Chapter 1

Zermelo's well-ordering theorem

File:

set-theory/sections/05_well-ordering-theorem.ftl.tex

[readtex foundations/sections/13_equinumerosity.ftl.tex]
[readtex set-theory/sections/04_recursion.ftl.tex]

SET_THEORY_05_4227480655233024

Theorem 1.1 (Zermelo). Every set is equinumerous to some ordinal.

Proof. Let x be a set.

[prover vampire] Every element of $(x \cup \{x\})^{<\infty}$ is a map. Define

$$G(F) = \begin{cases} \text{choose } u \in x \setminus \text{range}(F) \text{ in } u & : x \setminus \text{range}(F) \neq \emptyset \\ x & : x \setminus \text{range}(F) = \emptyset \end{cases}$$

for $F \in (x \cup \{x\})^{<\infty}$. [prover eprover]

Then G is a map from $(x \cup \{x\})^{<\infty}$ to $x \cup \{x\}$. Indeed we can show that for any $F \in (x \cup \{x\})^{<\infty}$ we have $G(F) \in x \cup \{x\}$. Let $F \in (x \cup \{x\})^{<\infty}$. If $x \setminus \operatorname{range}(F) \neq \emptyset$ then $G(F) \in x \setminus \operatorname{range}(F)$. If $x \setminus \operatorname{range}(F) = \emptyset$ then G(F) = x. Hence $G(F) \in x \cup \{x\}$. End. Hence we can take a map F from **Ord** to $x \cup \{x\}$ that is recursive regarding G. For any ordinal α we have $F \upharpoonright \alpha \in (x \cup \{x\})^{<\infty}$.

For any $\alpha \in \mathbf{Ord}$

 $x \setminus F[\alpha] \neq \emptyset$ implies $F(\alpha) \in x \setminus F[\alpha]$

and

 $x \setminus F[\alpha] = \emptyset$ implies $F(\alpha) = x$.

Proof. Let $\alpha \in \mathbf{Ord}$. We have $F[\alpha] = \{F(\beta) \mid \beta \in \alpha\}$. Hence $F[\alpha] = \{G(F \upharpoonright \beta) \mid \beta \in \alpha\}$. We have range $(F \upharpoonright \alpha) = \{F(\beta) \mid \beta \in \alpha\}$. Thus range $(F \upharpoonright \alpha) = F[\alpha]$.

Case $x \setminus F[\alpha] \neq \emptyset$. Then $x \setminus \operatorname{range}(F \upharpoonright \alpha) \neq \emptyset$. Hence $F(\alpha) = G(F \upharpoonright \alpha) \in x \setminus \operatorname{range}(F \upharpoonright \alpha) = x \setminus F[\alpha]$. End.

Case $x \setminus F[\alpha] \neq \emptyset$. Then $x \setminus \operatorname{range}(F \upharpoonright \alpha) = \emptyset$. Hence $F(\alpha) = G(F \upharpoonright \alpha) = x$. End. Qed.

(1) For any ordinals α, β such that $\alpha < \beta$ and $F(\beta) \neq x$ we have $F(\alpha), F(\beta) \in x$ and $F(\alpha) \neq F(\beta)$.

Proof. Let $\alpha, \beta \in \mathbf{Ord.}$ Assume $\alpha < \beta$ and $F(\beta) \neq x$. Then $x \setminus F[\beta] \neq \emptyset$. (a) Hence $F(\beta) \in x \setminus F[\beta]$. We have $F[\alpha] \subseteq F[\beta]$. Thus $x \setminus F[\alpha] \neq \emptyset$. (b) Therefore $F(\alpha) \in x \setminus F[\alpha]$. Consequently $F(\alpha), F(\beta) \in x$ (by a, b). We have $F(\alpha) \in F[\beta]$ and $F(\beta) \notin F[\beta]$. Thus $F(\alpha) \neq F(\beta)$. Qed.

(2) There exists an ordinal α such that $F(\alpha) = x$. Proof. Assume the contrary. Then F is a map from **Ord** to x.

Let us show that F is injective. Let $\alpha, \beta \in \mathbf{Ord}$. Assume $\alpha \neq \beta$. Then $\alpha < \beta$ or $\beta < \alpha$. Hence $F(\alpha) \neq F(\beta)$ (by 1). Indeed $F(\alpha), F(\beta) \neq x$. End.

Thus F is an injective map from some proper class to some set. Contradiction. Qed.

Define $\Phi = \{ \alpha \in \mathbf{Ord} \mid F(\alpha) = x \}$. Φ is nonempty. Hence we can take a least element α of Φ regarding \in . Take $f = F \upharpoonright \alpha$. Then f is a map from α to x. Indeed for no $\beta \in \alpha$ we have $F(\beta) = x$. Indeed for all $\beta \in \alpha$ we have $(\beta, \alpha) \in \in$.

(3) f is surjective onto x. Proof. $x \setminus F[\alpha] = \emptyset$. Hence range $(f) = f[\alpha] = F[\alpha] = x$. Qed.

(4) f is injective.

Proof. Let $\beta, \gamma \in \alpha$. Assume $\beta \neq \gamma$. We have $f(\beta), f(\gamma) \neq x$. Hence $f(\beta) \neq f(\gamma)$ (by 1). Indeed $\beta < \gamma$ or $\gamma < \beta$. Qed.

Therefore f is a bijection between α and x. Consequently x and α are equinumerous.

SET_THEORY_05_689384265351168

Corollary 1.2. For every set x there exists a strong wellorder on x.

Proof. Let x be a set. Choose an ordinal α that is equinumerous to x. Take a bijection f between x and α . Define $R = \{(u, v) \mid u, v \in x \text{ and } f(u) < f(v)\}.$

Let us show that R is a strong wellorder on x. < is a strong wellorder on α . For all $u, v \in x$ we have $(u, v) \in R$ iff f(u) < f(v).

(1) R is irreflexive on x. Indeed for all $u \in x$ we have $f(u) \not\leq f(u)$.

(2) R is transitive on x. Indeed for all $u, v, w \in x$ if f(u) < f(v) and f(v) < f(w) then f(u) < f(w).

(3) R is connected on x.

Proof. Let $u, v \in x$. Assume $u \neq v$. Then $f(u) \neq f(v)$. Hence f(u) < f(v) or f(v) < f(u) (by ??). Indeed f(u), f(v) are ordinals. Qed.

Hence R is a strict linear order on x.

(4) R is wellfounded on x.

Proof. Let A be a nonempty subclass of x. Then we can take a least element β of f[A] regarding <. Indeed f[A] is a nonempty subclass of α . Then $f^{-1}(\beta)$ is a least element of A regarding R. Qed.

We can show that for all $v \in x$ there exists a set y such that $y = \{u \in x \mid (u, v) \in R\}$. Let $v \in x$. Define $y = \{u \in x \mid (u, v) \in R\}$. Then y is a set such that $y = \{u \in x \mid (u, v) \in R\}$. End. [prover vampire] Hence R is strongly wellfounded on x (by definition 11.18). Indeed R is a binary relation. Thus R is a strong wellorder on x. End.