Chapter 1

Ordered pairs and Cartesian products

File:

[readtex foundations/sections/01_classes.ftl.tex]

1.1 Pairs

Axiom 1.1. Let $a, a^{\prime}, b, b^{\prime}$ be objects. Then

$$
(a, b)=\left(a^{\prime}, b^{\prime}\right) \quad \text { implies } \quad\left(a=a^{\prime} \text { and } b=b^{\prime}\right)
$$

Definition 1.2. A pair is an object p such that $p=(a, b)$ for some objects a, b.

Let an ordered pair stand for a pair.

Definition 1.3. Let p be a pair. $\pi_{1} p$ is the object a such that $p=(a, b)$ for some object b.

Let the first entry of p stand for $\pi_{1} p$. Let the first component of p stand for the first entry of p.

FOUNDATIONS_04_3750179243032576
Definition 1.4. Let p be a pair. $\pi_{2} p$ is the object b such that $p=(a, b)$ for some object a.

Let the second entry of p stand for $\pi_{2} p$. Let the second component of p stand for the second entry of p.

1.2 Cartesian products

Definition 1.5. Let A, B be classes. The Cartesian product of A and B is

$$
\{(a, b) \mid a \in A \text { and } b \in B\} .
$$

Let the direct product of A and B stand for the Cartesian product of A and B. Let $A \times B$ stand for the Cartesian product of A and B.

Proposition 1.6. Let A, B be classes and a, b be objects. Then

$$
(a, b) \in A \times B \quad \text { iff } \quad(a \in A \text { and } b \in B) .
$$

Proof. Case $(a, b) \in A \times B$. We can take $a^{\prime} \in A$ and $b^{\prime} \in B$ such that $(a, b)=\left(a^{\prime}, b^{\prime}\right)$. Then $a=a^{\prime}$ and $b=b^{\prime}$. Hence $a \in A$ and $b \in B$. End.

Case $a \in A$ and $b \in B . a$ and a are objects. Hence (a, b) is an object. Therefore $(a, b) \in A \times B$. End.

Proposition 1.7. Let A, B be classes. Then $A \times B$ is empty iff A is empty or B is empty.

Proof. Case $A \times B$ is empty. Assume that A and B are nonempty. Then we can take an element a of A and an element b of B. Then $(a, b) \in A \times B$. Contradiction. End.
Case A is empty or B is empty. Assume that $A \times B$ is nonempty. Then we can take an element c of $A \times B$. Then $c=(a, b)$ for some $a \in A$ and some $b \in B$. Hence A and B are nonempty. Contradiction. End.
FOUNDATIONS_04_7971087096741888

Proposition 1.8. Let a, b be objects. Then

$$
\{a\} \times\{b\}=\{(a, b)\} .
$$

Proof. Let us show that $\{a\} \times\{b\} \subseteq\{(a, b)\}$. Let $c \in\{a\} \times\{b\}$. Take $a^{\prime} \in\{a\}$ and $b^{\prime} \in\{b\}$ such that $c=\left(a^{\prime}, b^{\prime}\right)$. We have $a^{\prime}=a$ and $b^{\prime}=b$. Hence $c=(a, b)$. Thus $c \in\{(a, b)\}$. End.
Let us show that $\{(a, b)\} \subseteq\{a\} \times\{b\}$. Let $c \in\{(a, b)\}$. Then $c=(a, b)$. We have $a \in\{a\}$ and $b \in\{b\}$. Hence $c \in\{a\} \times\{b\}$. End.

FOUNDATIONS_04_7456594440749056

Proposition 1.9. Let $A, A^{\prime}, B, B^{\prime}$ be nonempty classes. Then

$$
A \times B=A^{\prime} \times B^{\prime} \quad \text { implies } \quad\left(A=A^{\prime} \text { and } B=B^{\prime}\right) .
$$

Proof. Assume $A \times B=A^{\prime} \times B^{\prime}$.
(1) $A \subseteq A^{\prime}$ and $B \subseteq B^{\prime}$.

Proof. Let $a \in A$ and $b \in B$. Then $(a, b) \in A \times B$. Hence $(a, b) \in A^{\prime} \times B^{\prime}$. Thus $a \in A^{\prime}$ and $b \in B^{\prime}$. Qed.
(2) $A^{\prime} \subseteq A$ and $B^{\prime} \subseteq B$.

Proof. Let $a \in A^{\prime}$ and $b \in B^{\prime}$. Then $(a, b) \in A^{\prime} \times B^{\prime}$. Hence $(a, b) \in A \times B$. Thus $a \in A$ and $b \in B$. Qed.

