Beginnings of Tarskian geometry in Naproche (draft)

Abstract

We present a literate formalization of the beginnings of Tarskian geometry. We follow Metamathematische Methoden in der Geometrie by Schwabhäuser, Szmielew, and Tarski (SST), covering most of the material up to Satz 6.7, including Gupta's result that outer Pasch follows from inner Pasch. Throughout, figures help the human reader keep up with the automated theorem prover.

1. Introduction

Tarski's axiomatization of geometry is characterized by its logical elegance, relying only on two basic relations between points and a few simple axioms. These properties make Tarskian geometry attractive for formalization: in particular for research in automated deduction, see for instance Narboux (2006), Beeson and Wos (2017). For more detailed accounts of Tarski's axioms and their history see SST, Beeson (2015), and Narboux (2006).

2. The language of Tarskian geometry

The only objects under consideration are points. They are subject to two primitive relations: quaternary congruence $(-)(-) \equiv(-)(-)$ and ternary betweenness $(-)(-)(-)$. Congruence (also called equidistance) expresses that the distance between the first two points is equal to the distance of the last two points, and betweenness expresses that the second point lies between the other two on a shared line. Informally we will also talk about segments and lines, indicating them by concatenation $(-)(-)$ of points.
2.1. Signature. A point is an object.
2.2. Convention. Let a, b, c, d, e, f denote points.
2.3. Signature (Congruence). $a b \equiv c d$ is a relation.
2.4. Convention. Let $a b \not \equiv c d$ stand for it is wrong that $a b \equiv c d$.
2.5. Signature (Betweenness). $a b c$ is a relation.

Points are collinear when they lie on a single line. We will later see that betweenness is symmetric ($a b c$ implies $c b a$), so we only need to consider three of the six permutations
of three points in the definition of collinearity.
2.6. Definition (Collinearity). a is collinear with b and c iff $a b c$ or $b c a$ or $c a b$.
2.7. Axiom (Reflexivity of congruence). We have $a b \equiv b a$.
2.8. Axiom (Pseudotransitivity of congruence). If $c d \equiv a b$ and $c d \equiv e f$ then $a b \equiv e f$.
2.9. Axiom (Identity of congruence). If $a b \equiv c c$ then $a=b$.

Segment construction allows us to extend a segment $a b$ by a length specified by another segment $d e$.
2.10. Axiom (Segment construction). There exists a point c such that $a b c$ and $b c \equiv d e$.

We say that the points x, y, z, r, u, v, w, p are in an outer five segment configuration whenever OFS $\left(\begin{array}{llll}x & y & z^{r} \\ u & v & w & p\end{array}\right)$.
2.11. Convention. Let $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}$ denote points. Let $x, y, z, u, v, w, p, q, r$ denote points.
2.12. Definition. OFS $\left(\begin{array}{ccc}x & y & z \\ u & v & w\end{array}\right)$ if and only if $x y z \wedge u v w$ and we have $x y \equiv u v \wedge y z \equiv$ $v w \wedge x r \equiv u p \wedge y r \equiv v p$.

Using the concept of an outer five segment configuration, we can state the five segment axiom in a concise form.

2.13. Axiom (Five segment axiom). If OFS $\left(\begin{array}{ccc}a & b & c \\ a^{\prime} & b^{\prime} & c^{\prime} \\ d^{\prime}\end{array}\right)$ and $a \neq b$ then $c d \equiv c^{\prime} d^{\prime}$.
2.14. Axiom (Identity of betweenness). If $a b a$ then $a=b$.

Tarski splits the classical axiom of Pasch into two axioms by making an inner/outer distinction, leading to logically simpler statements. We will later see that outer Pasch follows from inner Pasch, which was first demonstrated by Gupta (1965).
2.15. Axiom (Inner Pasch). If $x u z$ and $y v z$ then there exists a point w such that $u w y$ and $v w x$.
2.16. Axiom (Lower dimension). There exist points α, β, γ such that α is not collinear with β and γ.
2.17. Axiom (Upper dimension). If $x u \equiv x v$ and $y u \equiv y v$ and $z u \equiv z v$ and $u \neq v$ then x is collinear with y and z.
2.18. Axiom (Euclid). Assume $x \neq r$. If $x r v$ and $y r z$ then there exist points s, t such that $x y s$ and $x z t$ and svt.

Circle continuity is equivalent to the the statement a line that has a point within a circle intersects that circle.

