König's Theorem

Naproche formalization:

Steffen Frerix and Peter Koepke University of Bonn

2018 - 2021

König's Theorem is an important set-theoretical result about the arithmetic of cardinals. It was proved by Julius König in 1905 [1, p. 177–180]. The proof is reminiscent of Cantor's diagonal argument for proving that $\kappa < 2^{\kappa}$.

On mid-range hardware Naproche needs approximately 2 Minutes to verify this formalization plus approximately 25 minutes to verify the library files it depends on.

[readtex set-theory/sections/06_cardinals.ftl.tex] Let f_i stand for f(i).

Sums and Products of cardinals

Let D denote a set.

Definition. A sequence of cardinals on D is a function κ such that dom $(\kappa) = D$ and κ_i is a cardinal for every element i of D.

Definition. Let κ be a sequence of cardinals on D.

 $\bigsqcup_{i \in D} \kappa_i = \{(n, i) \mid i \text{ is an element of } D \text{ and } n \text{ is an element of } \kappa_i\}.$

Axiom. Let κ be a sequence of cardinals on D. Then $\bigsqcup_{i \in D} \kappa_i$ is a set. **Definition.** Let κ be a sequence of cardinals on D.

$$\sum_{i\in D} \kappa_i = \left| \bigsqcup_{i\in D} \kappa_i \right|.$$

Definition. Let κ be a sequence of cardinals on D.

 $\sum_{i \in D} \kappa_i = \left\{ f \mid f \text{ is a function and } \operatorname{dom}(f) = D \text{ and } f(i) \text{ is an element of} \\ \kappa_i \text{ for every element } i \text{ of } D \right\}.$

Axiom. Let κ be a sequence of cardinals on D. Then $X_{i \in D} \kappa_i$ is a set.

Definition. Let κ be a sequence of cardinals on D.

$$\prod_{i\in D}\kappa_i = \left| \bigotimes_{i\in D}\kappa_i \right|.$$

König's Theorem requires some form of the axiom of choice. Currently choice is built into Naproche by the *choose* construct in function definitions. The axiom of choice is also required to show that products of non-empty factors are themselves non-empty:

Lemma (Choice). Let λ be a sequence of cardinals on D. Assume that λ_i has an element for every element i of D. Then $\bigotimes_{i \in D} \lambda_i$ has an element. *Proof.* Define f(i) = "choose an element v of λ_i in v" for i in D. Then f is an element of $\bigotimes_{i \in D} \lambda_i$.

König's theorem

Theorem (König). Let κ, λ be sequences of cardinals on D. Assume that for every element i of $D \kappa_i < \lambda_i$. Then

$$\sum_{i\in D}\kappa_i < \prod_{i\in D}\lambda_i.$$

Proof by contradiction. Assume the contrary. Then

$$\prod_{i \in D} \lambda_i \le \sum_{i \in D} \kappa_i$$

Take a surjective map G from $\bigsqcup_{i \in D} \kappa_i$ to $X_{i \in D} \lambda_i$. Indeed $X_{i \in D} \lambda_i$ and $\sum_{i \in D} \kappa_i$ are nonempty sets. Take $\Lambda = \bigcup \operatorname{range}(\lambda)$. Then Λ is a set. Indeed $\operatorname{range}(\lambda)$ is a set.

Define $\Delta(i) = \{G(n,i)(i) \in \Lambda \mid n \in \kappa_i\}$ for $i \in D$.

For every element f of $X_{i \in D} \lambda_i$ and every element i of D we have $f(i) \in \Lambda$.

For every element *i* of *D* we have $|\Delta(i)| < \lambda_i$.

Proof. Let *i* be an element of *D*. Define F(n) = G(n,i)(i) for *n* in κ_i . Then *F* is a map from κ_i to λ_i . We have $\Delta(i) = \{F(n) \mid n \in \kappa_i\}$. Thus $F[\kappa_i] = \Delta(i)$. Therefore $|\Delta(i)| = |F[\kappa_i]| \le |\kappa_i| = \kappa_i < \lambda_i$. Indeed $|F[\kappa_i]| \le |\kappa_i|$ (by proposition 6.10). Indeed κ_i and λ_i are sets. End.

Define f(i) = "choose an element v of $\lambda_i \setminus \Delta(i)$ in v" for $i \in D$. Indeed $\lambda_i \setminus \Delta(i)$ is nonempty for each $i \in D$. Then f is an element of $\bigotimes_{i \in D} \lambda_i$. Take an element j of D and an element m of κ_j such that G(m, j) = f. G(m, j)(j) is an element of $\Delta(j)$ and f(j) is not an element of $\Delta(j)$. Contradiction.

References

[1] Julius König, Zum Kontinuumsproblem; Mathematische Annalen 60 (1905)