Square roots of primes are irrational

(Strictly) positive rational numbers

[synonym number/-s] [synonym divide/-s]
Signature 1. A positive rational number is an object.
Let q, s, r stand for positive rational numbers.
Signature 2. $r \cdot q$ is a positive rational number.
Axiom 3. $r \cdot q=q \cdot r$.
Axiom 4. $r \cdot(q \cdot s)=(r \cdot q) \cdot s$.
Definition 5. q is left cancellative iff for all r, s if $q \cdot s=q \cdot r$ then $s=r$.
Axiom 6. Every positive rational number is left cancellative.

Natural numbers

Signature 7. A natural number is a positive rational number.
Let m, n, k denote natural numbers.
Signature 8. 1 is a natural number.
Axiom 9. $n \cdot m$ is a natural number.
Definition 10. $n \mid m$ iff there exists k such that $k \cdot n=m$.
Let n divides m stand for $n \mid m$. Let a divisor of m stand for a natural number that divides m.

Prime numbers

Definition 11. Let p be a natural number. p is prime iff $p \neq 1$ and for all m, n if $p \mid n \cdot m$ then $p \mid n$ or $p \mid m$.
Let a prime number stand for a prime natural number.
Let p denote a prime number.

Definition 12. n and m are coprime iff n and m have no common prime divisor.
Axiom 13. There exist coprime m, n such that $m \cdot q=n$.
Let q^{2} stand for $q \cdot q$.
Proposition 14. $q^{2}=p$ for no positive rational number q.
Proof by contradiction. Assume the contrary. Take a positive rational number q such that $p=q^{2}$. Take coprime m, n such that $m \cdot q=n$. Then $p \cdot m^{2}=n^{2}$. Therefore p divides n. Take a natural number k such that $n=k \cdot p$. Then $p \cdot m^{2}=p \cdot(k \cdot n)$. Therefore $m \cdot m$ is equal to $p \cdot k^{2}$. Hence p divides m. Contradiction.

