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Theorem 1.1 (Zermelo). Every set is equinumerous to some ordinal.

Proof. Let x be a set.

[prover vampire] Every element of (x ∪ {x})<∞ is a map. Define

G(F ) =

{
choose u ∈ x \ range(F ) in u : x \ range(F ) ̸= ∅
x : x \ range(F ) = ∅

for F ∈ (x ∪ {x})<∞. [prover eprover]

Then G is a map from (x ∪ {x})<∞ to x ∪ {x}. Indeed we can show that for any
F ∈ (x∪{x})<∞ we have G(F ) ∈ x∪{x}. Let F ∈ (x∪{x})<∞. If x \ range(F ) ̸= ∅
then G(F ) ∈ x\range(F ). If x\range(F ) = ∅ then G(F ) = x. Hence G(F ) ∈ x∪{x}.
End. Hence we can take a map F from Ord to x∪{x} that is recursive regarding G.
For any ordinal α we have F ↾ α ∈ (x ∪ {x})<∞.
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For any α ∈ Ord
x \ F [α] ̸= ∅ implies F (α) ∈ x \ F [α]

and
x \ F [α] = ∅ implies F (α) = x.

Proof. Let α ∈ Ord. We have F [α] = {F (β) | β ∈ α}. Hence F [α] = {G(F ↾ β) |
β ∈ α}. We have range(F ↾ α) = {F (β) | β ∈ α}. Thus range(F ↾ α) = F [α].

Case x\F [α] ̸= ∅. Then x\range(F ↾ α) ̸= ∅. Hence F (α) = G(F ↾ α) ∈ x\range(F ↾
α) = x \ F [α]. End.

Case x \ F [α] ̸= ∅. Then x \ range(F ↾ α) = ∅. Hence F (α) = G(F ↾ α) = x. End.
Qed.

(1) For any ordinals α, β such that α < β and F (β) ̸= x we have F (α), F (β) ∈ x and
F (α) ̸= F (β).
Proof. Let α, β ∈ Ord. Assume α < β and F (β) ̸= x. Then x \ F [β] ̸= ∅. (a)
Hence F (β) ∈ x \ F [β]. We have F [α] ⊆ F [β]. Thus x \ F [α] ̸= ∅. (b) Therefore
F (α) ∈ x \ F [α]. Consequently F (α), F (β) ∈ x (by a, b). We have F (α) ∈ F [β] and
F (β) /∈ F [β]. Thus F (α) ̸= F (β). Qed.

(2) There exists an ordinal α such that F (α) = x.
Proof. Assume the contrary. Then F is a map from Ord to x.

Let us show that F is injective. Let α, β ∈ Ord. Assume α ̸= β. Then α < β or
β < α. Hence F (α) ̸= F (β) (by 1). Indeed F (α), F (β) ̸= x. End.

Thus F is an injective map from some proper class to some set. Contradiction. Qed.

Define Φ = {α ∈ Ord | F (α) = x}. Φ is nonempty. Hence we can take a least
element α of Φ regarding ∈. Take f = F ↾ α. Then f is a map from α to x. Indeed
for no β ∈ α we have F (β) = x. Indeed for all β ∈ α we have (β, α) ∈ ∈.

(3) f is surjective onto x.
Proof. x \ F [α] = ∅. Hence range(f) = f [α] = F [α] = x. Qed.

(4) f is injective.
Proof. Let β, γ ∈ α. Assume β ̸= γ. We have f(β), f(γ) ̸= x. Hence f(β) ̸= f(γ) (by
1). Indeed β < γ or γ < β. Qed.

Therefore f is a bijection between α and x. Consequently x and α are equinumerous.
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Corollary 1.2. For every set x there exists a strong wellorder on x.

Proof. Let x be a set. Choose an ordinal α that is equinumerous to x. Take a bijection
f between x and α. Define R = {(u, v) | u, v ∈ x and f(u) < f(v)}.
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Let us show that R is a strong wellorder on x. < is a strong wellorder on α. For all
u, v ∈ x we have (u, v) ∈ R iff f(u) < f(v).

(1) R is irreflexive on x. Indeed for all u ∈ x we have f(u) ≮ f(u).

(2) R is transitive on x. Indeed for all u, v, w ∈ x if f(u) < f(v) and f(v) < f(w)
then f(u) < f(w).

(3) R is connected on x.
Proof. Let u, v ∈ x. Assume u ̸= v. Then f(u) ̸= f(v). Hence f(u) < f(v) or
f(v) < f(u) (by ??). Indeed f(u), f(v) are ordinals. Qed.

Hence R is a strict linear order on x.

(4) R is wellfounded on x.
Proof. Let A be a nonempty subclass of x. Then we can take a least element β of
f [A] regarding <. Indeed f [A] is a nonempty subclass of α. Then f−1(β) is a least
element of A regarding R. Qed.

We can show that for all v ∈ x there exists a set y such that y = {u ∈ x | (u, v) ∈ R}.
Let v ∈ x. Define y = {u ∈ x | (u, v) ∈ R}. Then y is a set such that y = {u ∈
x | (u, v) ∈ R}. End. [prover vampire] Hence R is strongly wellfounded on x (by
definition 11.18). Indeed R is a binary relation. Thus R is a strong wellorder on x.
End.
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