Chapter 1

Surjections, injections and bijections

File: foundations/sections/08_injections-surjections-bijections.ftl.tex

[readtex foundations/sections/06_maps.ftl.tex]

1.1 Surjective maps

FOUNDATIONS_08_8681187805495296

Definition 1.1. Let f be a map and B be a class. f is surjective onto B iff range(f) = B.

Let f surjects onto B stand for f is surjective onto B. Let a surjective map onto B stand for a map that is surjective onto B.

FOUNDATIONS_08_4195237329108992

Definition 1.2. Let A, B be classes. A surjective map from A to B is a map of A that is surjective onto B.

Let a surjective map from A onto B stand for a surjective map from A to B. Let $f: A \twoheadrightarrow B$ stand for f is a surjective map from A onto B.

FOUNDATIONS_08_1974205941809152

Proposition 1.3. Let B be a class and f be a map to B. f is surjective onto B iff every element of B is a value of f.

Proof. Case f is surjective onto B. Then B = range(f). Let b be an element of B. Then $b \in \text{range}(f)$. Hence b is a value of f. End.

Case every element of B is a value of f. Let us show that $B \subseteq \operatorname{range}(f)$. Let $b \in B$. Then b is a value of f. Hence $b \in \operatorname{range}(f)$. End.

Let us show that range $(f) \subseteq B$. Let $b \in range(f)$. Then b is a value of f. Hence $b \in B$. End. End. \Box

1.2 Injective maps

Definition 1.4. Let f be a map. f is injective iff for all $a, a' \in \text{dom}(f)$ if

f(a) = f(a') then a = a'.

Let $f: A \hookrightarrow B$ stand for f is an injective map from A to B.

1.3 Bijective maps

FOUNDATIONS_08_3356670992318464

FOUNDATIONS_08_605931408719872

Definition 1.5. Let A, B be classes. A bijection between A and B is an injective map of A that is surjective onto B.

Let a bijection from A to B stand for a bijection between A and B.

FOUNDATIONS_08_60881194975232

Proposition 1.6. Let A, B be classes and $f : A \hookrightarrow B$. Then f is a bijection between A and range(f).

Proof. f is injective and surjects onto range(f). Hence f is a bijection between A and range(f).

FOUNDATIONS_08_8188451318923264

Definition 1.7. Let A be a class. A permutation of A is a bijection between A and A.

1.4 Some basic facts

FOUNDATIONS_08_7883784041005056

Proof. (1) id_A is a map on A.

(2) id_A is surjective onto A. Proof. Let $a \in A$. Then $a = \operatorname{id}_A(a)$. Hence $a \in \operatorname{range}(\operatorname{id}_A)$. Qed. (3) id_A is injective.

Proposition 1.8. Let A be a class. Then id_A is a permutation of A.

Proof. Let $a, a' \in A$. Assume $id_A(a) = id_A(a')$. Then a = a'. Qed.

Proposition 1.9. Let A, B, C be classes and $f : A \rightarrow B$ and $g : B \rightarrow C$. Then $g \circ f$ is a surjective map from A onto C.

Proof. $g \circ f$ is a map of A.

Let us show that $g \circ f$ is surjective onto C. Let $c \in C$. Take $b \in B$ such that c = g(b). Take $a \in A$ such that b = f(a). Then $c = g(f(a)) = (g \circ f)(a)$. End. \Box

FOUNDATIONS_08_3367836856614912

FOUNDATIONS_08_8542698338254848

Proposition 1.10. Let A, B, C be classes and $f : A \hookrightarrow B$ and $g : B \hookrightarrow C$. Then $g \circ f$ is an injective map from A to C.

Proof. $g \circ f$ is a map of A.

Let us show that $g \circ f$ is injective. Let $a, a' \in A$. Assume $(g \circ f)(a) = (g \circ f)(a')$.

Then g(f(a)) = g(f(a')). Hence f(a) = f(a'). Indeed $f(a), f(a') \in B$. Thus a = a'. End.

FOUNDATIONS_08_6435206693126144

Corollary 1.11. Let A, B, C be classes. Let f be a bijection between A and B and g be a bijection between B and C. Then $g \circ f$ is a bijection between A and C.

FOUNDATIONS_08_2621531811217408

Proposition 1.12. Let A, B be classes and $f : A \hookrightarrow B$ and $X \subseteq A$. Then $f \upharpoonright X$ is injective.

Proof. Let $a, a' \in X$. Assume $(f \upharpoonright X)(a) = (f \upharpoonright X)(a')$. Then f(a) = f(a'). Hence a = a'.

FOUNDATIONS_08_647446231252992

Proposition 1.13. Let A, B be classes and $f : A \hookrightarrow B$ and $X \subseteq A$. Then $f \upharpoonright X$ is a bijection between X and $f_*(X)$.

FOUNDATIONS_08_8159443759923200

Corollary 1.14. Let A, B be classes and $f : A \hookrightarrow B$. Then f is a bijection between A and $f_*(A)$.