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SET_THEORY_02_229593678086144

Definition 1.1. An ordinal number is a transitive set α such that every element
of α is a transitive set.

Let an ordinal stand for an ordinal number.

SET_THEORY_02_5852994258075648

Definition 1.2. Ord is the class of all ordinals.

SET_THEORY_02_2358097091756032

Proposition 1.3. Let α be an ordinal. Then every element of α is an ordinal.

Proof. Let x be an element of α. Then x is transitive.

Let us show that every element of x is a subset of x. Let y be an element of x. Then
y is a subset of x. Let z be an element of y. Every element of y is an element of x.
Hence z is an element of x. End.
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Thus every element of x is transitive. Therefore x is an ordinal.

SET_THEORY_02_7202164443185152

Proposition 1.4. Let α be an ordinal and x ⊆ α. Then
⋃
x is an ordinal.

Proof. (1)
⋃
x is transitive.

Proof. Let y ∈
⋃
x and z ∈ y. Take w ∈ x such that y ∈ w. Then w ∈ α. Hence w is

transitive. Thus z ∈ w. Therefore z ∈
⋃

x. Qed.

(2) Every element of
⋃
x is transitive.

Proof. Let y ∈
⋃
x. Let z ∈ y and v ∈ z. Take w ∈ x such that y ∈ w. We

have w ∈ α. Hence w is an ordinal. Thus y is an ordinal. Therefore y is transitive.
Consequently v ∈ y. Qed.

1.1 Zero and successors

SET_THEORY_02_8385964858671104

Definition 1.5. 0 = ∅.

Let α is nonzero stand for α ̸= 0.

SET_THEORY_02_8166925802668032

Definition 1.6. Let α be an ordinal. succ(α) = α ∪ {α}.

SET_THEORY_02_8483196888940544

Proposition 1.7. 0 is an ordinal.

Proof. Every element of 0 is a transitive set and every element of 0 is a subset of 0.

SET_THEORY_02_1624410224066560

Proposition 1.8. Let α be an ordinal. Then succ(α) is an ordinal.

Proof. (1) succ(α) is transitive.
Proof. Let x ∈ succ(α) and y ∈ x. Then x ∈ α or x = α. Hence y ∈ α. Thus
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y ∈ succ(α). Qed.

(2) Every element of succ(α) is transitive.
Proof. Let x ∈ succ(α). Then x ∈ α or x = α. Hence x is transitive. Indeed α is
transitive and every element of α is transitive. Qed.

SET_THEORY_02_8651096763400192

Proposition 1.9. Let α, β be ordinals. If succ(α) = succ(β) then α = β.

Proof. Assume succ(α) = succ(β).

(1) α ⊆ β.
Proof. Let γ ∈ α. Then γ ∈ α ∪ {α} = succ(α) = succ(β) = β ∪ {β}. Hence γ ∈ β or
γ = β. Assume γ = β. Then β ∈ α. Hence β = (β ∪ {β}) \ {γ} = (α ∪ {α}) \ {γ} =
(α \ {γ}) ∪ {α}. Therefore α ∈ β. Consequently α ∈ β ∈ α. Contradiction. Qed.

(2) β ⊆ α.
Proof. Let γ ∈ β. Then γ ∈ β ∪ {β} = succ(β) = succ(α) = α ∪ {α}. Hence γ ∈ α or
γ = α. Assume γ = α. Then α ∈ β. Hence α = (α ∪ {α}) \ {γ} = (β ∪ {β}) \ {γ} =
(β \{γ})∪{β}. Therefore β ∈ α. Consequently β ∈ α ∈ β. Contradiction. Qed.

1.2 The standard ordering of the ordinals

SET_THEORY_02_6654252130762752

Definition 1.10. Let α, β be ordinals. α is less than β iff α ∈ β.

Let α < β stand for α is less than β. Let α ≮ β stand for not α < β.

Let α is greater than β stand for β < α. Let α > β stand for β < α. Let α ≯ β stand
for not α > β.

SET_THEORY_02_2639956210089984

Definition 1.11. Let α, β be ordinals. α is less than or equal to β iff α < β or
α = β.

Let α ≤ β stand for α is less than or equal to β. Let α ≰ β stand for not α ≤ β.

