Chapter 1

Finite ordinals

File:

set-theory/sections/03_finite-ordinals.ftl.tex

[readtex set-theory/sections/02_ordinals.ftl.tex]

Definition 1.1. $\omega = \left\{ n \in \mathbf{Ord} \mid \begin{array}{l} n \in X \text{ for every } X \subseteq \mathbf{Ord} \text{ such that } 0 \in X \text{ and for all} \\ x \in X \text{ we have } \operatorname{succ}(x) \in X \end{array} \right\}.$

SET_THEORY_03_3576717620805632

SET_THEORY_03_4310076227584000

Proposition 1.2. $0 \in \omega$.

SET_THEORY_03_8807317141192704

Proposition 1.3. Let $n \in \omega$. Then $\operatorname{succ}(n) \in \omega$.

SET_THEORY_03_344585425387520

Proposition 1.4. Let $\Phi \subseteq \omega$. Assume that $0 \in \Phi$ and for every $x \in \Phi$ we have $\operatorname{succ}(x) \in \Phi$. Then $\Phi = \omega$.

Proof. Suppose $\Phi \neq \omega$. Consider an element n of ω that is not contained in Φ . Take $\Phi' = \Phi \setminus \{n\}$.

(1) $0 \in \Phi'$. Indeed $0 \in \Phi$ and $0 \neq n$.

(2) For each $x \in \Phi'$ we have $\operatorname{succ}(x) \in \Phi'$. Proof. Let $x \in \Phi'$. Then $\operatorname{succ}(x) \in \Phi$.

Let us show that $\operatorname{succ}(x) \neq n$. Assume $\operatorname{succ}(x) = n$. Then $x \notin \Phi$. Indeed $n \notin \Phi$ and if $x \in \Phi$ then $n = \operatorname{succ}(x) \in \Phi$. Contradiction. End.

Thus $\operatorname{succ}(x) \in \Phi'$. Qed.

Therefore every element of ω lies in Φ' . Indeed $\Phi' \subseteq \mathbf{Ord}$. Consequently $n \in \Phi'$. Contradiction.

SET_THEORY_03_4847727433220096

SET_THEORY_03_5885789275684864

Corollary 1.5. ω is a set.

Proof. Define $f(n) = \operatorname{succ}(n)$ for $n \in \omega$. Take a subset X of ω that is inductive regarding 0 and f. Indeed f is a map from ω to ω . Then we have $0 \in X$ and for each $n \in X$ we have $\operatorname{succ}(n) \in X$. Thus $X = \omega$. Therefore ω is a set. \Box

Proposition 1.6. Let $n \in \omega$. Then n = 0 or $n = \operatorname{succ}(m)$ for some $m \in \omega$.

Proof. Assume the contrary. Consider a $k \in \omega$ such that neither k = 0 nor $k = \operatorname{succ}(m)$ for some $m \in \omega$. Take a class ω' such that $\omega' = \omega \setminus \{k\}$. Then ω' is a set.

(1) $0 \in \omega'$. Indeed $k \neq 0$.

(2) For all $m \in \omega'$ we have $\operatorname{succ}(m) \in \omega'$. Proof. Let $m \in \omega'$. Then $\operatorname{succ}(m) \neq k$. Hence $\operatorname{succ}(m) \in \omega'$. Qed.

Thus every element of ω is contained in ω' . Therefore $k \in \omega'$. Contradiction.

SET_THEORY_03_5057540872208384

Proposition 1.7. Every element of ω is an ordinal.

SET_THEORY_03_764451995254784

Proposition 1.8. ω is a limit ordinal.

Proof. ω is transitive.

Proof. Define $\Phi = \{n \in \omega \mid \text{ for all } m \in n \text{ we have } m \in \omega\}.$

(1) $0 \in \Phi$.

(2) For all $n \in \Phi$ we have $\operatorname{succ}(n) \in \Phi$.

Proof. Let $n \in \Phi$. Then every element of n is contained in ω . Hence every element of $\operatorname{succ}(n)$ is contained in ω . Thus $\operatorname{succ}(n) \in \Phi$. Qed.

Therefore $\omega \subseteq \Phi$. Consequently ω is transitive. Qed.

Every element of ω is an ordinal. Hence every element of ω is transitive. Thus ω is an ordinal.

 ω is a limit ordinal.

Proof. Assume the contrary. We have $\omega \neq 0$. Hence ω is a successor ordinal. Take an ordinal α such that $\operatorname{succ}(\alpha) = \omega$. Then $\alpha \in \omega$. Thus $\omega = \operatorname{succ}(\alpha) \in \omega$. Contradiction. Qed.

SET_THEORY_03_5517271459954688

Proposition 1.9. Let λ be a limit ordinal. Then

 $\omega \leq \lambda.$

Proof. Assume the contrary. Then $\lambda < \omega$. Consequently $\lambda \in \omega$. Hence $\lambda = 0$ or $\lambda = \operatorname{succ}(n)$ for some $n \in \omega$. Thus λ is not a limit ordinal. Contradiction. \Box

SET_THEORY_03_1991057988386816

Definition 1.10. 1 = succ(0).

SET_THEORY_03_5809204518453248

Definition 1.11. 2 = succ(1).

SET_THEORY_03_4388003120152576

Proposition 1.12. $1 = \{0\}.$

SET_THEORY_03_930896899211264

Proposition 1.13. $2 = \{0, 1\}.$