Furstenberg's proof of the infinitude of primes

Naproche formalization:
Andrei Paskevich (2007),
Marcel Schütz (2021-2022)

This is a formalization of Furstenberg's topological proof of the infinitude of primes [1, p. 353]. On mid-range hardware \mathbb{N} aproche needs approximately 5 Minutes to verify this formalization plus approximately 40 minutes to verify the library files it depends on.

```
[readtex arithmetic/sections/10_primes.ftl.tex]
[readtex arithmetic/sections/11_cardinality.ftl.tex]
```

The central idea of Furstenberg's proof is to define a certain topology on \mathbb{N} from the properties of which we can deduce that the set of primes is infinite. ${ }^{1}$

Let n, m, k denote natural numbers. Let p, q denote nonzero natural numbers.
Definition 1. Let A be a subset of $\mathbb{N} . A^{\complement}=\mathbb{N} \backslash A$.
Let the complement of A stand for A^{\complement}.
Lemma 2. The complement of any subset of \mathbb{N} is a subset of \mathbb{N}.
Towards a suitable topology on \mathbb{N} let us define arithmetic sequences $\mathrm{N}_{n, q}$ on \mathbb{N}.

Definition 3. $\mathrm{N}_{n, q}=\{m \in \mathbb{N} \mid m \equiv n(\bmod q)\}$.
This allows us to define the evenly spaced natural number topology on \mathbb{N}, whose open sets are defined as follows.

Definition 4. Let U be a subset of \mathbb{N}. U is open iff for any $n \in U$ there exists a q such that $\mathrm{N}_{n, q} \subseteq U$.
Definition 5. A system of open sets is a system of sets S such that every

[^0]element of S is an open subset of \mathbb{N}.
We can show that the open sets indeed form a topology on \mathbb{N}.
Lemma 6. \mathbb{N} and \emptyset are open.
Lemma 7. Let U, V be open subsets of \mathbb{N}. Then $U \cap V$ is open.
Proof. Let $n \in U \cap V$. Take a q such that $\mathrm{N}_{n, q} \subseteq U$. Take a p such that $\mathrm{N}_{n, p} \subseteq V$. Then $p \cdot q \neq 0$.
Let us show that $\mathrm{N}_{n, p \cdot q} \subseteq U \cap V$. Let $m \in \mathrm{~N}_{n, p \cdot q}$. We have $m \equiv n$ $(\bmod p \cdot q)$. Hence $m \equiv n(\bmod p)$ and $m \equiv n(\bmod q)$. Thus $m \in \mathrm{~N}_{n, p}$ and $m \in \mathrm{~N}_{n, q}$. Therefore $m \in U$ and $m \in V$. Consequently $m \in U \cap V$. End.
Lemma 8. Let S be a system of open sets. Then $\bigcup S$ is open.
Proof. Let $n \in \bigcup S$. Take a set M such that $n \in M \in S$. Consider a q such that $\mathrm{N}_{n, q} \subseteq M$. Then $\mathrm{N}_{n, q} \subseteq \bigcup S$.

Now that we have a topology of open sets on \mathbb{N}, we can continue with a characterization of closed sets whose key property is that they are closed under finite unions.

Definition 9. Let A be a subset of \mathbb{N}. A is closed iff A^{\complement} is open.
Definition 10. A system of closed sets is a system of sets S such that every element of S is a closed subset of \mathbb{N}.

Lemma 11. Every system of closed sets is a set.
Proof. Let S be a system of closed sets. Then $S \subseteq \mathcal{P}(\mathbb{N})$. $\mathcal{P}(\mathbb{N})$ is a set. Hence S is a set.

Lemma 12. Let S be a finite system of closed sets. Then $\bigcup S$ is closed.
Proof. Define $C=\{X \mid X$ is a closed subset of $\mathbb{N}\}$.
Let us show that $A \cup B \in C$ for any $A, B \in C$. Let $A, B \in C$. Then A, B are closed subsets of \mathbb{N}. We have $\left((A \cup B)^{\complement}\right)=A^{\complement} \cap B^{\complement}$. A^{\complement} and B^{\complement} are open. Hence $A^{\complement} \cap B^{\complement}$ is open. Thus $A \cup B$ is a closed subset of \mathbb{N}. End.

Therefore C is closed under finite unions. Consequently $\bigcup S \in C$. Indeed S is a subset of C.

An important step towards Furstenberg's proof is to show that arithmetic sequences are closed.

