Chapter 1

Sets

File:

[readtex foundations/sections/09_invertible-maps.ftl.tex]

1.1 Sub- and supersets

FOUNDATIONS_10_5530582838673408
Definition 1.1. A proper class is a class that is not a set.

Definition 1.2. Let A be a class. A subset of A is a subclass of A that is a set.

Let a superset of A stand for a superclass of A that is a set. Let a proper subset of A stand for a proper subclass of A that is a set. Let a proper superset of A stand for a proper superclass of A that is a set.

1.2 Powerclasses

FOUNDATIONS_10_1448589907722240
Definition 1.3. Let A be a class. The powerclass of A is

$$
\{x \mid x \text { is a subset of } A\} .
$$

Let $\mathcal{P}(A)$ stand for the powerclass of A.

1.3 Systems of sets

Definition 1.4. A system of sets is a class X such that every element of X is a set.

Definition 1.5. A system of nonempty sets is a class X such that every element of X is a nonempty set.

FOUNDATIONS_10_943381479948288
Definition 1.6. Let A be a class. A system of subsets of A is a class X such that every element of X is a subset of A.

FOUNDATIONS_10_8268633648136192
Proposition 1.7. Let A be a class. Then \emptyset is a system of subsets of A.

FOUNDATIONS_10_7546016869908480
Proposition 1.8. Let A be a class. Then $\mathcal{P}(A)$ is a system of subsets of A.

Proposition 1.9. Let X, Y be systems of sets. Then $X \cup Y$ is a system of sets.

Proposition 1.10. Let X, Y be systems of sets. Then $X \cap Y$ is a system of sets.

Proposition 1.11. Let X, Y be systems of sets. Then $X \backslash Y$ is a system of sets.

1.4 Unions

> FOUNDATIONS_10_541772562300928

Definition 1.12. Let X be a system of sets. The union over X is

$$
\{a \mid a \in x \text { for some } x \in X\}
$$

Let $\bigcup X$ stand for the union over X.

> FOUNDATIONS_10_4872701241982976

Proposition 1.13.

$$
\bigcup \emptyset=\emptyset .
$$

Proof. $\bigcup \emptyset=\{a \mid a \in x$ for some $x \in \emptyset\}$. \emptyset has no elements. Hence there is no object a such that $a \in x$ for some $x \in \emptyset$. Thus $\bigcup \emptyset=\emptyset$.

> FOUNDATIONS_10_2559541585641472

Proposition 1.14. Let x, y be sets. Then

$$
\bigcup\{x, y\}=x \cup y
$$

Proof. Let us show that $\bigcup\{x, y\} \subseteq x \cup y$. Let $a \in \bigcup\{x, y\}$. Then a is contained in some element of $\{x, y\}$. Hence $a \in x$ or $a \in y$. Thus $a \in x \cup y$. End.

Let us show that $x \cup y \subseteq \bigcup\{x, y\}$. Let $a \in x \cup y$. Then $a \in x$ or $a \in y$. Hence a is
contained in some element of $\{x, y\}$. Therefore $a \in \bigcup\{x, y\}$. End.

FOUNDATIONS_10_2157223832715264
Corollary 1.15. Let x be a set. Then

$$
\bigcup\{x\}=x .
$$

1.5 Intersections

FOUNDATIONS_10_2659345095458816

Definition 1.16. Let X be a system of sets. The intersection over X is

$$
\{a \mid a \in x \text { for all } x \in X\} .
$$

Let $\bigcap X$ stand for the intersection over X.

Proposition 1.17. $\cap \emptyset$ is the class of all objects.
Proof. Define $V=\{x \mid x$ is an object $\}$. We have $\bigcap \emptyset \subseteq V$. Indeed every element of $\bigcap \emptyset$ is an object.

Let us show that $V \subseteq \bigcap \emptyset$. Let $a \in V$. Then a is an object. For every $x \in \emptyset$ we have $a \in x$. Indeed \emptyset has no elements. Thus $a \in \bigcap \emptyset$. End.

> FOUNDATIONS_10_7851827447988224

Proposition 1.18. Let x, y be sets. Then

$$
\bigcap\{x, y\}=x \cap y .
$$

Proof. Let us show that $\bigcap\{x, y\} \subseteq x \cap y$. Let $a \in \bigcap\{x, y\}$. Then a is contained in every element of $\{x, y\}$. Hence $a \in x$ and $a \in y$. Thus $a \in x \cap y$. End.
Let us show that $x \cap y \subseteq \bigcap\{x, y\}$. Let $a \in x \cap y$. Then $a \in x$ and $a \in y$. Hence a is contained in every element of $\{x, y\}$. Therefore $a \in \bigcap\{x, y\}$. End.

