A Hilbert-style calculus embedded into Naproche

Adrian De Lon (2021)

The basic rules of the calculus are given as axioms. Then further derived rules are proven as propositions.

1 The implicational propositional calculus

[synonym formula/-s/-e] Signature 1. A formula is an object. Let P, Q, R, S denote formulas. **Signature 2.** $P \supset Q$ is a formula. **Signature 3.** $\vdash P$ is a relation. Let P is deducible stand for $\vdash P$. Axiom 4 (Detachment). Suppose $\vdash P$ and $\vdash P \supset Q$. Then $\vdash Q$. Axiom 5 (Implosion). $\vdash P \supset (Q \supset P)$. **Axiom 6 (Chain).** \vdash $(P \supset (Q \supset R)) \supset ((P \supset Q) \supset (P \supset R)).$ **Proposition 7 (Weakening).** (0) Assume $\vdash Q$. Then $\vdash P \supset Q$. *Proof.* $(1) \vdash Q \supset (P \supset Q)$ (by Implosion). $(2) \vdash P \supset Q$ (by Detachment, 0, 1). **Proposition 8 (Weakening of implication).** (0) Assume $\vdash Q \supset R$. Then $\vdash (P \supset Q) \supset (P \supset R)$. *Proof.* (1) $\vdash P \supset (Q \supset R)$ (by Weakening, 0). $(2) \vdash (P \supset (Q \supset R)) \supset ((P \supset Q) \supset (P \supset R))$ (by Chain). $(3) \vdash (P \supset Q) \supset (P \supset R)$ (by Detachment, 1, 2). **Proposition 9 (Transitivity).** (0) Suppose $\vdash P \supset Q$ and $\vdash Q \supset R$. Then $\vdash P \supset R.$ *Proof.* $(1) \vdash (P \supset Q) \supset (P \supset R)$ (by Weakening of implication, 0). (2) $\vdash P \supset R$ (by Detachment, 0, 1). **Proposition 10 (Identity).** $\vdash P \supset P$.

Proof. $(1) \vdash (P \supset ((P \supset P) \supset P)) \supset ((P \supset (P \supset P)) \supset (P \supset P))$ (by
Chain). $(2) \vdash P \supset ((P \supset P) \supset P)$ (by Implosion). $(3) \vdash (P \supset (P \supset P)) \supset (P \supset P)$ (by 1, 2, Detachment). $(4) \vdash P \supset (P \supset P)$ (by Implosion). $(5) \vdash P \supset P$ (by 3, 4, Detachment).(5) \vdash P \supset P (by 3, 4, Detachment).**Proposition 11.** (0) Suppose \vdash P \supset (P \supset Q). Then \vdash P \supset Q.Proof. $(1) \vdash (P \supset (P \supset Q)) \supset ((P \supset P) \supset (P \supset Q))$ (by Chain). $(2) \vdash (P \supset P) \supset (P \supset Q)$ (by 0, 1, Detachment). $(3) \vdash P \supset P$ (by Identity). $(4) \vdash P \supset Q$ (by 2, 3, Detachment).

2 Adding negation

Signature 12 (Falsum). \bot is a formula. Let $\neg P$ stand for $P \supset \bot$. Axiom 13 (Double negation). $\vdash \neg \neg P \supset P$. Proposition 14 (Explosion). $\vdash \bot \supset P$.