective onto 1. Hence f is a bijection between {a} and 1. Consequently {a}
and 1 are equinumerous. Thus |[{a}| = |1| = 1. O
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Proposition 1.3. Let a, b be distinct objects. Then |[{a, b}| = 2.

Proof. Define
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for x € {a, b}. Then f is a map from {a, b} to 2. f is injective and surjective
onto 2. Hence f is a bijection between {a, b} and 2. Consequently {a, b} and 2 are

equinumerous. Thus [{a, b}| = |2| = 2.

O

Theorem 1.4. Let n € w. Then |n| = n.
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Proof. Define ® = {n’ € w | |n/| =n'}.
(1) 0 € ®. Indeed |0] = |@] = 0.

(2) For all n’ € ® we have succ(n’) € ®.
Proof. Let n’ € ®. Then |n/| = n/. We have |succ(n’)| < succ(n’).

Let us show that succ(n’) < |succ(n’)|. Assume the contrary. Then |succ(n’)| <
succ(n'). Take a bijection f between |succ(n')| and succ(n’). |succ(n’)| is nonzero.
Hence we can take a m € w such that | succ(n’)| = succ(m). Then f~1(n') < m.

We can show that f~!(n/) < m. Assume the contrary. Then f=*(n/) =m. f | m
is a bijection between m and f[m] (by proposition 8.13). Indeed f is an injective
map from |succ(n’)| to succ(n’) and m C |succ(n)|. We have f[m] C n’ and n’ C
f[m]. Hence f[m] = n’. Thus f | m is a bijection between m and n’. Therefore
n' = |n'| < m < |suce(n’)| < succ(n’). Consequently m = n/. Then we have

succ(n’) = |suce(n')| < succ(n’). Contradiction. End.
Define

LY@ i )
) {f(m) = )

for i € m.

g is a map from m to n’. Indeed we can show that g(i) € n’ for each i € m.

Proof. Let 7 € m.

Case i # f~Y(n'). Then g(i) = f(i) € succ(n’). If g(i) = n’ then f(i) =
F(f~Y(n')). Hence if g(i) = n’ then i = f~*(n’). Thus g(i) # n’. Therefore g(i)

End.

n =
en'.

Case i = f~1(n'). Then g(i) = f(m) # f(f~(n')) = n’. Hence g(i) € n’. End. Qed.

g is surjective onto n'. Indeed we can show that for all k& € n' there exists a | € m

such that k& = g(1).
Proof. Let k € n/. Then f~1(k

Case f~1(k) =m. Then k = f

Case f~(k) # m. Then f~!
mU{m}. Hence k = f(f~1(k)

f7H(k)) = f(m) = g(f~'(n)). End.

=g(f~1(k)). End. Qed.

k) € m. Indeed f~1(k) € |succ(n’)| = succ(m) =
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g is injective. Indeed we can show that for all 4,5 € m if i # j then g(i) # g(j).
Proof. Let i,j € m. Assume i # j.

Case i,j # f~1(n'). Then g(i) = f(i) # f(j) = 9(j). End.

Case = f~1(n'). Then j # f~1(n'). Hence g(3) = g(f (")) = £(m) # £(j) = 9(5)-
Indeed m # j. End.

Case j = f~'(n'). Theni # f~1(n'). Hence g(i) = f(i) # f(m) = g(f 7' (') = g(1)-
Indeed i # m. End. Qed. End. End.

Thus w C ® (by ??). Consequently n € ®. Therefore |n| = n. O
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Corollary 1.5. Every element of w is a cardinal.
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Proposition 1.6. |w| = w.

Proof. We have |w| < w.

Let us show that |w| is not less than w. Assume the contrary. Then |w| € w. Take
n = |w| and a bijection f between n and w.

Define

o(h) = {(S)uCC(f(k)) ke

for k € succ(n). Then g is a map from succ(n) to w.

g is injective. Indeed we can show that for all k, k" € succ(n) if k # k' then g(k) #
g(K').
Proof. Let k, k" € succ(n). Assume k # k'

Case k, k' < n. Then f(k) # f(k'). Hence succ(f(k)) # succ(f(k’)). Thus g(k) #
g(k"). End.