Let α is greater than or equal to β stand for β ≤ α. Let α ≥ β stand for β ≤ α. Let
α ≱ β stand for not α ≥ β.
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SET_THEORY_02_3089369577553920

Proposition 1.12. Let α, β be ordinals. Then

α ≤ β implies α ⊆ β.

Proof. Case α ≤ β. Then α < β or α = β. Let x ∈ α. If α < β then x ∈ α ∈ β.
Hence if α < β then x ∈ β. If α = β then x ∈ β. Thus x ∈ β. End.

SET_THEORY_02_6229364135952384

Proposition 1.13. Let α be an ordinal. Then

α ≮ α.

Proof. Assume α < α. Then α ∈ α. Contradiction.

SET_THEORY_02_7098683017396224

Proposition 1.14. Let α, β, γ be ordinals. Then

(α < β and β < γ) implies α < γ.

Proof. Assume α < β and β < γ. Then α ∈ β ∈ γ. Hence α ∈ γ. Thus α < γ.

SET_THEORY_02_1718825707896832

Proposition 1.15. Let α, β be ordinals. Then α < β or α = β or α > β.

Proof. Assume the contrary. Define

A =

{
α′ ∈ Ord

∣∣∣∣ there exists an ordinal β′ such that neither α′ < β′ nor α′ = β′

nor α′ > β′

}
.

A is nonempty. Hence we can take a least element α′ of A regarding ∈. Define

B = {β′ ∈ Ord | neither α′ < β′ nor α′ = β′ nor α′ > β′}.

B is nonempty. Hence we can take a least element β′ of B regarding ∈.

Let us show that α′ ⊆ β′. Let a ∈ α′. Then a < β′ or a = β′ or a > β′. Indeed if
neither a < β′ nor a = β′ nor a > β′ then a ∈ A. If a = β′ then β′ < α′. If a > β′

then β′ < α′. Hence a < β′. Thus a ∈ β′. End.
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Let us show that β′ ⊆ α′. Let b ∈ β′. Then b < α′ or b = α′ or b > α′. If b = α′ then
α′ < β′. If b > α′ then α′ < β′. Hence b < α′. Thus b ∈ α′. End.

Hence α′ = β′. Contradiction.

SET_THEORY_02_610496856195072

Proposition 1.16. Let α, β be ordinals. Then

α ⊆ β implies α ≤ β.

Proof. Assume α ⊆ β.

Case α = β. Trivial.

Case α ̸= β. Then α < β or α > β. Assume α > β. Then β ∈ α. Hence β ∈ β.
Contradiction. End.

SET_THEORY_02_5689190964527104

Proposition 1.17. Let α be an ordinal. Then

α < succ(α).

SET_THEORY_02_4064972025888768

Proposition 1.18. Let α, β be ordinals. Then

β < succ(α) implies β ≤ α.

Proof. Assume β < succ(α). Then β ∈ succ(α) = α ∪ {α}. Hence β ∈ α or β ∈ {α}.
Thus β < α or β = α. Therefore β ≤ α.

SET_THEORY_02_8242798790705152

Proposition 1.19. Let α be an ordinal. There exists no ordinal β such that
α < β < succ(α).

Proof. Assume the contrary. Consider an ordinal β such that α < β < succ(α). Then
β < α or β = α. Hence α < α. Contradiction.



1 Ordinal numbers 6

1.3 Successor and limit ordinals

SET_THEORY_02_7129712109289472

Definition 1.20. A successor ordinal is an ordinal α such that α = succ(β) for
some ordinal β.

SET_THEORY_02_4240355610329088

Proposition 1.21. Let α be an ordinal. There exists no ordinal β such that
α < β < succ(α).

Proof. Assume the contrary. Choose an ordinal β such that α < β < succ(α). Then
α ∈ β ∈ α ∪ {α}. Hence β ∈ α or β = α. Then α ∈ α. Contradiction.

SET_THEORY_02_735071524880384

Definition 1.22. Let α be a successor ordinal. pred(α) is the ordinal β such
that α = succ(β).

SET_THEORY_02_7678388934279168

Definition 1.23. A limit ordinal is an ordinal λ such that neither λ is a successor
ordinal nor λ = 0.

SET_THEORY_02_4659024620421120

Proposition 1.24. Let λ be a limit ordinal and α ∈ λ. Then λ contains succ(α).

Proof. If succ(α) /∈ λ then α < λ < succ(α).

SET_THEORY_03_2217148434874368

Theorem 1.25 (Burali-Forti). Ord is a proper class.

