Furstenberg's proof of the infinitude of primes

Naproche formalization:

Andrei Paskevich (2007), Marcel Schütz (2021 - 2022)

This is a formalization of Furstenberg's topological proof of the infinitude of primes [1, p. 353]. On mid-range hardware Naproche needs approximately 5 Minutes to verify this formalization plus approximately 40 minutes to verify the library files it depends on.

```
[readtex arithmetic/sections/10_primes.ftl.tex]
[readtex arithmetic/sections/11_cardinality.ftl.tex]
```

The central idea of Furstenberg's proof is to define a certain topology on \mathbb{N} from the properties of which we can deduce that the set of primes is infinite.¹

Let n, m, k denote natural numbers. Let p, q denote nonzero natural numbers.

Definition 1. Let A be a subset of \mathbb{N} . $A^{\complement} = \mathbb{N} \setminus A$.

Let the complement of A stand for A^{\complement} .

Lemma 2. The complement of any subset of \mathbb{N} is a subset of \mathbb{N} .

Towards a suitable topology on \mathbb{N} let us define arithmetic sequences $\mathcal{N}_{n,q}$ on \mathbb{N} .

```
Definition 3. N_{n,q} = \{m \in \mathbb{N} \mid m \equiv n \pmod{q}\}.
```

This allows us to define the evenly spaced natural number topology on \mathbb{N} , whose open sets are defined as follows.

Definition 4. Let U be a subset of \mathbb{N} . U is open iff for any $n \in U$ there exists a q such that $\mathcal{N}_{n,q} \subseteq U$.

Definition 5. A system of open sets is a system of sets S such that every

¹Actually, Furstenberg's proof makes use of a topology on \mathbb{Z} . But this topology can as well be restricted to \mathbb{N} without substantially changing the proof.

element of S is an open subset of \mathbb{N} .

We can show that the open sets indeed form a topology on \mathbb{N} .

Lemma 6. \mathbb{N} and \emptyset are open.

Lemma 7. Let U, V be open subsets of \mathbb{N} . Then $U \cap V$ is open.

Proof. Let $n \in U \cap V$. Take a q such that $N_{n,q} \subseteq U$. Take a p such that $N_{n,p} \subseteq V$. Then $p \cdot q \neq 0$.

Let us show that $N_{n,p\cdot q}\subseteq U\cap V$. Let $m\in N_{n,p\cdot q}$. We have $m\equiv n\pmod{p\cdot q}$. Hence $m\equiv n\pmod{p}$ and $m\equiv n\pmod{q}$. Thus $m\in N_{n,p}$ and $m\in N_{n,q}$. Therefore $m\in U$ and $m\in V$. Consequently $m\in U\cap V$. End.

Lemma 8. Let S be a system of open sets. Then $\bigcup S$ is open.

Proof. Let $n \in \bigcup S$. Take a set M such that $n \in M \in S$. Consider a q such that $\mathcal{N}_{n,q} \subseteq M$. Then $\mathcal{N}_{n,q} \subseteq \bigcup S$.

Now that we have a topology of open sets on \mathbb{N} , we can continue with a characterization of closed sets whose key property is that they are closed under finite unions.

Definition 9. Let A be a subset of \mathbb{N} . A is closed iff A^{\complement} is open.

Definition 10. A system of closed sets is a system of sets S such that every element of S is a closed subset of \mathbb{N} .

Lemma 11. Every system of closed sets is a set.

Proof. Let S be a system of closed sets. Then $S \subseteq \mathcal{P}(\mathbb{N})$. $\mathcal{P}(\mathbb{N})$ is a set. Hence S is a set.

Lemma 12. Let S be a finite system of closed sets. Then $\bigcup S$ is closed.

Proof. Define $C = \{X \mid X \text{ is a closed subset of } \mathbb{N}\}.$

Let us show that $A \cup B \in C$ for any $A, B \in C$. Let $A, B \in C$. Then A, B are closed subsets of \mathbb{N} . We have $((A \cup B)^{\complement}) = A^{\complement} \cap B^{\complement}$. A^{\complement} and B^{\complement} are open. Hence $A^{\complement} \cap B^{\complement}$ is open. Thus $A \cup B$ is a closed subset of \mathbb{N} . End.

Therefore C is closed under finite unions. Consequently $\bigcup S \in C$. Indeed S is a subset of C.

An important step towards Furstenberg's proof is to show that arithmetic sequences are closed.

