Chapter 1

Invertible maps and involutions

File: foundations/sections/09_invertible-maps.ftl.tex

[readtex foundations/sections/08_injections-surjections-bijections.ftl. tex]

1.1 Invertible maps

FOUNDATIONS_09_7776974319648768
Definition 1.1. Let f be a map. An inverse of f is a map g from range (f) to $\operatorname{dom}(f)$ such that

$$
f(a)=b \quad \text { iff } \quad g(b)=a
$$

for all $a \in \operatorname{dom}(f)$ and all $b \in \operatorname{dom}(g)$.

FOUNDATIONS_09_3430350086733824
Definition 1.2. Let f be a map. f is invertible iff f has an inverse.

Lemma 1.3. Let f be a map and g, g^{\prime} be inverses of f. Then $g=g^{\prime}$.

Proof. We have $\operatorname{dom}(g)=\operatorname{range}(f)=\operatorname{dom}\left(g^{\prime}\right)$.

Let us show that $g(b)=g^{\prime}(b)$ for all $b \in \operatorname{range}(f)$. Let $b \in \operatorname{range}(f)$. Take $a=g^{\prime}(b)$. Then $g(b)=a$ iff $f(a)=b$. We have $f(a)=b$ iff $g^{\prime}(b)=a$. Thus $g(b)=g^{\prime}(b)$. End.

FOUNDATIONS_09_6458627204317184

Definition 1.4. Let f be an invertible map. f^{-1} is the inverse of f.

Let f is involutory stand for f is the inverse of f. Let f is selfinverse stand for f is the inverse of f.

1.2 Some basic facts about invertible maps

FOUNDATIONS_09_7840743571849216

Proposition 1.5. Let A, B be classes and $f: A \rightarrow B$ and $g: B \rightarrow A$. Then g is the inverse of f iff $g \circ f=\operatorname{id}_{A}$ and $f \circ g=\operatorname{id}_{B}$.

Proof. Case g is the inverse of f. We have $\operatorname{dom}(g \circ f)=\operatorname{dom}(f)=A=\operatorname{dom}\left(\mathrm{id}_{A}\right)$. For all $a \in A$ we have $(g \circ f)(a)=g(f(a))=a$. Hence $g \circ f=\operatorname{id}_{A}$.
We have $\operatorname{dom}(f \circ g)=\operatorname{dom}(g)=B=\operatorname{dom}\left(\operatorname{id}_{B}\right)$. For all $b \in B$ we have $(f \circ g)(b)=$ $f(g(b))=b$. Hence $f \circ g=\operatorname{id}_{B}$. End.

Case $g \circ f=\operatorname{id}_{A}$ and $f \circ g=\operatorname{id}_{B}$. Then $\operatorname{dom}(g)=B=\operatorname{range}(f)$ and range $(g)=$ $A=\operatorname{dom}(f)$. Let $a \in \operatorname{dom}(f)$ and $b \in \operatorname{dom}(g)$. If $f(a)=b$ then $g(b)=g(f(a))=$ $(g \circ f)(a)=\operatorname{id}_{A}(a)=a$. If $g(b)=a$ then $f(a)=f(g(b))=(f \circ g)(b)=\operatorname{id}_{B}(b)=b$. Hence $f(a)=b$ iff $g(b)=a$. End.

FOUNDATIONS_09_8414736098000896
Proposition 1.6. Let A, B be classes and $f: A \rightarrow B$. Assume that f is invertible. Then f^{-1} is an invertible surjective map from B onto A such that

$$
\left(f^{-1}\right)^{-1}=f
$$

Proof. f^{-1} is a map from B to A. Indeed range $(f)=B$ and $\operatorname{dom}(f)=A . f^{-1}$ is surjective onto A. Indeed for any $a \in A$ we have $f^{-1}(f(a))=a . f^{-1}$ is the inverse of f. Thus $f \circ f^{-1}=\operatorname{id}_{B}$ and $f^{-1} \circ f=\operatorname{id}_{A}$. Therefore f is the inverse of f^{-1}.

Proposition 1.7. Let A, B be classes and $f: A \rightarrow B$. Assume that f is invertible. Then

$$
f \circ f^{-1}=\operatorname{id}_{B}
$$

and

$$
f^{-1} \circ f=\operatorname{id}_{A}
$$

Proof. f^{-1} is a surjective map from B onto $A . f^{-1}$ is the inverse of f.

FOUNDATIONS_09_4606651604664320
Proposition 1.8. Let A, B be classes and $f: A \rightarrow B$ and $a \in A$. Assume that f is invertible. Then

$$
f^{-1}(f(a))=a
$$

Proof. We have $f^{-1}(f(a))=\left(f^{-1} \circ f\right)(a)=\operatorname{id}_{A}(a)=a$.