Proof. Assume that Ord is a set. Ord is transitive and every element of Ord is
transitive. Hence Ord is an ordinal. Thus Ord ∈ Ord. Contradiction.
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1.4 Transfinite induction

SET_THEORY_02_4059354166722560

Definition 1.26.

< = {(α, β) | α and β are ordinals such that α < β}.

SET_THEORY_02_4859038791630848

Proposition 1.27. < is a strong wellorder on Ord.

Proof. For any ordinals α, β we have (α, β) ∈ < iff α < β.

(1) < is irreflexive on Ord. Indeed for any ordinal α we have α ≮ α.

(2) < is transitive on Ord. Indeed for any ordinals α, β, γ if α < β and β < γ then
α < γ.

(3) < is connected on Ord. Indeed for any distinct ordinals α, β we have α < β or
β < α.

Hence < is a strict linear order on Ord.

(4) < is wellfounded on Ord.
Proof. Let A be a nonempty subclass of Ord. Then we can take a least element α of
A regarding ∈. Then α is a least element of A regarding <. Qed.

Hence < is strongly wellfounded on Ord. Indeed for any β ∈ Ord we have β = {α ∈
Ord | (α, β) ∈ <}. Thus < is a strong wellorder on Ord.

SET_THEORY_02_1042046129274880

Corollary 1.28. Let A be a subclass of Ord. If A is nonempty then A has a
least element regarding <.

SET_THEORY_02_1991423647809536

Corollary 1.29. Let A be a subclass of Ord. If A is nonempty then A has a
least element regarding ∈.
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SET_THEORY_03_8114657499807744

Proposition 1.30. < is a strong wellorder on any ordinal.

Proof. Let α be an ordinal. For all β, γ ∈ α we have (β, γ) ∈ < iff β < γ.

(1) < is irreflexive on α. Indeed for all β ∈ α we have α ≮ α.

(2) < is transitive on α. Indeed for all β, γ, δ ∈ α if β < γ and γ < δ then β < δ.

(3) < is connected on α. Indeed for any distinct β, γ ∈ α we have β < γ or γ < β.

Hence < is a strict linear order on α.

(4) < is wellfounded on α.
Proof. Let A be a nonempty subclass of α. Then we can take a least element β of A
regarding <. Indeed A is a subclass of Ord. Qed.

Hence < is strongly wellfounded on α. Indeed for any γ ∈ α we have γ = {β ∈ Ord |
(β, γ) ∈ <}. Thus < is a strong wellorder on α. [unfold off]

Note: In the proof below 11.24 refers to the Foundations library!

SET_THEORY_02_8493935460614144

Theorem 1.31. Let Φ be a class. Assume that for all ordinals α if Φ contains
all ordinals less than α then Φ contains α. Then Φ contains every ordinal.

Proof. Define B = {x | x is a set and if x ∈ Ord then x ∈ Φ}.

Let us show that for all sets x if B contains every element of x that is a set then B
contains x. Let x be a set. Assume that every element of x that is a set is contained
in B.

Case x /∈ Ord. Trivial.

Case x ∈ Ord. Then Φ contains all ordinals less than x. Hence Φ contains x. Thus
x ∈ B. End. End.

[prover vampire] Hence B contains every set (by 11.24). Thus Φ contains every
ordinal.

SET_THEORY_02_7892040431960064

Theorem 1.32. Let Φ be a class. (Initial case) Assume that Φ contains 0.
(Successor step) Assume that for all ordinals α if α ∈ Φ then succ(α) ∈ Φ.
(Limit step) Assume that for all limit ordinals λ if every ordinals less than λ is
contained in Φ then λ ∈ Φ. Then Φ contains every ordinal.

Proof. Let us show that for all ordinals α if Φ contains all ordinals less than α then
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Φ contains α. Let α be an ordinal. Then α = 0 or α is a successor ordinal or α is a
limit ordinal. Assume that Φ contains all ordinals less than α.

Case α = 0. Trivial.

Case α is a successor ordinal. Take an ordinal β such that α = succ(β). Then β ∈ Φ.
Hence α ∈ Φ (by successor step). End.

Case α is a limit ordinal. Then β ∈ Φ for all ordinals β less than α. Hence α ∈ Φ (by
limit step). End. End.

[prover vampire] Thus Φ contains every ordinal (by 1.31).
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