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Proposition 1.1. |∅| = 0.

SET_THEORY_07_836893598023680

Proposition 1.2. Let a be an object. Then |{a}| = 1.

Proof. Define f(x) = 0 for x ∈ {a}. Then f is a map from {a} to 1. f is injective
and surjective onto 1. Hence f is a bijection between {a} and 1. Consequently {a}
and 1 are equinumerous. Thus |{a}| = |1| = 1.
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Proposition 1.3. Let a, b be distinct objects. Then |{a, b}| = 2.

Proof. Define

f(x) =

{
0 x = a

1 x = b

1
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for x ∈ {a, b}. Then f is a map from {a, b} to 2. f is injective and surjective
onto 2. Hence f is a bijection between {a, b} and 2. Consequently {a, b} and 2 are
equinumerous. Thus |{a, b}| = |2| = 2.
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Theorem 1.4. Let n ∈ ω. Then |n| = n.

Proof. Define Φ = {n′ ∈ ω | |n′| = n′}.

(1) 0 ∈ Φ. Indeed |0| = |∅| = 0.

(2) For all n′ ∈ Φ we have succ(n′) ∈ Φ.
Proof. Let n′ ∈ Φ. Then |n′| = n′. We have | succ(n′)| ≤ succ(n′).

Let us show that succ(n′) ≤ | succ(n′)|. Assume the contrary. Then | succ(n′)| <
succ(n′). Take a bijection f between | succ(n′)| and succ(n′). | succ(n′)| is nonzero.
Hence we can take a m ∈ ω such that | succ(n′)| = succ(m). Then f−1(n′) ≤ m.

We can show that f−1(n′) < m. Assume the contrary. Then f−1(n′) = m. f ↾ m
is a bijection between m and f [m] (by proposition 8.13). Indeed f is an injective
map from | succ(n′)| to succ(n′) and m ⊆ | succ(n′)|. We have f [m] ⊆ n′ and n′ ⊆
f [m]. Hence f [m] = n′. Thus f ↾ m is a bijection between m and n′. Therefore
n′ = |n′| ≤ m < | succ(n′)| < succ(n′). Consequently m = n′. Then we have
succ(n′) = | succ(n′)| < succ(n′). Contradiction. End.

Define

g(i) =

{
f(i) : i ̸= f−1(n′)

f(m) : i = f−1(n′)

for i ∈ m.

g is a map from m to n′. Indeed we can show that g(i) ∈ n′ for each i ∈ m.
Proof. Let i ∈ m.

Case i ̸= f−1(n′). Then g(i) = f(i) ∈ succ(n′). If g(i) = n′ then f(i) = n′ =
f(f−1(n′)). Hence if g(i) = n′ then i = f−1(n′). Thus g(i) ̸= n′. Therefore g(i) ∈ n′.
End.

Case i = f−1(n′). Then g(i) = f(m) ̸= f(f−1(n′)) = n′. Hence g(i) ∈ n′. End. Qed.

g is surjective onto n′. Indeed we can show that for all k ∈ n′ there exists a l ∈ m
such that k = g(l).
Proof. Let k ∈ n′. Then f−1(k) ̸= f−1(n′).

Case f−1(k) = m. Then k = f(f−1(k)) = f(m) = g(f−1(n′)). End.

Case f−1(k) ̸= m. Then f−1(k) ∈ m. Indeed f−1(k) ∈ | succ(n′)| = succ(m) =
m ∪ {m}. Hence k = f(f−1(k)) = g(f−1(k)). End. Qed.
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g is injective. Indeed we can show that for all i, j ∈ m if i ̸= j then g(i) ̸= g(j).
Proof. Let i, j ∈ m. Assume i ̸= j.

Case i, j ̸= f−1(n′). Then g(i) = f(i) ̸= f(j) = g(j). End.

Case i = f−1(n′). Then j ̸= f−1(n′). Hence g(i) = g(f−1(n′)) = f(m) ̸= f(j) = g(j).
Indeed m ̸= j. End.

Case j = f−1(n′). Then i ̸= f−1(n′). Hence g(i) = f(i) ̸= f(m) = g(f−1(n′)) = g(j).
Indeed i ̸= m. End. Qed. End. End.

Thus ω ⊆ Φ (by ??). Consequently n ∈ Φ. Therefore |n| = n.
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Corollary 1.5. Every element of ω is a cardinal.

SET_THEORY_07_4952029518626816

Proposition 1.6. |ω| = ω.

Proof. We have |ω| ≤ ω.

Let us show that |ω| is not less than ω. Assume the contrary. Then |ω| ∈ ω. Take
n = |ω| and a bijection f between n and ω.

Define

g(k) =

{
succ(f(k)) : k < n

0 : k = n

for k ∈ succ(n). Then g is a map from succ(n) to ω.

g is injective. Indeed we can show that for all k, k′ ∈ succ(n) if k ̸= k′ then g(k) ̸=
g(k′).
Proof. Let k, k′ ∈ succ(n). Assume k ̸= k′.