Corollary 1.19. Let x be a set. Then

$$
\bigcap\{x\}=x .
$$

1.6 Classes of functions

Definition 1.20. Let x, y be sets. $[x \rightarrow y]$ is the class of all maps from x to y.

Proposition 1.21. Let x, y be sets. Then every element of $[x \rightarrow y]$ is a function.

1.7 Axioms for mathematics

Definition 1.22. Let A be a class and a be an object and f be a map such that $A \subseteq \operatorname{dom}(f) . A$ is inductive regarding a and f iff $a \in A$ and for all $x \in A$ we have $f(x) \in A$.

FOUNDATIONS_10_2362039748001792
Axiom 1.23 (Set existence). There exists a set.

FOUNDATIONS_10_2263707272871936
Axiom 1.24 (Separation). Let A be a class. If there exists a set x such that every element of A is contained in x then A is a set.

Axiom 1.25 (Pairing). Let a, b be objects. Then $\{a, b\}$ is a set.

FOUNDATIONS_10_5536459412996096
Axiom 1.26 (Union). Let X be a system of sets. If X is a set then $\bigcup X$ is a set.

FOUNDATIONS_10_367388832825344
Axiom 1.27 (Infinity). Let A be a class and $a \in A$ and $f: A \rightarrow A$. Then there exists a subset of A that is inductive regarding a and f.

FOUNDATIONS_10_5862230203564032
Axiom 1.28 (Powerset). Let x be a set. Then $\mathcal{P}(x)$ is a set.

Let the powerset of x stand for $\mathcal{P}(x)$.

Axiom 1.29 (Choice). Let X be a system of nonempty sets. Then there exists a map f such that $\operatorname{dom}(f)=X$ and $f(x) \in x$ for any $x \in X$.

FOUNDATIONS_10_1320008569323520
Axiom 1.30 (Foundation). Let X be a nonempty system of sets. Then X has an element x such that X and x are disjoint.

Axiom 1.31 (Replacement). Let f be a map and x be a set. Then $f[x]$ is a set.

Axiom 1.32 (Function). Let f be a map. If $\operatorname{dom}(f)$ is a set then f is a function.

1.8 Consequences of the axioms

FOUNDATIONS_10_5891530432708608
Proposition 1.33. \emptyset is a set.
Proof. Take a set x (by axiom 1.23). Define $A=\{y \in x \mid y \neq y\}$. Then A is a set (by axiom 1.24). We have $A=\emptyset$. Hence \emptyset is a set.

> FOUNDATIONS_10_7556516257202176

Proposition 1.34. Let a be an object. Then $\{a\}$ is a set.

Let the singleton set of a stand for the singleton class of a. Let a singleton set stand for a singleton class.

FOUNDATIONS_10_8408517115379712
Corollary 1.35. Let A be a class that has a unique element. Then A is a set.

Proposition 1.36. Let x, y be sets. Then $x \cup y$ is a set.

Proof. Take $X=\{x, y\}$. Then X is a set. Hence $\bigcup X$ is a set (by axiom 1.26). Indeed X is a system of sets. We have $x \cup y=\bigcup X$. Thus $x \cup y$ is a set.

Proposition 1.37. Let x, y be sets. Then $x \cap y$ is a set.

Proof. We have $x \cap y \subseteq x$. Hence $x \cap y$ is a set (by axiom 1.24).

Proposition 1.38. Let x, y be sets. Then $x \backslash y$ is a set.
Proof. We have $x \backslash y \subseteq x$. Hence $x \backslash y$ is a set (by axiom 1.24).

FOUNDATIONS_10_4458706448154624
Proposition 1.39. Let x, y be sets. Then $x \times y$ is a set.
Proof. $\{a\}$ and $\{a, b\}$ are sets for each $a \in x$ and each $b \in y$. Define $P=$ $\{\{\{a\},\{a, b\}\} \mid a \in x$ and $b \in y\}$.
(1) P is a set.

