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1 Basic Ideas

The natural proof assistant Naproche is intended to approximate and sup-
port ordinary mathematical practices. Naproche employs the controlled
natural language ForTheL as its input language. Some ForTheL notions are
already built into Naproche, as well as some basic properties of these no-
tions. There are mathematical objects, and sets and classes of mathematical
objects. Sets are classes which are objects themselves and can thus be used
in further mathematical constructions. Functions and maps map objects to
objects, where functions are those maps which are objects.

Modelling mathematical notions by objects corresponds to the intuition
that numbers, points, etc. should not have internal set-theoretical structur-
ings, contrary to purely set-theoretical foundations of mathematics. This is
also advantageous for automated proving since it prevents proof searches to
dig into non-informative internal structurings.

As in common mathematics, sets and functions are required to satisfy
separation and replacement properties known from the set theories of Kelley-
Morse or Zermelo-Fraenkel.

The ontology presented here is more hierarchical than ad-hoc first-order
axiomatizations in some previous Naproche formalizations. Sometimes this
results in more complex and longer ontological checking tasks. Controlling
the complexitiy of automated proofs will be a major issue for the further
development.

2 Importing Some Mathematical Language

We import singular/plural forms of words that will be used in our formal-
izations (examples/vocabulary.ftl.tex). In the long run this should be
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replaced by employing a proper English vocabulary. We also import some al-
ternative formulations for useful mathematical phrases (examples/macros.
ftl.tex).

[readtex axioms.ftl.tex]

[readtex vocabulary.ftl.tex]

[readtex macros.ftl.tex]

3 Sets and Classes

The notions of classes and sets are already provided by Naproche. Classes
are usually defined by abstraction terms {· · · | . . . }. Since such terms need
to be processed by the parser we cannot introduce them simply by first-
order definitions but have to implement them in the software. That sets
are classes which are objects, or extensionality can be proved from inbuilt
assumptions, but it is important to reprove or restate such facts so that they
can directly be accessed by the ATP.

Let S, T denote classes.

Definition 1. The empty set is the set that has no elements.

Definition 2. A subclass of S is a class T such that every x ∈ T belongs
to S.

Let T ⊆ S stand for T is a subclass of S.

Let a proper subclass of S stand for a subclass T of S such that T ̸= S.

Lemma 3 (Class Extensionality). If S is a subclass of T and T is a
subclass of S then S = T .

Definition 4. A subset of S is a set X such that X ⊆ S.

Let a proper subset of S stand for a subset X of S such that X ̸= S.

Axiom 5 (Separation Axiom). Assume that X is a set. Let T be a
subclass of X. Then T is a set.

Definition 6. The intersection of S and T is {x ∈ S | x ∈ T}.

Let S ∩ T stand for the intersection of S and T .

Definition 7. The union of S and T is {x | x ∈ S ∨ x ∈ T}.
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Let S ∪ T stand for the union of S and T .

Definition 8. The set difference of S and T is {x ∈ S | x /∈ T}.

Let S \ T stand for the set difference of S and T .

Definition 9. S is disjoint from T iff there is no element of S that is
an element of T .

Definition 10. A family is a set F such that every element of F is a
set.

Definition 11. A disjoint family is a family F such that X is disjoint
from Y for all nonequal elements X,Y of F .

4 Pairs and Products

Since we prefer objects over sets if possible, we do not work with Kuratowski-
style set-theoretical ordered pairs, but axiomatize them as objects.

Axiom 12. For any objects a, b, c, d if (a, b) = (c, d) then a = c and
b = d.

Definition 13. S × T = {(x, y) | x ∈ S and y ∈ T}.
Axiom 14. Let X,Y be sets. Then X × Y is a set.

Lemma 15. Let x, y be objects. If (x, y) is an element of S×T then x
is an element of S and y is an element of T .

5 Functions and Maps

The treatment of functions and maps is similar to that of sets and classes.

Let f stand for a map.

Axiom 16. Assume that dom(f) is a set and f(x) is an object for any
x ∈ dom(f). Then f is a function.

Definition 17. Assume S is a subclass of the domain of f . f [S] =
{f(x) | x ∈ S}.

Let the image of f stand for f [dom(f)].

Definition 18. f maps elements of S to elements of T iff dom(f) = S
and f [S] ⊆ T .
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Let f : S → T stand for f maps elements of S to elements of T .

Axiom 19 (Replacement Axiom). Let X be a set. Assume that X
is a subset of the domain of f . Then f [X] is a set.

Let g retracts f stand for g(f(x)) = x for all elements x of dom(f). Let
h sections f stand for f(h(y)) = y for all elements y of dom(h).

Definition 20. f : S ↔ T iff f : S → T and there exists a map g such
that g : T → S and g retracts f and g sections f .
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