Chapter 1

Computation laws for Cartesian products

File: foundations/sections/05_computation-laws-for-products.ftl.tex

```
[readtex foundations/sections/02_computation-laws-for-classes.ftl.tex]
[readtex foundations/sections/04_pairs-and-products.ftl.tex]
```


Subclass laws

> FOUNDATIONS_05_5719644021194752

Proposition 1.1. Let A, B, C be classes. Then

$$
A \subseteq B \quad \text { implies } \quad A \times C \subseteq B \times C
$$

Proof. Assume $A \subseteq B$. Let $x \in A \times C$. Take $a \in A$ and $c \in C$ such that $x=(a, c)$. Then $a \in B$. Hence $(a, c) \in B \times C$.

Proposition 1.2. Let $A, A^{\prime}, B, B^{\prime}$ be classes. Assume that A and A^{\prime} are nonempty. Then

$$
\left(A \times A^{\prime}\right) \subseteq\left(B \times B^{\prime}\right) \quad \text { iff } \quad\left(A \subseteq B \text { and } A^{\prime} \subseteq B^{\prime}\right)
$$

Proof. Case $\left(A \times A^{\prime}\right) \subseteq\left(B \times B^{\prime}\right)$. Let us show that for all $a \in A$ and all $a^{\prime} \in A^{\prime}$ we have $a \in B$ and $a^{\prime} \in B^{\prime}$. Let $a \in A$ and $a^{\prime} \in A^{\prime}$. Then $\left(a, a^{\prime}\right) \in A \times A^{\prime}$. Hence $\left(a, a^{\prime}\right) \in B \times B^{\prime}$. Thus $a \in B$ and $a^{\prime} \in B^{\prime}$. End. End.

Case $A \subseteq B$ and $A^{\prime} \subseteq B^{\prime}$. Let $x \in A \times A^{\prime}$. Take $a \in A$ and $a^{\prime} \in A^{\prime}$ such that $x=\left(a, a^{\prime}\right)$. Then $a \in B$ and $a^{\prime} \in B^{\prime}$. Hence $\left(a, a^{\prime}\right) \in B \times B^{\prime}$. End.

Distributivity of product and union

FOUNDATIONS_05_8849658323402752
Proposition 1.3. Let A, B, C be classes. Then

$$
(A \cup B) \times C=(A \times C) \cup(B \times C) .
$$

Proof. Let us show that $((A \cup B) \times C) \subseteq(A \times C) \cup(B \times C)$. Let $x \in(A \cup B) \times C$. Take $y \in A \cup B$ and $c \in C$ such that $x=(y, c)$. Then $y \in A$ or $y \in B$. If $y \in A$ then $x \in A \times C$ and if $y \in B$ then $x \in B \times C$. Hence $x \in A \times C$ or $x \in B \times C$. Thus $x \in(A \times C) \cup(B \times C)$. End.
Let us show that $((A \times C) \cup(B \times C)) \subseteq(A \cup B) \times C$. Let $x \in(A \times C) \cup(B \times C)$. Then $x \in A \times C$ or $x \in B \times C$. Take objects y, c such that $x=(y, c)$. Then $(y \in A$ or $y \in B)$ and $c \in C$. Hence $y \in A \cup B$. Thus $x \in(A \cup B) \times C$. End.

> FOUNDATIONS_05_476526841692160

Proposition 1.4. Let A, B, C be classes. Then

$$
A \times(B \cup C)=(A \times B) \cup(A \times C)
$$

Proof. Let us show that $A \times(B \cup C) \subseteq(A \times B) \cup(A \times C)$. Let $x \in A \times(B \cup C)$. Take $a \in A$ and $y \in B \cup C$ such that $x=(a, y)$. Then $y \in B$ or $y \in C$. Hence $x \in A \times B$ or $x \in A \times C$. Indeed if $y \in B$ then $x \in A \times B$ and if $y \in C$ then $x \in A \times C$. Thus $x \in(A \times B) \cup(A \times C)$. End.
Let us show that $((A \times B) \cup(A \times C)) \subseteq A \times(B \cup C)$. Let $x \in(A \times B) \cup(A \times C)$. Then $x \in A \times B$ or $x \in A \times C$. Take objects a, y such that $x=(a, y)$. Then $a \in A$ and $(y \in B$ or $y \in C)$. Hence $x \in A \times(B \cup C)$. End.