Proposition 1.9. Let A, B be classes and $f: A \rightarrow B$ and $b \in B$. Assume that f is invertible. Then

$$
f\left(f^{-1}(b)\right)=b
$$

Proof. We have $f\left(f^{-1}(b)\right)=\left(f \circ f^{-1}\right)(b)=\operatorname{id}_{B}(b)=b$.

FOUNDATIONS_09_7619151963095040
Proposition 1.10. Let A, B, C be classes and $f: A \rightarrow B$ and $g: B \rightarrow C$. Assume that f and g are invertible. Then $g \circ f$ is invertible and

$$
(g \circ f)^{-1}=f^{-1} \circ g^{-1}
$$

Proof. f^{-1} is a surjective map from B onto $A . g^{-1}$ is a surjective map from C onto B. Take $h=f^{-1} \circ g^{-1}$. Then h is a surjective map from C onto A (by proposition 8.9). $g \circ f$ is a map from A to C.
Let us show that $((g \circ f) \circ h)=\operatorname{id}_{C}$. We have $f \circ\left(f^{-1} \circ g^{-1}\right)=\left(f \circ f^{-1}\right) \circ g^{-1}$. Indeed $f \circ\left(f^{-1} \circ g^{-1}\right)$ and $\left(f \circ f^{-1}\right) \circ g^{-1}$ are maps of $C . f \circ h$ is a map from C to B. Hence

$$
\begin{gathered}
(g \circ f) \circ h \\
=g \circ(f \circ h) \\
=g \circ\left(f \circ\left(f^{-1} \circ g^{-1}\right)\right)
\end{gathered}
$$

$$
\begin{gathered}
=g \circ\left(\left(f \circ f^{-1}\right) \circ g^{-1}\right) \\
=g \circ\left(\operatorname{id}_{B} \circ g^{-1}\right) \\
=g \circ g^{-1} \\
=\operatorname{id}_{C} .
\end{gathered}
$$

End.
Let us show that $h \circ(g \circ f)=\operatorname{id}_{A}$. We have $\left(f^{-1} \circ g^{-1}\right) \circ g=f^{-1} \circ\left(g^{-1} \circ g\right) . g \circ f$ is a map from A to C. Hence

$$
\begin{gathered}
h \circ(g \circ f) \\
=(h \circ g) \circ f \\
=\left(\left(f^{-1} \circ g^{-1}\right) \circ g\right) \circ f \\
=\left(f^{-1} \circ\left(g^{-1} \circ g\right)\right) \circ f \\
=\left(f^{-1} \circ \operatorname{id}_{B}\right) \circ f \\
=f^{-1} \circ f \\
=\operatorname{id}_{A} .
\end{gathered}
$$

End.
Thus h is the inverse of $g \circ f$. Indeed $g \circ f$ is a surjective map from A onto C and h is a surjective map from C onto A.

FOUNDATIONS_09_6374884963778560
Proposition 1.11. Let A, B be classes and $f: A \rightarrow B$ and $X \subseteq A$. Assume that f is invertible. Then $f \upharpoonright X$ is invertible and

$$
(f \upharpoonright X)^{-1}=f^{-1} \upharpoonright\left(f_{*}(X)\right) .
$$

Proof. $f \upharpoonright X$ is a surjective map from X onto $f_{*}(X)$. Take $g=f^{-1} \upharpoonright\left(f_{*}(X)\right)$. Then g is a map of $f_{*}(X)$.
Let us show that $X \subseteq \operatorname{range}(g)$. Let $a \in X$. Then $f(a) \in f_{*}(X)$. Hence $g(f(a))=$ $f^{-1}(f(a))=a$. Thus a is a value of g. End.
Let us show that range $(g) \subseteq X$. Let $a \in \operatorname{range}(g)$. Take $b \in f_{*}(X)$ such that $a=g(b)$. Take $c \in X$ such that $b=f(c)$. Then $a=\left(f^{-1} \upharpoonright\left(f_{*}(X)\right)\right)(b)=f^{-1}(b)=f^{-1}(f(c))=$ c. Hence $a \in X$. End.

Hence range $(g)=X$. Thus g is a surjective map onto X.
Let us show that $g((f \upharpoonright X)(a))=a$ for all $a \in X$. Let $a \in X$. Then $g((f \mid X)(a))=$ $g(f(a))=\left(f^{-1} \upharpoonright\left(f_{*}(X)\right)\right)(f(a))=f^{-1}(f(a))=a$. End.

Let us show that $((f \upharpoonright X)(g(b)))=b$ for all $b \in f_{*}(X)$. Let $b \in f_{*}(X)$. Take $a \in X$ such that $b=f(a)$. We have $g(b)=g(f(a))=\left(f^{-1} \upharpoonright\left(f_{*}(X)\right)\right)(f(a))=f^{-1}(f(a))=$ a. Hence $(f \upharpoonright X)(g(b))=(f \upharpoonright X)(a)=f(a)=b$. End.
Thus $g \circ(f \upharpoonright X)=\operatorname{id}_{X}$ and $(f \upharpoonright X) \circ g=\operatorname{id}_{f_{*}(X)}$. Therefore g is the inverse of $f \upharpoonright X$.