Case k < n and k' = n. We have succ(f(k)) # 0. Hence g(k) # g(k’). End.
Case k = n and k' < n. We have succ(f (k")) # 0. Hence g(k) # g(k’). End. Qed.

g is surjective onto w. Indeed we can show that for any m € w there exists a k €
succ(n) such that m = g(k).
Proof. Let m € w. Then f~1(m) € n.

Case m = 0. Then m = g(n). End.

Case m # 0. Take m’ € w such that m = succ(m’). Then m = succ(m’) =
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succ(f(f~1(m"))) = g(f~*(m')). Indeed f~(m’) < n. End. End.

Hence g is a bijection between succ(n) and w. Then we have |n| = |succ(n)|. Thus
n = succ(n). End. d0
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Corollary 1.7. w is a cardinal.
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Definition 1.8. Let = be a set. z is finite iff |z] < w.
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Definition 1.9. Let = be a set. z is infinite iff  is not finite.
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Definition 1.10. Let x be a set. z is countable iff |z| < w.
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Definition 1.11. Let 2 be a set. x is uncountable iff x is not countable.
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Definition 1.12. Let x be a set. z is countably infinite iff |z| = w.
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Proposition 1.13. Let = be a set. Then z is finite iff |x| = n for some n € w.
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Proposition 1.14. Let x be a set. Then z is infinite iff |z| > w.

Proof. |z| > w iff |z| £ w. O
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Proposition 1.15. Let = be a set. Then z is uncountable iff |z| > w.

SET_THEORY_07_4231078585827328

Definition 1.16. Card is the collection of all infinite cardinals.
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Proposition 1.17. Card is a proper class.

Proof. Suppose that Card is a set. Then | J Card is a set.

Let us show that | JCard contains every ordinal. Let o be an ordinal. Choose an
infinite ordinal 8 such that 8 > «. Choose a cardinal x greater than B. Then
a € k € Card. Hence a € | Card. End.

Therefore Ord C | J Card. Thus Ord is a set. Contradiction. O
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Proposition 1.18. Let « be an infinite ordinal. Then |succ(a)| = |a].

Proof. For any 8 € succ(a)) we have 8 < w or w < § < « or 8 = a. Define

succ(f) :f<w
f(B)=428 w<B<a
0 =«

for 5 € succ(a).

Then f is a map from succ(a) to . Indeed we can show that f(8) € « for all
B € succ(a).
Proof. Let 8 € succ(w).

Case f < w. Then f(B) =succ(f) < w < . End.
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Case w < 8 < a. Then f(8) = < a. End.
Case 8 = . Then f(8) =0 < a. End. Qed.

f is surjective onto a. Indeed we can show that for any S € « there exists a v €
succ(a) such that = f(v).
Proof. Let 5 €a. Then f=00r0< f<wor f > w.

Case f =0. Then 5 = f(a). End.

Case 0 < 8 < w. Take an ordinal 3’ such that 8 = succ(’). Then 8/ < w. Hence
B = f(B). End.

Case f > w. Then g = f(8). End. Qed.

f is injective. Indeed we can show that for all 8,v € succ(a) if 8 # ~ then f(5) #

fn-
Proof. Let 8,7 € succ(a). Assume [ # .

Case f < w. If v = « then f(B) = succ(f) # 0
f(B) = suce(B) <w < v = f(y). End.
Case w < f < a Ify=athen f(f) =8 >w>0= f(y). If v < w then
f(B) =B > w > succ(y) = f(v). End.

Case f = a. If v < w then f(B) = 0 # succ(y) = f(y). If w < v < « then
f(B) =0 <w <~ = f(7). End." Qed.

Hence f is a bijection between succ(a) and «. Therefore succ(e) and « are equinu-
merous. Consequently |succ(a)| = |af. O
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Proposition 1.19. Every infinite cardinal is a limit ordinal.

Proof. Let k be an infinite cardinal. Suppose that k is not a limit ordinal. k # 0.
Hence & is a successor ordinal. Thus we can take an ordinal « such that k = succ(a).
We have a > £ > w. Hence |succ(a)| = || Thus « < |k| and & is equinumerous to
. Contradiction. O
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