Distributivity of product and intersection

Proposition 1.5. Let A, B, C be classes. Then

$$
(A \cap B) \times C=(A \times C) \cap(B \times C) .
$$

Proof. Let us show that $((A \cap B) \times C) \subseteq(A \times C) \cap(B \times C)$. Let $x \in(A \cap B) \times C$. Take $y \in A \cap B$ and $c \in C$ such that $x=(y, c)$. Then $y \in A$ and $y \in B$. Hence $x \in A \times C$ and $x \in B \times C$. Thus $x \in(A \times C) \cap(B \times C)$. End.
Let us show that $((A \times C) \cap(B \times C)) \subseteq(A \cap B) \times C$. Let $x \in(A \times C) \cap(B \times C)$. Then $x \in A \times C$ and $x \in B \times C$. Take objects y, z such that $x=(y, z)$. Then $(y \in A$ and $y \in B)$ and $z \in C$. Hence $y \in A \cap B$. Thus $x \in(A \cap B) \times C$. End.

> FOUNDATIONS_05_954964241285120

Proposition 1.6. Let A, B, C be classes. Then

$$
A \times(B \cap C)=(A \times B) \cap(A \times C) .
$$

Proof. Let us show that $A \times(B \cap C) \subseteq(A \times B) \cap(A \times C)$. Let $x \in A \times(B \cap C)$. Take $a \in A$ and $b \in B \cap C$ such that $x=(a, b)$. Then $b \in B$ and $b \in C$. Hence $x \in A \times B$ and $x \in A \times C$. Thus $x \in(A \times B) \cap(A \times C)$. End.

Let us show that $((A \times B) \cap(A \times C)) \subseteq A \times(B \cap C)$. Let $x \in(A \times B) \cap(A \times C)$. Then $x \in A \times B$ and $x \in A \times C$. Take objects y, z such that $x=(y, z)$. Then $y \in A$ and $(z \in B$ and $z \in C)$. Hence $x \in A \times(B \cap C)$. End.

Distributivity of product and complement

FOUNDATIONS_05_6495329908162560
Proposition 1.7. Let A, B, C be classes. Then

$$
(A \backslash B) \times C=(A \times C) \backslash(B \times C) .
$$

Proof. Let us show that $((A \backslash B) \times C) \subseteq(A \times C) \backslash(B \times C)$. Let $x \in(A \backslash B) \times C$. Take $a \in A \backslash B$ and $c \in C$ such that $x=(a, c)$. Then $a \in A$ and $a \notin B$. Hence $x \in A \times C$ and $x \notin B \times C$. Thus $x \in(A \times C) \backslash(B \times C)$. End.

Let us show that $((A \times C) \backslash(B \times C)) \subseteq(A \backslash B) \times C$. Let $x \in(A \times C) \backslash(B \times C)$. Then $x \in A \times C$ and $x \notin B \times C$. Take $a \in A$ and $c \in C$ such that $x=(a, c)$. Then $a \notin B$.

Indeed if $a \in B$ then $x \in B \times C$. Hence $a \in A \backslash B$. Thus $x \in(A \backslash B) \times C$. End.

FOUNDATIONS_05_3195639422779392

Proposition 1.8. Let A, B, C be classes. Then

$$
A \times(B \backslash C)=(A \times B) \backslash(A \times C)
$$

Proof. Let us show that $A \times(B \backslash C) \subseteq(A \times B) \backslash(A \times C)$. Let $x \in A \times(B \backslash C)$. Take $a \in A$ and $b \in B \backslash C$ such that $x=(a, b)$. Then $b \in B$ and $b \notin C$. Hence $x \in A \times B$ and $x \notin A \times C$. Thus $x \in(A \times B) \backslash(A \times C)$. End.
Let us show that $((A \times B) \backslash(A \times C)) \subseteq A \times(B \backslash C)$. Let $x \in(A \times B) \backslash(A \times C)$. Then $x \in A \times B$ and $x \notin A \times C$. Take objects a, b such that $x=(a, b)$. Then $a \in A$ and $(b \in B$ and $b \notin C)$. Hence $x \in A \times(B \backslash C)$. End.