FOUNDATIONS_09_7726021377785856
Proposition 1.12. Let A, B be classes and $f: A \rightarrow B$ and $Y \subseteq B$. Assume that f is invertible. Then

$$
f^{*}(Y)=\left(f^{-1}\right)_{*}(Y)
$$

Proof. We have $\left(f^{-1}\right)_{*}(Y)=\left\{f^{-1}(b) \mid b \in Y\right\}$ and $f^{*}(Y)=\{a \in A \mid f(a) \in Y\}$.
Let us show that $f^{*}(Y) \subseteq\left(f^{-1}\right)_{*}(Y)$. Let $a \in f^{*}(Y)$. Take $b \in Y$ such that $b=f(a)$. Then $f^{-1}(b)=f^{-1}(f(a))=a$. Hence $a \in\left(f^{-1}\right)_{*}(Y)$. End.
Let us show that $f_{*}^{-1}(Y) \subseteq f^{*}(Y)$. Let $a \in f_{*}^{-1}(Y)$. Take $b \in Y$ such that $a=f^{-1}(b)$. Then $f(a)=f\left(f^{-1}(b)\right)=b$. Hence $a \in f^{*}(Y)$. End.

FOUNDATIONS_09_8607784268464128

Corollary 1.13. Let A, B be classes and $f: A \rightarrow B$ and $b \in B$. Assume that f is invertible. Then

$$
f^{*}(\{b\})=\left\{f^{-1}(b)\right\}
$$

Proof. $f^{*}(\{b\})=f_{*}^{-1}(\{b\})$. We have $f_{*}^{-1}(\{b\})=\left\{f^{-1}(c) \mid c \in\{b\}\right\}$. Hence $f_{*}^{-1}(\{b\})=\left\{f^{-1}(b)\right\}$.

FOUNDATIONS_09_6777575974109184

Proposition 1.14. Let A, B be classes and $f: A \rightarrow B$. Then f is invertible iff f is injective.

Proof. Case f is invertible. Let $a, b \in A$. Assume $f(a)=f(b)$. Then $a=f^{-1}(f(a))=$ $f^{-1}(f(b))=b$. End.
Case f is injective. Define $g(b)=$ "choose $a \in A$ such that $f(a)=b$ in a " for $b \in B$. Then g is a map from B to A. For all $a \in A$ we have $a=g(f(a))$. Hence g is a surjective map from B onto A. For all $a \in A$ we have $g(f(a))=a$. For all $b \in B$ we have $f(g(b))=b$. Hence g is the inverse of f. End.

Corollary 1.15. Let A, B be classes and $f: A \rightarrow B$. Assume that f is invertible. Then f^{-1} is a bijection between B and A.

Proof. f^{-1} is a surjective map from B onto $A . f^{-1}$ is invertible. Hence f^{-1} is injective. Therefore f^{-1} is a bijection between B and A.

1.3 Involutions

Definition 1.16. Let A be a class. An involution on A is a selfinverse map f on A.

FOUNDATIONS_09_7944474185433088

Proposition 1.17. Let A be a class. id_{A} is an involution on A.
Proof. We have $\mathrm{id}_{A} \circ \mathrm{id}_{A}=\mathrm{id}_{A}$. Hence id_{A} is selfinverse.

Proposition 1.18. Let A be a class and f, g be involutions on A. Then $g \circ f$ is an involution on A iff $g \circ f=f \circ g$.

Proof. Case $g \circ f$ is an involution on A. Then $(g \circ f)^{-1}=f^{-1} \circ g^{-1}=f \circ g$. End. Case $g \circ f=f \circ g . f \circ f, f \circ g$ and $f \circ g$ are maps on A. Hence

$$
\begin{aligned}
&(g \circ f) \circ(g \circ f) \\
&=(g \circ f) \circ(f \circ g) \\
&=((g \circ f) \circ f) \circ g \\
&=(g \circ(f \circ f)) \circ g \\
&=\left(g \circ \mathrm{id}_{A}\right) \circ g \\
& \quad=g \circ g
\end{aligned}
$$

$$
=\operatorname{id}_{A} .
$$

Thus $g \circ f$ is selfinverse. End.

> FOUNDATIONS_09_5958206868160512

Corollary 1.19. Let A be a class and f be an involutions on A. Then $f \circ f$ is an involution on A.

Proposition 1.20. Let A be a class and f be an involution on A. Then f is a permutation of A.

Proof. f is an invertible map of A that surjects onto A. Hence f is a bijection between A and A. Thus f is a permutation of A.

