## Chapter 1

## Computation laws for classes

File: foundations/sections/02_computation-laws-for-classes.ftl.tex

[readtex foundations/sections/01_classes.ftl.tex]

## Commutativity of union and intersection

> FOUNDATIONS_02_8446177632583680

Proposition 1.1. Let $A, B$ be classes. Then

$$
A \cup B=B \cup A .
$$

Proof. Let us show that $A \cup B \subseteq B \cup A$. Let $x \in A \cup B$. Then $x \in A$ or $x \in B$. Hence $x \in B$ or $x \in A$. Thus $x \in B \cup A$. End.

Let us show that $B \cup A \subseteq A \cup B$. Let $x \in B \cup A$. Then $x \in B$ or $x \in A$. Hence $x \in A$ or $x \in B$. Thus $x \in A \cup B$. End.

> FOUNDATIONS_02_7565102251245568

Proposition 1.2. Let $A, B$ be classes. Then

$$
A \cap B=B \cap A
$$

Proof. Let us show that $A \cap B \subseteq B \cap A$. Let $x \in A \cap B$. Then $x \in A$ and $x \in B$. Hence $x \in B$ and $x \in A$. Thus $x \in B \cap A$. End.

Let us show that $B \cap A \subseteq A \cap B$. Let $x \in B \cap A$. Then $x \in B$ and $x \in A$. Hence $x \in A$ and $x \in B$. Thus $x \in A \cap B$. End.

## Associativity of union and intersection

Proposition 1.3. Let $A, B, C$ be classes. Then

$$
(A \cup B) \cup C=A \cup(B \cup C)
$$

Proof. Let us show that $((A \cup B) \cup C) \subseteq A \cup(B \cup C)$. Let $x \in(A \cup B) \cup C$. Then $x \in A \cup B$ or $x \in C$. Hence $x \in A$ or $x \in B$ or $x \in C$. Thus $x \in A$ or $x \in(B \cup C)$. Therefore $x \in A \cup(B \cup C)$. End.

Let us show that $A \cup(B \cup C) \subseteq(A \cup B) \cup C$. Let $x \in A \cup(B \cup C)$. Then $x \in A$ or $x \in B \cup C$. Hence $x \in A$ or $x \in B$ or $x \in C$. Thus $x \in A \cup B$ or $x \in C$. Therefore $x \in(A \cup B) \cup C$. End.

FOUNDATIONS_02_906751977193472
Proposition 1.4. Let $A, B, C$ be classes. Then

$$
(A \cap B) \cap C=A \cap(B \cap C)
$$

Proof. Let us show that $((A \cap B) \cap C) \subseteq A \cap(B \cap C)$. Let $x \in(A \cap B) \cap C$. Then $x \in A \cap B$ and $x \in C$. Hence $x \in A$ and $x \in B$ and $x \in C$. Thus $x \in A$ and $x \in(B \cap C)$. Therefore $x \in A \cap(B \cap C)$. End.

Let us show that $A \cap(B \cap C) \subseteq(A \cap B) \cap C$. Let $x \in A \cap(B \cap C)$. Then $x \in A$ and $x \in B \cap C$. Hence $x \in A$ and $x \in B$ and $x \in C$. Thus $x \in A \cap B$ and $x \in C$. Therefore $x \in(A \cap B) \cap C$. End.

## Distributivity of union and intersection

FOUNDATIONS_02_371139087958016
Proposition 1.5. Let $A, B, C$ be classes. Then

$$
A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
$$

Proof. Let us show that $A \cap(B \cup C) \subseteq(A \cap B) \cup(A \cap C)$. Let $x \in A \cap(B \cup C)$. Then $x \in A$ and $x \in B \cup C$. Hence $x \in A$ and $(x \in B$ or $x \in C)$. Thus $(x \in A$ and $x \in B$ ) or $(x \in A$ and $x \in C)$. Therefore $x \in A \cap B$ or $x \in A \cap C$. Hence $x \in(A \cap B) \cup(A \cap C)$. End.
Let us show that $((A \cap B) \cup(A \cap C)) \subseteq A \cap(B \cup C)$. Let $x \in(A \cap B) \cup(A \cap C)$. Then $x \in A \cap B$ or $x \in A \cap C$. Hence ( $x \in A$ and $x \in B$ ) or ( $x \in A$ and $x \in C$ ). Thus $x \in A$ and $(x \in B$ or $x \in C)$. Therefore $x \in A$ and $x \in B \cup C$. Hence $x \in A \cap(B \cup C)$. End.