Case k, k′ < n. Then f(k) ̸= f(k′). Hence succ(f(k)) ̸= succ(f(k′)). Thus g(k) ̸=
g(k′). End.

Case k < n and k′ = n. We have succ(f(k)) ̸= 0. Hence g(k) ̸= g(k′). End.

Case k = n and k′ < n. We have succ(f(k′)) ̸= 0. Hence g(k) ̸= g(k′). End. Qed.

g is surjective onto ω. Indeed we can show that for any m ∈ ω there exists a k ∈
succ(n) such that m = g(k).
Proof. Let m ∈ ω. Then f−1(m) ∈ n.

Case m = 0. Then m = g(n). End.

Case m ̸= 0. Take m′ ∈ ω such that m = succ(m′). Then m = succ(m′) =
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succ(f(f−1(m′))) = g(f−1(m′)). Indeed f−1(m′) < n. End. End.

Hence g is a bijection between succ(n) and ω. Then we have |n| = | succ(n)|. Thus
n = succ(n). End.
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Corollary 1.7. ω is a cardinal.
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Definition 1.8. Let x be a set. x is finite iff |x| < ω.
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Definition 1.9. Let x be a set. x is infinite iff x is not finite.
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Definition 1.10. Let x be a set. x is countable iff |x| ≤ ω.
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Definition 1.11. Let x be a set. x is uncountable iff x is not countable.

SET_THEORY_07_5679866426949632

Definition 1.12. Let x be a set. x is countably infinite iff |x| = ω.

SET_THEORY_07_3806229474312192

Proposition 1.13. Let x be a set. Then x is finite iff |x| = n for some n ∈ ω.
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Proposition 1.14. Let x be a set. Then x is infinite iff |x| ≥ ω.

Proof. |x| ≥ ω iff |x| ≮ ω.
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Proposition 1.15. Let x be a set. Then x is uncountable iff |x| > ω.
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Definition 1.16. Card is the collection of all infinite cardinals.

SET_THEORY_07_4285360123150336

Proposition 1.17. Card is a proper class.

Proof. Suppose that Card is a set. Then
⋃
Card is a set.

Let us show that
⋃
Card contains every ordinal. Let α be an ordinal. Choose an

infinite ordinal β such that β ≥ α. Choose a cardinal κ greater than β. Then
α ∈ κ ∈ Card. Hence α ∈

⋃
Card. End.

Therefore Ord ⊆
⋃
Card. Thus Ord is a set. Contradiction.

SET_THEORY_07_8189062544359424

Proposition 1.18. Let α be an infinite ordinal. Then | succ(α)| = |α|.

Proof. For any β ∈ succ(α) we have β < ω or ω ≤ β < α or β = α. Define

f(β) =


succ(β) : β < ω

β : ω ≤ β < α

0 : β = α

for β ∈ succ(α).

Then f is a map from succ(α) to α. Indeed we can show that f(β) ∈ α for all
β ∈ succ(α).
Proof. Let β ∈ succ(α).

Case β < ω. Then f(β) = succ(β) < ω ≤ α. End.
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Case ω ≤ β < α. Then f(β) = β < α. End.

Case β = α. Then f(β) = 0 < α. End. Qed.

f is surjective onto α. Indeed we can show that for any β ∈ α there exists a γ ∈
succ(α) such that β = f(γ).
Proof. Let β ∈ α. Then β = 0 or 0 < β < ω or β ≥ ω.

Case β = 0. Then β = f(α). End.

Case 0 < β < ω. Take an ordinal β′ such that β = succ(β′). Then β′ < ω. Hence
β = f(β′). End.

Case β ≥ ω. Then β = f(β). End. Qed.

f is injective. Indeed we can show that for all β, γ ∈ succ(α) if β ̸= γ then f(β) ̸=
f(γ).
Proof. Let β, γ ∈ succ(α). Assume β ̸= γ.

Case β < ω. If γ = α then f(β) = succ(β) ̸= 0 = f(γ). If ω ≤ γ < α then
f(β) = succ(β) < ω ≤ γ = f(γ). End.

Case ω ≤ β < α. If γ = α then f(β) = β ≥ ω > 0 = f(γ). If γ < ω then
f(β) = β ≥ ω > succ(γ) = f(γ). End.

Case β = α. If γ < ω then f(β) = 0 ̸= succ(γ) = f(γ). If ω ≤ γ < α then
f(β) = 0 < ω ≤ γ = f(γ). End. Qed.

Hence f is a bijection between succ(α) and α. Therefore succ(α) and α are equinu-
merous. Consequently | succ(α)| = |α|.

SET_THEORY_07_8700732632989696

Proposition 1.19. Every infinite cardinal is a limit ordinal.

Proof. Let κ be an infinite cardinal. Suppose that κ is not a limit ordinal. κ ̸= 0.
Hence κ is a successor ordinal. Thus we can take an ordinal α such that κ = succ(α).
We have α > κ ≥ ω. Hence | succ(α)| = |α|. Thus α < |κ| and κ is equinumerous to
κ. Contradiction.
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