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Theorem 1.1 (Zermelo). Every set is equinumerous to some ordinal.

Proof. Let x be a set.

[prover vampire| Every element of (x U {z})<> is a map. Define

) choose u € x \ range(F') in u : x \ range(F) # 0
GF) = {x :x \ range(F) =0

for F' € (z U {x})<°°. [prover eprover]

Then G is a map from (z U {z})<* to z U {z}. Indeed we can show that for any
F € (zU{z})<>° we have G(F) € zU{z}. Let F € (zU{x})<>®. If z \ range(F') #
then G(F) € z\range(F). If z\range(F) = () then G(F) = x. Hence G(F') € zU{z}.
End. Hence we can take a map F' from Ord to z U {z} that is recursive regarding G.
For any ordinal o we have F [ « € (z U {x})<*>.



1 Zermelo’s well-ordering theorem

For any a € Ord
z\ Fla] #0 implies F(a) € x\ Flo]

and

z\ Fla] =0 implies F(a)=x.
Proof. Let a € Ord. We have Fla] = {F () | 5 € a}. Hence Fla] = {G(F | 5) |
B € a}. We have range(F' | o) = {F(f) | B € a}. Thus range(F [ o) = Fla].
Case z\ F[a] # 0. Then z\range(F | a) # (. Hence F(a) = G(F | ) € x\range(F |
a) =z \ Fla]. End.
Case z \ Fla] # 0. Then z \ range(F | o) = 0. Hence F(a) = G(F | a) = z. End.
Qed.
(1) For any ordinals «, 8 such that o < 8 and F () # « we have F (), F(B) € x and
F(a) # F(P).
Proof. Let o, € Ord. Assume a < 3 and F(8) # x. Then z \ F[3] # 0. (a)
Hence F(B) € =\ F[3]. We have Fla] C F[f]. Thus z \ Fla] # 0. (b) Therefore
F(a) € z\ Fla]. Consequently F(«), F(8) € x (by a, b). We have F(a) € F[3] and
F(8) ¢ F[§). Thus F(a) # F(8). Qed.

(2) There exists an ordinal « such that F(a) = .
Proof. Assume the contrary. Then F is a map from Ord to z.

Let us show that F' is injective. Let o, 8 € Ord. Assume « # S. Then a < (8 or
B < a. Hence F(a) # F(B) (by 1). Indeed F(«a), F(8) # x. End.

Thus F' is an injective map from some proper class to some set. Contradiction. Qed.

Define @ = {a € Ord | F(a) = z}. @ is nonempty. Hence we can take a least
element « of ® regarding €. Take f = F' | . Then f is a map from « to z. Indeed
for no B € a we have F(8) = x. Indeed for all 5 € a we have (8, «) € €.

(3) f is surjective onto x.
Proof. =\ F[a] = (). Hence range(f) = fla] = Fla] = z. Qed.

(4) f is injective.
Proof. Let 8,7 € a. Assume 3 # . We have f(8), f(v) # x. Hence f(8) # f(~) (by
1). Indeed B < v or v < B. Qed.

Therefore f is a bijection between o and x. Consequently x and « are equinumerous.
O

SET_THEORY_05_689384265351168

Corollary 1.2. For every set x there exists a strong wellorder on .

Proof. Let x be a set. Choose an ordinal « that is equinumerous to x. Take a bijection
f between = and a. Define R = {(u,v) | u,v € x and f(u) < f(v)}.



1 Zermelo’s well-ordering theorem

Let us show that R is a strong wellorder on . < is a strong wellorder on «. For all
u,v €  we have (u,v) € R iff f(u) < f(v).

(1) R is irreflexive on x. Indeed for all u € x we have f(u) £ f(u).

(2) R is transitive on z. Indeed for all u,v,w € z if f(u) < f(v) and f(v) < f(w)
then f(u) < f(w).

(3) R is connected on x.
Proof. Let u,v € z. Assume u # v. Then f(u) # f(v). Hence f(u) < f(v) or
f() < f(u) (by ??). Indeed f(u), f(v) are ordinals. Qed.

Hence R is a strict linear order on x.

(4) R is wellfounded on z.

Proof. Let A be a nonempty subclass of . Then we can take a least element 3 of
flA] regarding <. Indeed f[A] is a nonempty subclass of a. Then f~1(3) is a least
element of A regarding R. Qed.

We can show that for all v € x there exists a set y such that y = {u € z | (u,v) € R}.
Let v € z. Define y = {u € z | (u,v) € R}. Then y is a set such that y = {u €
z | (u,v) € R}. End. [prover vampire] Hence R is strongly wellfounded on z (by
definition 11.18). Indeed R is a binary relation. Thus R is a strong wellorder on z.
End. O
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