Lemma 13. $N_{n,q}$ is closed.

Proof. Let $m \in (N_{n,q})^{\complement}$.

Let us show that $N_{m,q} \subseteq (N_{n,q})^{\complement}$. Let $k \in N_{m,q}$. Assume $k \notin (N_{n,q})^{\complement}$. Then $k \equiv m \pmod{q}$ and $n \equiv k \pmod{q}$. Hence $m \equiv n \pmod{q}$. Therefore

 $m \in \mathcal{N}_{n,q}$. Contradiction. End.

Identifying each prime number p with the arithmetic sequence $N_{0,p}$ yields a bijection between the set \mathbb{P} of all prime numbers and the set P of all such sequences $N_{0,p}$. Thus to show that there are infinitely many primes it suffices to show that P is infinite.

Definition 14. $P = \{N_{0,p} \mid p \in \mathbb{P}\}.$

Lemma 15. P is a system of closed sets.

Proof. $N_{0,p}$ is a closed subset of \mathbb{N} for every $p \in \mathbb{P}$.

Lemma 16. P is a set that is equinumerous to \mathbb{P} .

Proof. (1) P is a set. Indeed $P \subseteq \mathcal{P}(\mathbb{N})$.

(2) P is equinumerous to \mathbb{P} .

Proof. Define $f(p) = N_{0,p}$ for $p \in \mathbb{P}$.

Let us show that f is injective. Let $p,q \in \mathbb{P}$. Assume f(p) = f(q). Then $\mathbb{N}_{0,p} = \mathbb{N}_{0,q}$. We have $\mathbb{N}_{0,p} = \{m \in \mathbb{N} \mid m \equiv 0 \pmod{p}\}$ and $\mathbb{N}_{0,q} = \{m \in \mathbb{N} \mid m \equiv 0 \pmod{q}\}$. Hence for all $m \in \mathbb{N}$ we have $m \equiv 0 \pmod{p}$ iff $m \equiv 0 \pmod{q}$. Thus for all $m \in \mathbb{N}$ we have $m \mod p = 0 \mod p$ iff $m \mod q = 0 \mod q$. We have $0 \mod p = 0 = 0 \mod q$. Hence for all $m \in \mathbb{N}$ we have $m \mod p = 0$ iff $m \mod q = 0$. Thus for all $m \in \mathbb{N}$ we have $p \mid m$ iff $q \mid m$. Therefore p = q. End.

f is surjective onto P. Thus f is a bijection between \mathbb{P} and P. Qed. \square

Theorem 17 (Furstenberg). \mathbb{P} is infinite.

Proof. $\bigcup P$ is a subset of \mathbb{N} .

Let us show that for any $n \in \mathbb{N}$ we have $n \in \bigcup P$ iff n has a prime divisor. Let $n \in \mathbb{N}$.

If n has a prime divisor then n belongs to $\square P$.

Proof. Assume n has a prime divisor. Take a prime divisor p of n. We have $N_{0,p} \in P$. Hence $n \in N_{0,p}$. Qed.

If n belongs to $\bigcup P$ then n has a prime divisor.

Proof. Assume that n belongs to $\bigcup P$. Take a prime number r such that $n \in \mathbb{N}_{0,r}$. Hence $n \equiv 0 \pmod{r}$. Thus $n \mod r = 0 \mod r = 0$. Therefore r is a prime divisor of n. Qed. End.

Hence For all $n \in \mathbb{N}$ we have $n \in (\bigcup P)^{\complement}$ iff n has no prime divisor. 1 has no prime divisor and any natural number having no prime divisor is equal to 1. Therefore $(\bigcup P)^{\complement} = \{1\}$. Indeed $((\bigcup P)^{\complement}) \subseteq \{1\}$ and $\{1\} \subseteq (\bigcup P)^{\complement}$.

P is infinite

Proof by contradiction. Assume that P is finite. Then $\bigcup P$ is closed and $(\bigcup P)^{\complement}$ is open. Take a p such that $N_{1,p} \subseteq (\bigcup P)^{\complement}$. 1+p is an element of $N_{1,p}$. Indeed $1+p\equiv 1\pmod{p}$ (by 8.12). 1+p is not equal to 1. Hence

 $1 + p \notin (\bigcup P)^{\complement}$. Contradiction. Qed.

References

[1] Harry Furstenberg (1955), On the Infinitude of Primes; The American Mathematical Monthly, vol. 62, no. 5