2.19. Axiom (Circle continuity). Assume $x a b$ and $x b c$. Assume $x a^{\prime} \equiv x a$ and $x c^{\prime} \equiv x c$. Then there exists a point b^{\prime} such that $x b^{\prime} \equiv x b$ and $a^{\prime} b^{\prime} c^{\prime}$.
2.20. Lemma (Reflexivity of congruence). For all points x, y we have $x y \equiv x y$.
2.21. Lemma (Symmetry of congruence). If $x y \equiv v w$ then $v w \equiv x y$.
2.22. Lemma (Transitivity of congruence). If $x y \equiv v w$ and $v w \equiv p q$ then $x y \equiv p q$.
2.23. Lemma (Congruence is independent of the order of the pairs). If $x y \equiv v w$ then $y x \equiv v w$.
2.24. Lemma. If $x y \equiv v w$ then $x y \equiv w v$.
2.25. Lemma (Zero segments are congruent). For all point x, y we have $x x \equiv y y$.
2.26. Lemma (Concatenation of segments). Assume $x y z$ and $r v w$. Assume $x y \equiv r v$ and $y z \equiv v w$. Then $x z \equiv r w$.
Proof. We have OFS $\left(\begin{array}{cccc}x & y & z & x \\ r & v & w & r\end{array}\right)$. If $x=y$ then $r=v$. If $x \neq y$ then $x z \equiv r w$.
2.27. Lemma (Uniqueness of segment construction). Assume $a \neq b$. Suppose $a b c$ and $b c \equiv d e$. Suppose $a b c^{\prime}$ and $b c^{\prime} \equiv d e$. Then $c=c^{\prime}$.

Proof. We have $a c \equiv a c^{\prime}$. Thus $b c \equiv b c^{\prime}$. Thus OFS $\left(\begin{array}{lll}a & b & c \\ a & b & c \\ c^{\prime}\end{array}\right)$. Therefore $c c \equiv c c^{\prime}$.
2.28. Lemma (Right betweenness). For all points x, y we have $x y y$.
2.29. Lemma (Symmetry of betweenness). Assume $x y z$. Then $z y x$.

Left betweenness follows directly from right betweenness and symmetry of betweenness.
2.30. Lemma (Left betweenness). For all points x, y we have $x x y$.
2.31. Lemma. Assume $x y z$ and $y x z$. Then $x=y$.

Proof. Take a point w such that $y w y$ and $x w x$. Then $x=w=y$.
2.32. Lemma. Assume $x y v$ and $y z v$. Then $x y z$.

Proof. Take a point w such that $y w y$ and $z w x$.
2.33. Lemma. Assume $x y z$ and $y z r$ and $y \neq z$. Then $x z r$.

Proof. Take v such that $x z v$ and $z v \equiv z r$. Then $y z v$ and $z v \equiv z r$. Hence $v=r$.
2.34. Lemma. Assume $x y v$ and $y z v$. Then $x z v$.

Proof. If $y=z$ then $x z v$. Assume $y \neq z$. We have $x y z$.
2.35. Lemma. Assume $x y z$ and $x z r$. Then $y z r$.
2.36. Lemma. Assume $x y z$ and $x z r$. Then $x y r$.

Proof. We have $r z x$. We have $z y x$. Thus $r y x$. Thus $x y z$.
2.37. Lemma. Assume $y \neq z$. If $x y z$ and $y z r$ then $x y r$.

Existence of at least two points follows from the lower dimension axiom. All other axioms also hold in a one-point space.
2.38. Lemma. We have $x \neq y$ for some x, y.
2.39. Lemma. There exist z such that $x y z$ and $y \neq z$.

The following follows from invoking inner Pasch twice.
2.40. Lemma. Assume $x y z$ and $u v z$ and $x p u$. Then there exist q such that $p q z$ and yqv.

Proof. We have $x p u$ and $z v u$. Take r such that $v r x$ and $p r z$. Take q such that $r q z$ and vqy.

We say that the points $a, b, c, d, a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}$ are in an inner five segment configuration whenever IFS $\left(\begin{array}{cccc}a & b & c & d \\ a^{\prime} & b^{\prime} & c^{\prime} & d^{\prime}\end{array}\right)$.
2.41. Definition. IFS $\left(\begin{array}{lll}x & y & z \\ v & w & r\end{array}\right)$ iff $x y z$ and $v w p$ and $x z \equiv v p$ and $y z \equiv w p$ and $x r \equiv v q$ and $z r \equiv p q$.

