Chapter 1

Recursion

File:

set-theory/sections/04_recursion.ftl.tex

[readtex set-theory/sections/02_ordinals.ftl.tex]

SET_THEORY_04_7107446027845632

Definition 1.1. Let A be a class and α be an ordinal.

 $A^{<\alpha} = \{f \mid f \text{ is a map from } \beta \text{ to } A \text{ for some ordinal } \beta \text{ less than } \alpha\}.$

SET_THEORY_04_1955917673267200

Definition 1.2. Let A be a class.

 $A^{<\infty} = \{f \mid f \text{ is a map from } \alpha \text{ to } A \text{ for some ordinal } \alpha\}.$

SET_THEORY_04_7841726894964736

Lemma 1.3. Let A be a class and f be a map to A such that dom(f) is a transitive subclass of **Ord** and $\alpha \in \text{dom}(f)$. Then $f \upharpoonright \alpha \in A^{<\infty}$.

SET_THEORY_04_5597213870784512

Definition 1.4. Let H be a map and $G: A^{<\infty} \to A$ for some class A such that H is a map to A. H is recursive regarding G iff dom(H) is a transitive subclass of **Ord** and for all $\alpha \in \text{dom}(H)$ we have

$$H(\alpha) = G(H \upharpoonright \alpha).$$

SET_THEORY_04_2876133366300672

Proposition 1.5. Let A be a class and G be a map from $A^{<\infty}$ to A. Let H, H' be maps to A that are recursive regarding G. Then

 $H(\alpha) = H'(\alpha)$

for all $\alpha \in \operatorname{dom}(H) \cap \operatorname{dom}(H')$.

Proof. Define $\Phi = \{ \alpha \in \mathbf{Ord} \mid \text{if } \alpha \in \operatorname{dom}(H) \cap \operatorname{dom}(H') \text{ then } H(\alpha) = H'(\alpha) \}.$

For all ordinals α if every ordinal less than α lies in Φ then $\alpha \in \Phi$. Proof. Let $\alpha \in \mathbf{Ord}$. Assume that every $y \in \alpha$ lies in Φ .

Let us show that if $\alpha \in \operatorname{dom}(H) \cap \operatorname{dom}(H')$ then $H(\alpha) = H'(\alpha)$. Suppose $\alpha \in \operatorname{dom}(H) \cap \operatorname{dom}(H')$. Then $\alpha \subseteq \operatorname{dom}(H), \operatorname{dom}(H')$. Indeed $\operatorname{dom}(H)$ and $\operatorname{dom}(H')$ are transitive classes. Hence for all $y \in \alpha$ we have $y \in \operatorname{dom}(H) \cap \operatorname{dom}(H')$. Thus H(y) = H'(y) for all $y \in \alpha$. Therefore $H \upharpoonright \alpha = H' \upharpoonright \alpha$. H and H' are recursive regarding G. Hence $H(\alpha) = G(H \upharpoonright \alpha) = G(H' \upharpoonright \alpha) = H'(\alpha)$. End.

Thus $\alpha \in \Phi$. Qed.

[prover vampire] Then Φ contains every ordinal (by ??). Therefore we have $H(\alpha) = H'(\alpha)$ for all $\alpha \in \operatorname{dom}(H) \cap \operatorname{dom}(H')$.

SET_THEORY_04_3600210873810944

Theorem 1.6 (Recursion theorem). Let A be a class and G be a map from $A^{<\infty}$ to A. Then there exists a map F from **Ord** to A that is recursive regarding G.

Proof. Every ordinal is contained in the domain of some map H to A such that H is recursive regarding G.

Proof. Define

 $\Phi = \left\{ \alpha \in \mathbf{Ord} \mid \begin{array}{c} \alpha \text{ is contained in the domain of some map to } A \text{ that is recursive} \\ \text{regarding } G \end{array} \right\}$

Let us show that for every ordinal α if every ordinal less than α lies in Φ then $\alpha \in \Phi$. Let α be an ordinal. Assume that every ordinal less than α lies in Φ . Then for all $y \in \alpha$ there exists a map h to A such that h is recursive regarding G and $y \in \text{dom}(h)$. Define H'(y) = "choose a map h to A such that h is recursive regarding G and $y \in \text{dom}(h)$ in h(y)" for $y \in \alpha$. Then H' is a map from α to A. We have $H' = H' \upharpoonright \alpha$. Define

$$H(\beta) = \begin{cases} H'(\beta) & : \beta < \alpha \\ G(H' \upharpoonright \beta) & : \beta = \alpha \end{cases}$$

for $\beta \in \operatorname{succ}(\alpha)$. Then $H \upharpoonright \beta \in A^{<\infty}$ for all $\beta \in \operatorname{dom}(H)$.

(a) dom(H) is a transitive subclass of **Ord**.

(b) For all $\beta \in \text{dom}(H)$ we have $H(\beta) = G(H \upharpoonright \beta)$. Proof. Let $\beta \in \text{dom}(H)$. Then $\beta < \alpha$ or $\beta = \alpha$.

Case $\beta < \alpha$. Choose a map h to A such that h is recursive regarding G and $\beta \in \text{dom}(h)$ and $H'(\beta) = h(\beta)$.

Let us show that for all $y \in \beta$ we have h(y) = H(y). Let $y \in \beta$. Then H(y) = H'(y). Choose a map h' to A such that h' is recursive regarding G and $y \in \text{dom}(h')$ and H'(y) = h'(y). [prover vampire] Then h'(y) = h(y) (by proposition 1.5). Indeed $y \in \text{dom}(h) \cap \text{dom}(h')$. End.

