Chapter 1

Ordered pairs and Cartesian products

File:

foundations/sections/04_pairs-and-products.ftl.tex

[readtex foundations/sections/01_classes.ftl.tex]

1.1 Pairs

FOUNDATIONS_04_8464577431863296

Axiom 1.1. Let a, a', b, b' be objects. Then

(a,b) = (a',b') implies (a = a' and b = b').

FOUNDATIONS_04_4782386822774784

Definition 1.2. A pair is an object p such that p = (a, b) for some objects a, b.

Let an ordered pair stand for a pair.

FOUNDATIONS_04_6746145623638016

Definition 1.3. Let p be a pair. $\pi_1 p$ is the object a such that p = (a, b) for some object b.

Let the first entry of p stand for $\pi_1 p$. Let the first component of p stand for the first entry of p.

FOUNDATIONS_04_3750179243032576

Definition 1.4. Let p be a pair. $\pi_2 p$ is the object b such that p = (a, b) for some object a.

Let the second entry of p stand for $\pi_2 p$. Let the second component of p stand for the second entry of p.

1.2 Cartesian products

FOUNDATIONS_04_2877806274936832

Definition 1.5. Let A, B be classes. The Cartesian product of A and B is

 $\{(a,b) \mid a \in A \text{ and } b \in B\}.$

Let the direct product of A and B stand for the Cartesian product of A and B. Let $A \times B$ stand for the Cartesian product of A and B.

FOUNDATIONS_04_1581118511906816

Proposition 1.6. Let A, B be classes and a, b be objects. Then

 $(a,b) \in A \times B$ iff $(a \in A \text{ and } b \in B)$.

Proof. Case $(a,b) \in A \times B$. We can take $a' \in A$ and $b' \in B$ such that (a,b) = (a',b'). Then a = a' and b = b'. Hence $a \in A$ and $b \in B$. End.

Case $a \in A$ and $b \in B$. a and a are objects. Hence (a, b) is an object. Therefore $(a, b) \in A \times B$. End.

FOUNDATIONS_04_2198552029691904

Proposition 1.7. Let A, B be classes. Then $A \times B$ is empty iff A is empty or B is empty.

Proof. Case $A \times B$ is empty. Assume that A and B are nonempty. Then we can take an element a of A and an element b of B. Then $(a, b) \in A \times B$. Contradiction. End.

Case A is empty or B is empty. Assume that $A \times B$ is nonempty. Then we can take an element c of $A \times B$. Then c = (a, b) for some $a \in A$ and some $b \in B$. Hence A and B are nonempty. Contradiction. End.

FOUNDATIONS_04_7971087096741888

Proposition 1.8. Let a, b be objects. Then

 $\{a\} \times \{b\} = \{(a, b)\}.$

Proof. Let us show that $\{a\} \times \{b\} \subseteq \{(a,b)\}$. Let $c \in \{a\} \times \{b\}$. Take $a' \in \{a\}$ and $b' \in \{b\}$ such that c = (a', b'). We have a' = a and b' = b. Hence c = (a, b). Thus $c \in \{(a,b)\}$. End.

Let us show that $\{(a,b)\} \subseteq \{a\} \times \{b\}$. Let $c \in \{(a,b)\}$. Then c = (a,b). We have $a \in \{a\}$ and $b \in \{b\}$. Hence $c \in \{a\} \times \{b\}$. End.

FOUNDATIONS_04_7456594440749056

Proposition 1.9. Let A, A', B, B' be nonempty classes. Then

 $A \times B = A' \times B'$ implies (A = A' and B = B').

Proof. Assume $A \times B = A' \times B'$.

(1) $A \subseteq A'$ and $B \subseteq B'$. Proof. Let $a \in A$ and $b \in B$. Then $(a,b) \in A \times B$. Hence $(a,b) \in A' \times B'$. Thus $a \in A'$ and $b \in B'$. Qed.

(2) $A' \subseteq A$ and $B' \subseteq B$. Proof. Let $a \in A'$ and $b \in B'$. Then $(a, b) \in A' \times B'$. Hence $(a, b) \in A \times B$. Thus $a \in A$ and $b \in B$. Qed.