We can swap x, y with v, w.
2.42. Lemma. Assume IFS $\left(\begin{array}{lllll}x & y & z & r \\ v & w & p & q\end{array}\right)$. Then $y r \equiv w q$.

Proof. Case $x \neq z$. Take points g, h such that $g \neq z$ and $x z g$ and $v p h$ and $p h \equiv z g$. Then OFS $\left(\begin{array}{llll}x & z & g & r \\ v & p & h & q\end{array}\right)$. Thus $g r \equiv h q$. Thus OFS $\left(\begin{array}{llll}g & z & y & r \\ h & p & w & q\end{array}\right)$. Thus $y r \equiv w q$. End.
2.43. Lemma (Overlapping segments). Assume $x y z$ and $r v w$ and $x z \equiv r w$ and $y z \equiv$ $v w$. Then $x y \equiv r v$.

Proof. We have IFS $\left(\begin{array}{cccc}x & y & z & x \\ r & y & w & r\end{array}\right)$.
2.44. Definition. $x y z \equiv u v w$ iff $x y \equiv u v$ and $x z \equiv u w$ and $y z \equiv v w$.
2.45. Lemта. $x y z \equiv u v w$ iff $y x z \equiv v u w$.
2.46. Lemma. $x y z \equiv u v w$ iff $z y x \equiv w v u$.
2.47. Lemта. $x y z \equiv u v w$ iff $x z y \equiv u w v$.

If we have two congruent segments, then an inner point of one segment can be transferred congruently onto the other segment.
2.48. Lemma. Assume $x y z$ and $x z \equiv r w$. Then there exists v such that $r v w$ and $x y z \equiv$ rvw.

Proof. Take u such that $w r u$ and $r \neq u$. Then take v such that $u r v$ and $r v \equiv x y$. Take a point g such that $u v g$ and $v g \equiv y z$. Then $x z \equiv r w$. Therefore $g=w$.
2.49. Lemma. Assume $x y z$ and $x y z \equiv r v w$. Then $r v w$.

Proof. Take u such that $r u w$ and $x y z \equiv r u w$. Then $r u w \equiv r v w$ and $\operatorname{IFS}\left(\begin{array}{cccc}r & u & w & u \\ r & u & w & v\end{array}\right)$. Then $u u \equiv u v$. Hence $u=v$. Hence $r v w$.

3. Collinearity

Until now we have only used the concept of collinearity to abbreviate some axioms. We first make the straightforward observation that collinearity is invariant under permutation of the arguments.
3.1. Lemma. Assume that a is collinear with b and c. Then b is collinear with c and a.
3.2. Lemma. Assume that a is collinear with b and c. Then c is collinear with a and b.
3.3. Lemma. Assume that a is collinear with b and c. Then c is collinear with b and a.
3.4. Lemma. Assume that a is collinear with b and c. Then b is collinear with a and c.
3.5. Lemma. Assume that a is collinear with b and c. Then a is collinear with c and b.

Similarly, it is easy to find a common line between just two points instead of three.
3.6. Lemma. a is collinear with a and b for all points a, b.
3.7. Lemma. Assume a is collinear with b and c. Assume $a b \equiv a^{\prime} b^{\prime}$. Then there exists c^{\prime} such that $a b c \equiv a^{\prime} b^{\prime} c^{\prime}$.

Proof. Case $a b c$. Take c^{\prime} such that $a^{\prime} b^{\prime} c^{\prime}$ and $b^{\prime} c^{\prime} \equiv b c$. End. Case bac. Take c^{\prime} such that $b^{\prime} a^{\prime} c^{\prime}$ and $a^{\prime} c^{\prime} \equiv a c$. Then $b c \equiv b^{\prime} c^{\prime}$. End. Then $a c b$. Take c^{\prime} such that $a^{\prime} c^{\prime} b^{\prime}$ and $a c b \equiv a^{\prime} c^{\prime} b^{\prime}$.

4. Five segment configuration

4.1. Definition. FS $\left(\begin{array}{lll}x & y & z \\ v & w & p\end{array}\right)$ iff x is collinear with y and z and $x y z \equiv v w p$ and $x r \equiv v q$ and $y r \equiv w q$.

The following lemma summarizes previous statements about outer/inner five segment configurations.
4.2. Lemma. Assume FS $\left(\begin{array}{llll}x & y & z & r \\ v & w & p & q\end{array}\right)$ and $x \neq y$. Then $z r \equiv p q$.