Hence $h \upharpoonright \beta = H \upharpoonright \beta$. Thus $H(\beta) = H'(\beta) = h(\beta) = G(h \upharpoonright \beta) = G(H \upharpoonright \beta)$. End.

Case $\beta = \alpha$. We have $H \upharpoonright \alpha = H' \upharpoonright \alpha$. End. Qed.

Hence H is a map to A such that H is recursive regarding G and $\alpha \in \text{dom}(H)$. Thus $\alpha \in \Phi$. End.

[prover vampire] Therefore Φ contains every ordinal (by ??). Consequently every ordinal is contained in the domain of some map H to A such that H is recursive regarding G. Qed.

Define $F(\alpha) =$ "choose a map H to A such that H is recursive regarding G and $\alpha \in \text{dom}(H)$ in $H(\alpha)$ " for $\alpha \in \text{Ord}$. Then F is a map from **Ord** to A.

F is recursive regarding G.

Proof. (a) dom(F) is a transitive subclass of **Ord**.

(b) For all $\alpha \in \mathbf{Ord}$ we have $F(\alpha) = G(F \upharpoonright \alpha)$.

Proof. Let $\alpha \in \mathbf{Ord}$. Choose a map H to A such that H is recursive regarding G and $\alpha \in \operatorname{dom}(H)$ and $F(\alpha) = H(\alpha)$.

Let us show that $F(\beta) = H(\beta)$ for all $\beta \in \alpha$. Let $\beta \in \alpha$. Choose a map H' to A such that H' is recursive regarding G and $\beta \in \text{dom}(H')$ and $F(\beta) = H'(\beta)$. [prover vampire] Then $H(\beta) = H'(\beta)$ (by proposition 1.5). Indeed $\beta \in \text{dom}(H) \cap \text{dom}(H')$. Therefore $F(\beta) = H'(\beta)$. End.

Hence $H \upharpoonright \alpha = F \upharpoonright \alpha$. Thus $F(\alpha) = H(\alpha) = G(H \upharpoonright \alpha) = G(F \upharpoonright \alpha)$. Qed. Qed. \Box

SET_THEORY_04_1787371569807360

Theorem 1.7. Let A be a class and G be a map from $A^{<\infty}$ to A. Let F, F' be maps from **Ord** to A that are recursive regarding G. Then F = F'.

Proof. F and F' are recursive regarding G. [prover vampire] Then $F(\alpha) = F'(\alpha)$ for all $\alpha \in \operatorname{dom}(F) \cap \operatorname{dom}(F')$ (by proposition 1.5). Indeed let $\alpha \in \operatorname{dom}(F) \cap \operatorname{dom}(F')$. We have $\operatorname{dom}(F) = \operatorname{Ord} = \operatorname{dom}(F')$. Hence $F(\alpha) = F'(\alpha)$ for all $\alpha \in \operatorname{Ord}$. Thus F = F'.

SET_THEORY_04_8446954438656000

Theorem 1.8. Let A be a class. Let $a \in A$ and $G : \mathbf{Ord} \times A \to A$ and $H : \mathbf{Ord} \times A^{<\infty} \to A$. Then there exists a map F from **Ord** to A such that

F(0) = a

and for all ordinals α we have

$$F(\operatorname{succ}(\alpha)) = G(\alpha, F(\alpha))$$

and for all limit ordinals λ we have

$$F(\lambda) = H(\lambda, F \upharpoonright \lambda).$$

Proof. Define

$$J(f) = \begin{cases} a & : \operatorname{dom}(f) = 0\\ G(\operatorname{pred}(\operatorname{dom}(f)), f(\operatorname{pred}(\operatorname{dom}(f)))) & : \operatorname{dom}(f) \text{ is a successor ordinal}\\ H(\operatorname{dom}(f), f) & : \operatorname{dom}(f) \text{ is a limit ordinal} \end{cases}$$

for $f \in A^{<\infty}$.

Then J is a map from $A^{<\infty}$ to A. Indeed we can show that for any $f \in A^{<\infty}$ we have $J(f) \in A$. Let $f \in A^{<\infty}$. Take $\alpha \in \mathbf{Ord}$ such that $f : \alpha \to A$. If $\alpha = 0$ then $J(f) = a \in A$. If α is a successor ordinal then $J(f) = G(\operatorname{pred}(\alpha), f(\operatorname{pred}(\alpha))) \in A$. If α is a limit ordinal then $J(f) = H(\alpha, f) \in A$. End.

Hence we can take a map F from **Ord** to A that is recursive regarding J. Then $F \upharpoonright \alpha \in A^{<\infty}$ for any ordinal α .

(1) F(0) = a. Proof. $F(0) = J(F \upharpoonright 0) = a$. Qed.

(2) $F(\operatorname{succ}(\alpha)) = G(\alpha, F(\alpha))$ for all ordinals α . Proof. Let α be an ordinal. Then $F(\operatorname{succ}(\alpha)) = J(F \upharpoonright \operatorname{succ}(\alpha)) = G(\operatorname{pred}(\operatorname{succ}(\alpha)), (F \upharpoonright \operatorname{succ}(\alpha))(\operatorname{pred}(\operatorname{succ}(\alpha)))) = G(\alpha, (F \upharpoonright \operatorname{succ}(\alpha))(\alpha)) = G(\alpha, F(\alpha))$. Qed.

(3) $F(\lambda) = H(\lambda, F \upharpoonright \lambda)$ for all limit ordinals λ .	
Proof. Let λ be a limit ordinal. Then $F(\lambda) = J(F \upharpoonright \lambda) = H(\lambda, F \upharpoonright \lambda)$. Qed.	