Lemma 13. $\mathrm{N}_{n, q}$ is closed.
Proof. Let $m \in\left(\mathrm{~N}_{n, q}\right)^{\text {C }}$.
Let us show that $\mathrm{N}_{m, q} \subseteq\left(\mathrm{~N}_{n, q}\right)^{\complement}$. Let $k \in \mathrm{~N}_{m, q}$. Assume $k \notin\left(\mathrm{~N}_{n, q}\right)^{\complement}$. Then $k \equiv m(\bmod q)$ and $n \equiv k(\bmod q)$. Hence $m \equiv n(\bmod q)$. Therefore

$$
m \in \mathrm{~N}_{n, q} . \text { Contradiction. End. }
$$

Identifying each prime number p with the arithmetic sequence $\mathrm{N}_{0, p}$ yields a bijection between the set \mathbb{P} of all prime numbers and the set P of all such sequences $\mathrm{N}_{0, p}$. Thus to show that there are infinitely many primes it suffices to show that P is infinite.

Definition 14. $\mathrm{P}=\left\{\mathrm{N}_{0, p} \mid p \in \mathbb{P}\right\}$.
Lemma 15. P is a system of closed sets.
Proof. $\mathrm{N}_{0, p}$ is a closed subset of \mathbb{N} for every $p \in \mathbb{P}$.
Lemma 16. P is a set that is equinumerous to \mathbb{P}.
Proof. (1) P is a set. Indeed $\mathrm{P} \subseteq \mathcal{P}(\mathbb{N})$.
(2) P is equinumerous to \mathbb{P}.

Proof. Define $f(p)=\mathrm{N}_{0, p}$ for $p \in \mathbb{P}$.
Let us show that f is injective. Let $p, q \in \mathbb{P}$. Assume $f(p)=f(q)$. Then $\mathrm{N}_{0, p}=\mathrm{N}_{0, q}$. We have $\mathrm{N}_{0, p}=\{m \in \mathbb{N} \mid m \equiv 0(\bmod p)\}$ and $\mathrm{N}_{0, q}=$ $\{m \in \mathbb{N} \mid m \equiv 0(\bmod q)\}$. Hence for all $m \in \mathbb{N}$ we have $m \equiv 0(\bmod p)$ iff $m \equiv 0(\bmod q)$. Thus for all $m \in \mathbb{N}$ we have $m \bmod p=0 \bmod p$ iff $m \bmod q=0 \bmod q$. We have $0 \bmod p=0=0 \bmod q$. Hence for all $m \in \mathbb{N}$ we have $m \bmod p=0$ iff $m \bmod q=0$. Thus for all $m \in \mathbb{N}$ we have $p \mid m$ iff $q \mid m$. Therefore $p=q$. End.
f is surjective onto P . Thus f is a bijection between \mathbb{P} and P . Qed.
Theorem 17 (Furstenberg). \mathbb{P} is infinite.
Proof. UP is a subset of \mathbb{N}.
Let us show that for any $n \in \mathbb{N}$ we have $n \in \bigcup \mathrm{P}$ iff n has a prime divisor. Let $n \in \mathbb{N}$.

If n has a prime divisor then n belongs to $\bigcup P$.
Proof. Assume n has a prime divisor. Take a prime divisor p of n. We have $\mathrm{N}_{0, p} \in \mathrm{P}$. Hence $n \in \mathrm{~N}_{0, p}$. Qed.
If n belongs to $\bigcup \mathrm{P}$ then n has a prime divisor.
Proof. Assume that n belongs to $\bigcup \mathrm{P}$. Take a prime number r such that $n \in \mathrm{~N}_{0, r}$. Hence $n \equiv 0(\bmod r)$. Thus $n \bmod r=0 \bmod r=0$. Therefore r is a prime divisor of n. Qed. End.
Hence For all $n \in \mathbb{N}$ we have $n \in(\bigcup \mathrm{P})^{\complement}$ iff n has no prime divisor. 1 has no prime divisor and any natural number having no prime divisor is equal to 1 . Therefore $(\cup P)^{\complement}=\{1\}$. Indeed $\left((\cup P)^{\complement}\right) \subseteq\{1\}$ and $\{1\} \subseteq(\cup P)^{\complement}$.
P is infinite.
Proof by contradiction. Assume that P is finite. Then UP is closed and $(\bigcup \mathrm{P})^{\complement}$ is open. Take a p such that $\mathrm{N}_{1, p} \subseteq(\bigcup \mathrm{P})^{\complement} .1+p$ is an element of $\mathrm{N}_{1, p}$. Indeed $1+p \equiv 1(\bmod p)($ by 8.12$) .1+p$ is not equal to 1 . Hence
$1+p \notin(\bigcup \mathrm{P})^{\complement}$. Contradiction. Qed.

References

[1] Harry Furstenberg (1955), On the Infinitude of Primes; The American Mathematical Monthly, vol. 62, no. 5

[^0]: ${ }^{1}$ Actually, Furstenberg's proof makes use of a topology on \mathbb{Z}. But this topology can as well be restricted to \mathbb{N} without substantially changing the proof.