Proof. Case $x y z$. We have $x y z \equiv v w p$. Thus $v w p$. Thus OFS $\left(\begin{array}{llll}x & y & z & r \\ v & w & p & q\end{array}\right)$. End. Case $z x y$. We have $z x y \equiv p v w$. Thus $p v w$. Then OFS $\left(\begin{array}{cccc}y & x & z & r \\ w & v & p & q\end{array}\right)$. End. Then $y z x$. We have $y z x \equiv w p v$. Thus $w p v$. Then $\operatorname{IFS}\left(\begin{array}{cccc}y & z & x & r \\ w & p & r & q\end{array}\right)$.
4.3. Lemma. Assume $x \neq y$. Assume x is collinear with y and z. Assume $x p \equiv x q$ and $y p \equiv y q$. Then $z p \equiv z q$.

Proof. We have FS $\left(\begin{array}{llll}x & y & z & p \\ x & y & z & q\end{array}\right)$.
4.4. Lemma. Assume $a \neq b$. Assume a is collinear with b and c. Assume $a c \equiv a c^{\prime}$ and $b c \equiv b c^{\prime}$. Then $c^{\prime}=c$.
4.5. Lemma. Assume $x z y$ and $x z \equiv x p$ and $y z \equiv y p$. Then $z=p$.

Proof. Assume $x=y$. Then $x=z$ and $x=p$. Hence $z=p$. Assume $x \neq y$.

5. Connexity of betweenness

Gupta (1965) proved that outer Pasch follows from inner Pasch. To prove Gupta's theorem, we need a few preparatory lemmas.
5.1. Definition. $a b c d$ iff $a b c$ and $a b d$ and $a c d$ and $b c d$.
5.2. Definition. abcde iff $a b c$ and $a b d$ and $a b e$ and $a c d$ and ace and ade and $b c d$ and $b c e$ and $b d e$ and $c d e$.
5.3. Lemma (Extension to quaternary betweenness). If $a b c$ and $a c d$ then $a b c d$.
5.4. Lemma (Extension to quinary betweenness). If $a b c d$ and $a d e$ then $a b c d e$.
5.5. Lemma. Assume $x \neq y$ and $x y z$ and $x y r$. Then there exist points α, β such that $x r \alpha$ and $r \alpha \equiv z r$ and $x z \beta$ and $z \beta \equiv z r$.

Proof. Take point a such that $x r a$ and $r a \equiv z r$ (by segment construction). Take point b such that $x z b$ and $z b \equiv z r$ (by segment construction).
5.6. Lemma. Assume $x \neq y$ and $x y z$ and $x y r$ and $x r p$ and $r p \equiv z r$ and $x z q$ and $z q \equiv z r$. Then there exist points s, t such that $z q t$ and $r p s$.

5.7. Theorem (Outer Pasch). Assume $a \neq b$. Assume $a b c$ and $a b d$. Then $a c d$ or $a d c$.

Proof. Take a point c^{\prime} such that $a d c^{\prime}$ and $d c^{\prime} \equiv c d$. Take a point d^{\prime} such that $a c d^{\prime}$ and $c d^{\prime} \equiv c d$. Then $c=c^{\prime}$ or $d=d^{\prime}$.

Proof. We have $a b c d^{\prime}$ (by extension to quaternary betweenness). We have $a b d c^{\prime}$ (by extension to quaternary betweenness). Take a point b^{\prime} such that $a c^{\prime} b^{\prime}$ and $c^{\prime} b^{\prime} \equiv c b$ (by segment construction). Take a point $b^{\prime \prime}$ such that $a d^{\prime} b^{\prime \prime}$ and $d^{\prime} b^{\prime \prime} \equiv b d$ (by segment construction). Then $a b c d^{\prime} b^{\prime \prime}$. Then $a b d c^{\prime} b^{\prime}$.

Thus $b c^{\prime} \equiv b^{\prime \prime} c$.
Thus $b b^{\prime} \equiv b^{\prime \prime} b$.
We have $a b b^{\prime}$ and $a b b^{\prime \prime}$. Thus $b^{\prime \prime}=b^{\prime}$.
We have OFS $\left(\begin{array}{cccc}b & c & d^{\prime} & c^{\prime} \\ b^{\prime} & c^{\prime} & d & c\end{array}\right)$. Thus $c^{\prime} d^{\prime} \equiv c d$.
Take a point e such that $c e c^{\prime}$ and $d e d^{\prime}$. Then $\operatorname{IFS}\left(\begin{array}{llll}d & e & d^{\prime} & c \\ d & e & d^{\prime} & c^{\prime}\end{array}\right)$ and $\operatorname{IFS}\left(\begin{array}{cccc}c & e & c^{\prime} & d \\ c & e & c^{\prime} & d^{\prime}\end{array}\right)$. Thus $e c \equiv e c^{\prime}$ and $e d \equiv e d^{\prime}$.

