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This is a formalization of Furstenberg’s topological proof of the infinitude of
primes [1, p. 353]. On mid-range hardware Naproche needs approximately 5
Minutes to verify this formalization plus approximately 40 minutes to verify the
library files it depends on.
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The central idea of Furstenberg’s proof is to define a certain topology on N
from the properties of which we can deduce that the set of primes is infinite.1

Let n,m, k denote natural numbers. Let p, q denote nonzero natural num-
bers.

Definition 1. Let A be a subset of N. A∁ = N \A.

Let the complement of A stand for A∁.

Lemma 2. The complement of any subset of N is a subset of N.

Towards a suitable topology on N let us define arithmetic sequences Nn,q on
N.

Definition 3. Nn,q = {m ∈ N | m ≡ n (mod q)}.

This allows us to define the evenly spaced natural number topology on N,
whose open sets are defined as follows.

Definition 4. Let U be a subset of N. U is open iff for any n ∈ U there
exists a q such that Nn,q ⊆ U .

Definition 5. A system of open sets is a system of sets S such that every

1Actually, Furstenberg’s proof makes use of a topology on Z. But this topology can as well
be restricted to N without substantially changing the proof.
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element of S is an open subset of N.

We can show that the open sets indeed form a topology on N.

Lemma 6. N and ∅ are open.

Lemma 7. Let U, V be open subsets of N. Then U ∩ V is open.

Proof. Let n ∈ U ∩ V . Take a q such that Nn,q ⊆ U . Take a p such that
Nn,p ⊆ V . Then p · q ̸= 0.

Let us show that Nn,p·q ⊆ U ∩ V . Let m ∈ Nn,p·q. We have m ≡ n
(mod p · q). Hence m ≡ n (mod p) and m ≡ n (mod q). Thus m ∈ Nn,p

and m ∈ Nn,q. Therefore m ∈ U and m ∈ V . Consequently m ∈ U ∩ V .
End.

Lemma 8. Let S be a system of open sets. Then
⋃

S is open.

Proof. Let n ∈
⋃
S. Take a set M such that n ∈ M ∈ S. Consider a q

such that Nn,q ⊆ M . Then Nn,q ⊆
⋃

S.

Now that we have a topology of open sets on N, we can continue with a
characterization of closed sets whose key property is that they are closed under
finite unions.

Definition 9. Let A be a subset of N. A is closed iff A∁ is open.

Definition 10. A system of closed sets is a system of sets S such that
every element of S is a closed subset of N.
Lemma 11. Every system of closed sets is a set.

Proof. Let S be a system of closed sets. Then S ⊆ P(N). P(N) is a set.
Hence S is a set.

Lemma 12. Let S be a finite system of closed sets. Then
⋃

S is closed.

Proof. Define C = {X | X is a closed subset of N}.
Let us show that A ∪ B ∈ C for any A,B ∈ C. Let A,B ∈ C. Then A,B
are closed subsets of N. We have ((A ∪ B)∁) = A∁ ∩ B∁. A∁ and B∁ are
open. Hence A∁ ∩B∁ is open. Thus A ∪B is a closed subset of N. End.

Therefore C is closed under finite unions. Consequently
⋃

S ∈ C. Indeed
S is a subset of C.

An important step towards Furstenberg’s proof is to show that arithmetic
sequences are closed.

Lemma 13. Nn,q is closed.

Proof. Let m ∈ (Nn,q)
∁.

Let us show that Nm,q ⊆ (Nn,q)
∁. Let k ∈ Nm,q. Assume k /∈ (Nn,q)

∁. Then
k ≡ m (mod q) and n ≡ k (mod q). Hence m ≡ n (mod q). Therefore
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m ∈ Nn,q. Contradiction. End.

Identifying each prime number p with the arithmetic sequence N0,p yields
a bijection between the set P of all prime numbers and the set P of all such
sequences N0,p. Thus to show that there are infinitely many primes it suffices
to show that P is infinite.

Definition 14. P = {N0,p | p ∈ P}.
Lemma 15. P is a system of closed sets.

Proof. N0,p is a closed subset of N for every p ∈ P.
Lemma 16. P is a set that is equinumerous to P.
Proof. (1) P is a set. Indeed P ⊆ P(N).

(2) P is equinumerous to P.
Proof. Define f(p) = N0,p for p ∈ P.

Let us show that f is injective. Let p, q ∈ P. Assume f(p) = f(q). Then
N0,p = N0,q. We have N0,p = {m ∈ N | m ≡ 0 (mod p)} and N0,q =
{m ∈ N | m ≡ 0 (mod q)}. Hence for all m ∈ N we have m ≡ 0 (mod p)
iff m ≡ 0 (mod q). Thus for all m ∈ N we have mmod p = 0mod p iff
mmod q = 0mod q. We have 0mod p = 0 = 0mod q. Hence for all m ∈ N
we have mmod p = 0 iff mmod q = 0. Thus for all m ∈ N we have p | m iff
q | m. Therefore p = q. End.

f is surjective onto P. Thus f is a bijection between P and P. Qed.

Theorem 17 (Furstenberg). P is infinite.

Proof.
⋃
P is a subset of N.

Let us show that for any n ∈ N we have n ∈
⋃
P iff n has a prime divisor.

Let n ∈ N.

If n has a prime divisor then n belongs to
⋃
P.

Proof. Assume n has a prime divisor. Take a prime divisor p of n. We
have N0,p ∈ P. Hence n ∈ N0,p. Qed.

If n belongs to
⋃
P then n has a prime divisor.

Proof. Assume that n belongs to
⋃

P. Take a prime number r such that
n ∈ N0,r. Hence n ≡ 0 (mod r). Thus nmod r = 0mod r = 0. Therefore r
is a prime divisor of n. Qed. End.

Hence For all n ∈ N we have n ∈ (
⋃

P)∁ iff n has no prime divisor. 1 has
no prime divisor and any natural number having no prime divisor is equal
to 1. Therefore (

⋃
P)∁ = {1}. Indeed ((

⋃
P)∁) ⊆ {1} and {1} ⊆ (

⋃
P)∁.

P is infinite.
Proof by contradiction. Assume that P is finite. Then

⋃
P is closed and

(
⋃
P)∁ is open. Take a p such that N1,p ⊆ (

⋃
P)∁. 1 + p is an element of

N1,p. Indeed 1 + p ≡ 1 (mod p) (by 8.12). 1 + p is not equal to 1. Hence
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1 + p /∈ (
⋃
P)∁. Contradiction. Qed.
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