Proof. Let us show that $P \subseteq \mathcal{P}(\mathcal{P}(x \cup y))$. Let $p \in P$. Consider $a \in x$ and $b \in y$ such that $p=\{\{a\},\{a, b\}\}$. Then $a, b \in x \cup y$. Hence $\{a\},\{a, b\} \in \mathcal{P}(x \cup y)$. Thus $\{\{a\},\{a, b\}\} \in \mathcal{P}(\mathcal{P}(x \cup y))$. End.
$x \cup y$ is a set. Consequently $\mathcal{P}(\mathcal{P}(x \cup y))$ is a set (by axiom 1.28). Therefore P is a set (by axiom 1.24). Qed.
Define $l(p)=$ "choose $a \in x$, choose $b \in y$ such that $p=\{\{a\},\{a, b\}\}$ in a " for $p \in P$. Define $r(p)=$ "choose $a \in x$, choose $b \in y$ such that $p=\{\{a\},\{a, b\}\}$ in b " for $p \in P$.
Define $f(p)=(l(p), r(p))$ for $p \in P$.
Let us show that for any objects $u, u^{\prime}, v, v^{\prime}$ if $\{\{u\},\{u, v\}\}=\left\{\left\{u^{\prime}\right\},\left\{u^{\prime}, v^{\prime}\right\}\right\}$ then $u=$ u^{\prime} and $v=v^{\prime}$. Let $u, u^{\prime}, v, v^{\prime}$ be objects. Assume $\{\{u\},\{u, v\}\}=\left\{\left\{u^{\prime}\right\},\left\{u^{\prime}, v^{\prime}\right\}\right\}$. Then $\left(\{u\}=\left\{u^{\prime}\right\}\right.$ or $\left.\{u\}=\left\{u^{\prime}, v^{\prime}\right\}\right)$ and $\left(\{u, v\}=\left\{u^{\prime}\right\}\right.$ or $\left.\{u, v\}=\left\{u^{\prime}, v^{\prime}\right\}\right)$. Thus $\left(\{u\}=\left\{u^{\prime}\right\}\right.$ and $\left(\{u, v\}=\left\{u^{\prime}\right\}\right.$ or $\left.\left.\{u, v\}=\left\{u^{\prime}, v^{\prime}\right\}\right)\right)$ or $\left(\{u\}=\left\{u^{\prime}, v^{\prime}\right\}\right.$ and $\left(\{u, v\}=\left\{u^{\prime}\right\}\right.$ or $\left.\{u, v\}=\left\{u^{\prime}, v^{\prime}\right\}\right)$).
Case $\{u\}=\left\{u^{\prime}\right\}$ and $\left(\{u, v\}=\left\{u^{\prime}\right\}\right.$ or $\left.\{u, v\}=\left\{u^{\prime}, v^{\prime}\right\}\right)$. We have $\{u\}=\left\{u^{\prime}\right\}$. Hence $u=u^{\prime}$.
Case $\{u, v\}=\left\{u^{\prime}\right\}$. Then $u=u^{\prime}=v$. Hence $\{\{u\},\{u, u\}\}=\left\{\{u\},\left\{u, v^{\prime}\right\}\right\}$ (by 1). Thus $\{\{u\}\}=\left\{\{u\},\left\{u, v^{\prime}\right\}\right\}$. Therefore $\{u\}=\left\{u, v^{\prime}\right\}$. Consequently $v^{\prime}=u=v$. End.
Case $\{u, v\}=\left\{u^{\prime}, v^{\prime}\right\}$. Then $\{u, v\}=\left\{u, v^{\prime}\right\}$. Hence $v=v^{\prime}$. End. End.
Case $\{u\}=\left\{u^{\prime}, v^{\prime}\right\}$ and $\left(\{u, v\}=\left\{u^{\prime}\right\}\right.$ or $\left.\{u, v\}=\left\{u^{\prime}, v^{\prime}\right\}\right)$. We have $\{u\}=\left\{u^{\prime}, v^{\prime}\right\}$. Hence $u=u^{\prime}$.

Case $\{u, v\}=\left\{u^{\prime}\right\}$. Then $u=v=u^{\prime}$. Hence $v=v^{\prime}$. End.
Case $\{u, v\}=\left\{u^{\prime}, v^{\prime}\right\}$. Then $\{u, v\}=\left\{u, v^{\prime}\right\}$. Hence $v=v^{\prime}$. End. End. End.

Let us show that for any $a \in x$ and any $b \in y$ we have $f(\{\{a\},\{a, b\}\})=(a, b)$. Let $a \in x$ and $b \in y$. Take $p=\{\{a\},\{a, b\}\}$. Then p is a set. Then we can choose $a^{\prime} \in x$ and $b^{\prime} \in y$ such that $p=\left\{\left\{a^{\prime}\right\},\left\{a^{\prime}, b^{\prime}\right\}\right\}$ and $l(p)=a^{\prime}$. Then $a=a^{\prime}$ and $b=b^{\prime}$. Hence $l(p)=a$. Choose $a^{\prime \prime} \in x$ and $b^{\prime \prime} \in y$ such that $p=\left\{\left\{a^{\prime \prime}\right\},\left\{a^{\prime \prime}, b^{\prime \prime}\right\}\right\}$ and $r(p)=b^{\prime \prime}$. Then $a=a^{\prime \prime}$ and $b=b^{\prime \prime}$. Thus $r(p)=b$. Therefore $f(p)=(a, b)$. End.
(2) $x \times y=f[P]$.