Case $c \neq c^{\prime}$. We have $c \neq d^{\prime}$.
Take a point p such that $c^{\prime} c p$ and $c p \equiv c d^{\prime}$. Take a point r such that $d^{\prime} c r$ and $c r \equiv c e$. Take a point q such that $p r q$ and $r q \equiv r p$.

Then OFS $\left(\begin{array}{cccc}d^{\prime} & e & c & c \\ p & r & q & c\end{array}\right)$. Thus $d^{\prime} d \equiv p q$. Thus $c q \equiv c d$. Thus $c p \equiv c q$.
We have $r p \equiv r q$. We have $r \neq c$.
Then r is collinear with c and d^{\prime}. Thus $d^{\prime} p \equiv d^{\prime} q$.

We have $c \neq d^{\prime}$. Then c is collinear with d^{\prime} and b. Then c is collinear with d^{\prime} and b^{\prime}. Thus $b p \equiv b q$ and $b^{\prime} p \equiv b^{\prime} q$.

Thus $b \neq b^{\prime}$. Then b is collinear with c^{\prime} and b^{\prime}. Thus $c^{\prime} p \equiv c^{\prime} q$.
c^{\prime} is collinear with c and p. Thus $p p \equiv p q$. Thus $p=q$. Thus $d=d^{\prime}$. End. End. Therefore acd or adc.
5.8. Lemma. Assume $a \neq b$. If $a b c$ and $a b d$ then $b c d$ or $b d c$.
5.9. Theorem. If $x y w$ and $x z w$ then $x y z$ or $x z y$.

5.10. Lemma. Assume $a \neq b$. Then we have $a x \equiv c d$ for some point x such that $a b x$ or $a x b$.

Proof. Take b^{\prime} such that $b a b^{\prime}$ and $a b^{\prime} \equiv a b$. Take x such that $b^{\prime} a x$ and $a x \equiv c d$.

6. Comparing segments

Informally, a segment $a b$ is smaller than a segment $c d$ whenever we can find a subsegment $c x$ of $c d$ of the same length as $a b$.

6.1. Definition. $a b \leq c d$ iff there exists x such that $c x d$ and $a b \equiv c x$.

Alternatively, we can say that a segment $a b$ is smaller than $c d$ whenever we can extend $a b$ to a segment $a x$ of length $c d$.

6.2. Lemma. Assume $a b \leq c d$. Then there exists x such that $a b x$ and $a x \equiv c d$.

Proof. Take y such that $c y d$ and $a b \equiv c y$. Take x such that $a b x$ and $b x \equiv y d$. Then $a x \equiv c d$.

6.3. Lemma. Let x be a point such that $a b x$ and $a x \equiv c d$. Then $a b \leq c d$.

Proof. Take b^{\prime} such that $c b^{\prime} d$ and $a b x \equiv c b^{\prime} d$.
6.4. Lemma (Transitivity of congruence and comparison). Assume $a b \equiv c d$ and $c d \leq$ $e f$. Then $a b \leq e f$.

Proof. Take x such that exf and $c d \equiv e x$.
6.5. Lemma (Transitivity of comparison and congruence). Assume $a b \leq c d$ and $c d \equiv$ $e f$. Then $a b \leq e f$.

Proof. Take x such that $a b x$ and $a x \equiv c d$.
6.6. Lemma (Reflexivity of comparison). For all points a, b we have $a b \leq a b$.
6.7. Lemma (Transitivity of comparison). Assume $a b \leq c d$ and $c d \leq e f$. Then $a b \leq c d$.

Proof. Take x such that $a b x$ and $a x \equiv c d$. Take y such that $c d y$ and $c y \equiv e f$.
6.8. Lemma (Antisymmetry of comparison). Assume $a b \leq c d$ and $c d \leq a b$. Then $a b \equiv c d$.

Proof. Take x such that $c x d$ and $a b \equiv c x$. Take y such that $c d y$ and $a b \equiv c y$. Then $c x \equiv c y$. Thus $x=d=y$.
6.9. Lemma (Connexity of comparison). Let a, b, c, d be points. Then $a b \leq c d$ or $c d \leq$ $a b$.