Equality law

Proposition 1.9. Let $A, A^{\prime}, B, B^{\prime}$ be classes. Assume that A and A^{\prime} are nonempty or B and B^{\prime} are nonempty. Then

$$
\left(A \times A^{\prime}\right)=\left(B \times B^{\prime}\right) \quad \text { iff } \quad\left(A=B \text { and } A^{\prime}=B^{\prime}\right) .
$$

Proof. Case $A \times A^{\prime}=B \times B^{\prime}$. Then A and A^{\prime} are nonempty iff B and B^{\prime} are nonempty.
Let us show that for all $a \in A$ and all $a^{\prime} \in A^{\prime}$ we have $a \in B$ and $a^{\prime} \in B^{\prime}$. Let $a \in A$ and $a^{\prime} \in A^{\prime}$. Then $\left(a, a^{\prime}\right) \in A \times A^{\prime}$. Hence we can take $x \in B \times B^{\prime}$ such that $x=\left(a, a^{\prime}\right)$. Thus $a \in B$ and $a^{\prime} \in B^{\prime}$. End.
Therefore $A \subseteq B$ and $A^{\prime} \subseteq B^{\prime}$. Indeed A and A^{\prime} are nonempty.
Let us show that for all $b \in B$ and all $b^{\prime} \in B^{\prime}$ we have $b \in A$ and $b^{\prime} \in A^{\prime}$. Let $b \in B$ and $b^{\prime} \in B^{\prime}$. Then $\left(b, b^{\prime}\right) \in B \times B^{\prime}$. Hence we can take $x \in A \times A^{\prime}$ such that $x=\left(b, b^{\prime}\right)$. Thus $\left(b, b^{\prime}\right) \in A \times A^{\prime}$. End.
Therefore $B \subseteq A$ and $B^{\prime} \subseteq A^{\prime}$. Indeed B and B^{\prime} are nonempty. End.
Case $A=B$ and $A^{\prime}=B^{\prime}$. Trivial.

Intersections of products

Proposition 1.10. Let $A, A^{\prime}, B, B^{\prime}$ be classes. Then

$$
(A \times B) \cap\left(A^{\prime} \times B^{\prime}\right)=\left(A \cap A^{\prime}\right) \times\left(B \cap B^{\prime}\right)
$$

Proof. Let us show that $\left((A \times B) \cap\left(A^{\prime} \times B^{\prime}\right)\right) \subseteq\left(A \cap A^{\prime}\right) \times\left(B \cap B^{\prime}\right)$. Let $x \in$ $(A \times B) \cap\left(A^{\prime} \times B^{\prime}\right)$. Then $x \in A \times B$ and $x \in A^{\prime} \times B^{\prime}$. Take objects a, b such that $x=(a, b)$. Then $a \in A, A^{\prime}$ and $b \in B, B^{\prime}$. Hence $a \in A \cap A^{\prime}$ and $b \in B \cap B^{\prime}$. Thus $x \in\left(A \cap A^{\prime}\right) \times\left(B \cap B^{\prime}\right)$. End.
Let us show that $\left(A \cap A^{\prime}\right) \times\left(B \cap B^{\prime}\right) \subseteq(A \times B) \cap\left(A^{\prime} \times B^{\prime}\right)$. Let $x \in\left(A \cap A^{\prime}\right) \times\left(B \cap B^{\prime}\right)$. Take elements a, b such that $x=(a, b)$. Then $a \in A \cap A^{\prime}$ and $b \in B \cap B^{\prime}$. Hence $a \in A, A^{\prime}$ and $b \in B, B^{\prime}$. Thus $x \in A \times B$ and $x \in A^{\prime} \times B^{\prime}$. Therefore $x \in$ $(A \times B) \cap\left(A^{\prime} \times B^{\prime}\right)$. End.