Proof. For all $p \in P$ we have $l(p) \in x$ and $r(p) \in y$. Hence $f(p) \in x \times y$ for all $p \in P$. Therefore $f[P] \subseteq x \times y$.
Let us show that $x \times y \subseteq f[P]$. Let $z \in x \times y$. Take $a \in x$ and $b \in y$ such that $z=(a, b)$. Then $(a, b)=f(\{\{a\},\{a, b\}\})$. Hence there exists a $p \in P$ such that $(a, b)=f(p)$. Thus $(a, b) \in f[P]$. End.
Consequently $x \times y=f[P]$. Qed.
Thus $x \times y$ is the image of some set under some map. Therefore $x \times y$ is a set (by axiom 1.31).

> FOUNDATIONS_10_5486815207227392

Proposition 1.40. Let X be a nonempty system of sets. Then $\bigcap X$ is a set.
Proof. Take an element x of X. Then $\bigcap X \subseteq x$. Hence $\bigcap X$ is a set (by axiom 1.24).

> FOUNDATIONS_10_7598384349184000

Proposition 1.41. Let f be a map such that $\operatorname{dom}(f)$ is a set. Then range (f) is a set.

Proof. $\operatorname{range}(f)=f_{*}(\operatorname{dom}(f))$ and $f_{*}(\operatorname{dom}(f))$ is a set. Hence range (f) is a set (by axiom 1.31).

Proposition 1.42. Let A be a class and x be a set. Assume that there exists an injective map from A to x. Then A is a set.

Proof. Consider an injective map f from A to x. Then f^{-1} is a bijection between $\operatorname{range}(f)$ and A. range (f) is a set and A is the image of range (f) under f^{-1}. Thus A is a set (by axiom 1.31).

Proposition 1.43. There exist no sets x, y such that $x \in y$ and $y \in x$.
Proof. Assume the contrary. Take sets x, y such that $x \in y$ and $y \in x$. Consider an element z of $\{x, y\}$ such that $\{x, y\}$ and z are disjoint (by axiom 1.30). Indeed $\{x, y\}$ is a nonempty system of sets. Then we have $z=x$ or $z=y$.
Case $z=x$. Then x and $\{x, y\}$ are disjoint. Hence $y \notin x$. Contradiction. End.
Case $z=y$. Then y and $\{x, y\}$ are disjoint. Hence $x \notin y$. Contradiction. End.

FOUNDATIONS_10_3086917813927936
Corollary 1.44. Let x be a set. Then $x \notin x$.

> FOUNDATIONS_10_4105036244189184

Proposition 1.45. Let x, y be sets. Then $[x \rightarrow y]$ is a set.
Proof. Define $R=\{F \in \mathcal{P}(x \times y) \mid$ (for all $a \in x$ there exists a $b \in y$ such that $(a, b) \in F)$ and for all $a \in x$ and all $b, b^{\prime} \in y$ such that $(a, b),\left(a, b^{\prime}\right) \in F$ we have $\left.b=b^{\prime}\right\}$.
[prover vampire][timelimit 5] Every element of R is a set. Define $h(F)=\lambda a \in x$. "choose $b \in y$ such that $(a, b) \in F$ in b " for $F \in R$. [prover eprover][/timelimit]
Let us show that $[x \rightarrow y] \subseteq$ range (h). Let $f \in[x \rightarrow y]$. Define $F=\{(a, f(a)) \mid a \in x\}$. Then $F \in R$.
Proof. Define $g(a)=(a, f(a))$ for $a \in x$. Then $F=\operatorname{range}(g)$. Hence F is a set. Thus $F \in \mathcal{P}(x \times y)$. Indeed $F \subseteq x \times y$.
(1) For all $a \in x$ there exists a $b \in y$ such that $(a, b) \in F$.
(2) For all $a \in x$ and all $b, b^{\prime} \in y$ such that $(a, b),\left(a, b^{\prime}\right) \in F$ we have $b=b^{\prime}$. End.

We have $\operatorname{dom}(f)=x=\operatorname{dom}(h(F))$. For each $a \in x$ we have $h(F)(a)=f(a)$. Hence $f=h(F)$. Thus $f \in \operatorname{range}(h)$. End.
Therefore $[x \rightarrow y]$ is a set. Indeed R is a set.

