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Surjections, injections and
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1.1 Surjective maps
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Definition 1.1. Let f be a map and B be a class. f is surjective onto B iff
range(f) = B.

Let f surjects onto B stand for f is surjective onto B. Let a surjective map onto B
stand for a map that is surjective onto B.

FOUNDATIONS_08_4195237329108992

Definition 1.2. Let A,B be classes. A surjective map from A to B is a map of
A that is surjective onto B.
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Let a surjective map from A onto B stand for a surjective map from A to B. Let
f : A ↠ B stand for f is a surjective map from A onto B.
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Proposition 1.3. Let B be a class and f be a map to B. f is surjective onto
B iff every element of B is a value of f .

Proof. Case f is surjective onto B. Then B = range(f). Let b be an element of B.
Then b ∈ range(f). Hence b is a value of f . End.

Case every element of B is a value of f . Let us show that B ⊆ range(f). Let b ∈ B.
Then b is a value of f . Hence b ∈ range(f). End.

Let us show that range(f) ⊆ B. Let b ∈ range(f). Then b is a value of f . Hence
b ∈ B. End. End.

1.2 Injective maps
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Definition 1.4. Let f be a map. f is injective iff for all a, a′ ∈ dom(f) if
f(a) = f(a′) then a = a′.

Let f : A ↪→ B stand for f is an injective map from A to B.

1.3 Bijective maps
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Definition 1.5. Let A,B be classes. A bijection between A and B is an injective
map of A that is surjective onto B.

Let a bijection from A to B stand for a bijection between A and B.
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Proposition 1.6. Let A,B be classes and f : A ↪→ B. Then f is a bijection
between A and range(f).
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Proof. f is injective and surjects onto range(f). Hence f is a bijection between A
and range(f).
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Definition 1.7. Let A be a class. A permutation of A is a bijection between A
and A.

1.4 Some basic facts
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Proposition 1.8. Let A be a class. Then idA is a permutation of A.

Proof. (1) idA is a map on A.

(2) idA is surjective onto A.
Proof. Let a ∈ A. Then a = idA(a). Hence a ∈ range(idA). Qed.

(3) idA is injective.
Proof. Let a, a′ ∈ A. Assume idA(a) = idA(a

′). Then a = a′. Qed.
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Proposition 1.9. Let A,B,C be classes and f : A ↠ B and g : B ↠ C. Then
g ◦ f is a surjective map from A onto C.

Proof. g ◦ f is a map of A.

Let us show that g ◦f is surjective onto C. Let c ∈ C. Take b ∈ B such that c = g(b).
Take a ∈ A such that b = f(a). Then c = g(f(a)) = (g ◦ f)(a). End.
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Proposition 1.10. Let A,B,C be classes and f : A ↪→ B and g : B ↪→ C. Then
g ◦ f is an injective map from A to C.

Proof. g ◦ f is a map of A.

Let us show that g ◦ f is injective. Let a, a′ ∈ A. Assume (g ◦ f)(a) = (g ◦ f)(a′).
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Then g(f(a)) = g(f(a′)). Hence f(a) = f(a′). Indeed f(a), f(a′) ∈ B. Thus a = a′.
End.
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Corollary 1.11. Let A,B,C be classes. Let f be a bijection between A and B
and g be a bijection between B and C. Then g ◦ f is a bijection between A and
C.
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Proposition 1.12. Let A,B be classes and f : A ↪→ B and X ⊆ A. Then f ↾ X
is injective.

Proof. Let a, a′ ∈ X. Assume (f ↾ X)(a) = (f ↾ X)(a′). Then f(a) = f(a′). Hence
a = a′.
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Proposition 1.13. Let A,B be classes and f : A ↪→ B and X ⊆ A. Then f ↾ X
is a bijection between X and f∗(X).
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Corollary 1.14. Let A,B be classes and f : A ↪→ B. Then f is a bijection
between A and f∗(A).
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