Unions of products

FOUNDATIONS_05_7090174334861312
Proposition 1.11. Let $A, A^{\prime}, B, B^{\prime}$ be classes. Then

$$
(A \times B) \cup\left(A^{\prime} \times B^{\prime}\right) \subseteq\left(A \cup A^{\prime}\right) \times\left(B \cup B^{\prime}\right)
$$

Proof. Let $x \in(A \times B) \cup\left(A^{\prime} \times B^{\prime}\right)$. Then $x \in A \times B$ or $x \in A^{\prime} \times B^{\prime}$. Take objects a, b such that $x=(a, b)$. Then $\left(a \in A\right.$ or $\left.a \in A^{\prime}\right)$ and $\left(b \in B\right.$ or $\left.b \in B^{\prime}\right)$. Hence $a \in A \cup A^{\prime}$ and $b \in B \cup B^{\prime}$. Thus $x \in\left(A \cup A^{\prime}\right) \times\left(B \cup B^{\prime}\right)$.

Complements of products

FOUNDATIONS_05_5552125989879808
Proposition 1.12. Let $A, A^{\prime}, B, B^{\prime}$ be classes. Then

$$
(A \times B) \backslash\left(A^{\prime} \times B^{\prime}\right)=\left(A \times\left(B \backslash B^{\prime}\right)\right) \cup\left(\left(A \backslash A^{\prime}\right) \times B\right)
$$

Proof. Let us show that $\left((A \times B) \backslash\left(A^{\prime} \times B^{\prime}\right)\right) \subseteq\left(A \times\left(B \backslash B^{\prime}\right)\right) \cup\left(\left(A \backslash A^{\prime}\right) \times B\right)$. Let $x \in(A \times B) \backslash\left(A^{\prime} \times B^{\prime}\right)$. Then $x \in A \times B$ and $x \notin A^{\prime} \times B^{\prime}$. Take $a \in A$ and $b \in B$ such that $x=(a, b)$. Then it is wrong that $a \in A^{\prime}$ and $b \in B^{\prime}$. Hence $a \notin A^{\prime}$ or $b \notin B^{\prime}$. Thus $a \in A \backslash A^{\prime}$ or $b \in B \backslash B^{\prime}$. Therefore $x \in A \times\left(B \backslash B^{\prime}\right)$ or $x \in\left(A \backslash A^{\prime}\right) \times B$. Hence we have $x \in\left(A \times\left(B \backslash B^{\prime}\right)\right) \cup\left(\left(A \backslash A^{\prime}\right) \times B\right)$. End.

Let us show that $\left(A \times\left(B \backslash B^{\prime}\right)\right) \cup\left(\left(A \backslash A^{\prime}\right) \times B\right) \subseteq(A \times B) \backslash\left(A^{\prime} \times B^{\prime}\right)$. Let $x \in\left(A \times\left(B \backslash B^{\prime}\right)\right) \cup\left(\left(A \backslash A^{\prime}\right) \times B\right)$. Then $x \in\left(A \times\left(B \backslash B^{\prime}\right)\right)$ or $x \in\left(\left(A \backslash A^{\prime}\right) \times B\right)$. Take elements a, b such that $x=(a, b)$. Then $\left(a \in A\right.$ and $\left.b \in B \backslash B^{\prime}\right)$ or $\left(a \in A \backslash A^{\prime}\right.$ and $b \in B$).

Case $a \in A$ and $b \in B \backslash B^{\prime}$. Then $a \in A$ and $b \in B$. Hence $x \in A \times B$. We have $b \notin B^{\prime}$. Thus $x \notin A^{\prime} \times B^{\prime}$. Therefore $x \in(A \times B) \backslash\left(A^{\prime} \times B^{\prime}\right)$. End.

Case $a \in A \backslash A^{\prime}$ and $b \in B$. Then $a \in A$ and $b \in B$. Hence $x \in A \times B$. We have $a \notin A^{\prime}$. Thus $x \notin A^{\prime} \times B^{\prime}$. Therefore $x \in(A \times B) \backslash\left(A^{\prime} \times B^{\prime}\right)$. End. End.