Proof. Case $a \neq b$. Take x such that ($b a x$ or $b x a$) and $b x \equiv c d$. End.
6.10. Lemma. For all points a, b, c we have $a a \leq b c$.
6.11. Lemma. Assume $a b c$. Then $a b \leq a c$.
6.12. Lemma. Assume $a b c$. Then $b c \leq a c$.

Proof. a is a point such that $c b a$ and $c a \equiv a c$.
6.13. Lemma. Assume that a is collinear with b and c. Assume $a b \leq a c$ and $b c \leq a c$. Then $a b c$.
6.14. Definition. $p q<x y$ iff $p q \leq x y$ and $p q \not \equiv x y$.
6.15. Definition. $p q>x y$ iff $x y<p q$.

7. Rays and lines

7.1. Definition. a and b lie on opposite sides of u iff a, b, u are pairwise nonequal and aub.
7.2. Definition. a and b are equivalent with respect to u iff $a, b \neq u$ and ($u a b$ or $u b a$).
7.3. Convention. Let $a \approx_{u} b$ stand for a and b are equivalent with respect to u.

We will see that two points are equivalent with respect to a point u iff they determine the same ray with origin u.
7.4. Lemma. Suppose $a, b, c \neq u$. Suppose $a u c$. Then $b u c$ iff $a \approx_{u} b$.
7.5. Lemma. Suppose a and b are equivalent with respect to u. Then $a, b \neq u$ and there exists a point c such that $c \neq u$ and $a u c$ and $b u c$.
7.6. Lemma. Suppose $a, b \neq u$. Suppose there exists a point c such that $c \neq u$ and auc and buc. Then a and b are equivalent with respect to u.
7.7. Lemma. a and b are equivalent with respect to u iff a is collinear with u and b and not aub.
7.8. Lemma (Reflexivity of relative equivalence). Suppose $a \neq u$. Then $a \approx_{u} a$.
7.9. Lemma (Symmetry of relative equivalence). If $a \approx_{u} b$ then $b \approx_{u} a$.
7.10. Lemma (Transitivity of relative equivalence). Assume $a \approx_{u} b$ and $b \approx_{u} c$. Then $a \approx{ }_{u} c$.

Proof. Case uab. End.
7.11. Lemma. Suppose $r \neq a$ and $b \neq c$. Then there exists a point x such that $x \approx_{a} r$ and $a x \equiv b c$.
7.12. Lemma. Suppose $r \neq a$ and $b \neq c$. Let x be a point such that $x \approx_{a} r$ and $a x \equiv b c$. Let x^{\prime} be a point such that $x^{\prime} \approx_{a} r$ and $a x^{\prime} \equiv b c$. Then $x^{\prime}=x$.
7.13. Lemma. Suppose $a \approx_{u} b$ and $u a \leq u b$. Then $u a b$.
7.14. Lemma. Suppose $a \approx_{u} b$ and $u a b$. Then $u a \leq u b$.

Bibliography

Michael Beeson, Julien Narboux, Freek Wiedijk (2019)
Proof-checking Euclid
Springer, Annals of mathematics and artificial intelligence, vol. 85, p. 213-257
Michael Beeson, Larry Wos (2017)
Finding proofs in Tarskian geometry
Springer, Journal of Automated Reasoning, vol. 58, p. 181-207
Gabriel Braun, Julien Narboux (2017)
A synthetic proof of Pappus' theorem in Tarski's geometry
Springer, Journal of Automated Reasoning, vol. 58, p. 209-230
Michael Beeson (2015)
A constructive version of Tarski's geometry
Elsevier, Annals of pure and applied logic, vol. 166, no. 11, p. 1199-1273
Julien Narboux (2006)
Mechanical theorem proving in Tarski's geometry
Springer, Automated Deduction in Geometry, p. 139-156
Donald Ervin Knuth (1984)
Literate programming
Oxford University Press, The Computer Journal, vol. 27, no. 2, p. 97--111
Wolfram Schwabhäuser, Wanda Szmielew, Alfred Tarski (1983)
Metamathematische Methoden in der Geometrie
Springer
Haragauri Naryan Gupta (1969)
On some axioms in the foundations of Cartesian spaces
CMS, Canadian Mathematical Bulletin, vol. 12, no. 6, p. 831-836
Haragauri Naryan Gupta (1965)
An axiomatization of finite-dimensional Cartesian spaces over arbitrary ordered fields PAS, Bulletin of the Polish Academy of Sciences, vol. 13, p. 550-551

David Hilbert (1903)
Grundlagen der Geometrie
Teubner