Proposition 1.6. Let $A, B, C$ be classes. Then

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C) .
$$

Proof. Let us show that $A \cup(B \cap C) \subseteq(A \cup B) \cap(A \cup C)$. Let $x \in A \cup(B \cap C)$. Then $x \in A$ or $x \in B \cap C$. Hence $x \in A$ or $(x \in B$ and $x \in C)$. Thus $(x \in A$ or $x \in B)$ and $(x \in \mathrm{~A}$ or $x \in C)$. Therefore $x \in A \cup B$ and $x \in A \cup C$. Hence $x \in(A \cup B) \cap(A \cup C)$. End.
Let us show that $((A \cup B) \cap(A \cup C)) \subseteq A \cup(B \cap C)$. Let $x \in(A \cup B) \cap(A \cup C)$. Then $x \in A \cup B$ and $x \in A \cup C$. Hence $(x \in A$ or $x \in B)$ and $(x \in A$ or $x \in C)$. Thus $x \in A$ or $(x \in B$ and $x \in C)$. Therefore $x \in A$ or $x \in B \cap C$. Hence $x \in A \cup(B \cap C)$. End.

## Idempocy laws for union and intersection

FOUNDATIONS_02_2096996737351680
Proposition 1.7. Let $A$ be a class. Then

$$
A \cup A=A .
$$

Proof. $A \cup A=\{x \mid x \in A$ or $x \in A\}$. Hence $A \cup A=\{x \mid x \in A\}$. Thus $A \cup A=A$.

Proposition 1.8. Let $A$ be a class. Then

$$
A \cap A=A .
$$

Proof. $A \cap A=\{x \mid x \in A$ and $x \in A\}$. Hence $A \cap A=\{x \mid x \in A\}$. Thus $A \cap A=A$.

## Distributivity of complement

Proposition 1.9. Let $A, B, C$ be classes. Then

$$
A \backslash(B \cap C)=(A \backslash B) \cup(A \backslash C)
$$

Proof. Let us show that $A \backslash(B \cap C) \subseteq(A \backslash B) \cup(A \backslash C)$. Let $x \in A \backslash(B \cap C)$. Then $x \in A$ and $x \notin B \cap C$. Hence it is wrong that $(x \in B$ and $x \in C)$. Thus $x \notin B$ or $x \notin C$. Therefore $x \in A$ and $(x \notin B$ or $x \notin C)$. Then $(x \in A$ and $x \notin B)$ or $(x \in A$ and $x \notin C)$. Hence $x \in A \backslash B$ or $x \in A \backslash C$. Thus $x \in(A \backslash B) \cup(A \backslash C)$. End.
Let us show that $((A \backslash B) \cup(A \backslash C)) \subseteq A \backslash(B \cap C)$. Let $x \in(A \backslash B) \cup(A \backslash C)$. Then $x \in A \backslash B$ or $x \in A \backslash C$. Hence ( $x \in A$ and $x \notin B$ ) or ( $x \in A$ and $x \notin C$ ). Thus $x \in A$ and $(x \notin B$ or $x \notin C)$. Therefore $x \in A$ and not $(x \in B$ and $x \in C)$. Then $x \in A$ and not $x \in B \cap C$. Hence $x \in A \backslash(B \cap C)$. End.

FOUNDATIONS_02_2909554153095168
Proposition 1.10. Let $A, B, C$ be classes. Then

$$
A \backslash(B \cup C)=(A \backslash B) \cap(A \backslash C)
$$

Proof. Let us show that $A \backslash(B \cup C) \subseteq(A \backslash B) \cap(A \backslash C)$. Let $x \in A \backslash(B \cup C)$. Then $x \in A$ and $x \notin B \cup C$. Hence it is wrong that $(x \in B$ or $x \in C)$. Thus $x \notin B$ and $x \notin C$. Therefore $x \in A$ and $(x \notin B$ and $x \notin C)$. Then $(x \in A$ and $x \notin B)$ and $(x \in A$ and $x \notin C)$. Hence $x \in A \backslash B$ and $x \in A \backslash C$. Thus $x \in(A \backslash B) \cap(A \backslash C)$. End.

Let us show that $((A \backslash B) \cap(A \backslash C)) \subseteq A \backslash(B \cup C)$. Let $x \in(A \backslash B) \cap(A \backslash C)$. Then $x \in A \backslash B$ and $x \in A \backslash C$. Hence $(x \in A$ and $x \notin B)$ and $(x \in A$ and $x \notin C)$. Thus $x \in A$ and $(x \notin B$ and $x \notin C)$. Therefore $x \in A$ and not $(x \in B$ or $x \in C)$. Then $x \in A$ and not $x \in B \cup C$. Hence $x \in A \backslash(B \cup C)$. End.

## Subclass laws

FOUNDATIONS_02_3793981508943872
Proposition 1.11. Let $A, B$ be classes. Then

$$
A \subseteq A \cup B .
$$

Proof. Let $x \in A$. Then $x \in A$ or $x \in B$. Hence $x \in A \cup B$.

> FOUNDATIONS_02_1591517646946304

Proposition 1.12. Let $A, B$ be classes. Then

$$
A \cap B \subseteq A
$$

Proof. Let $x \in A \cap B$. Then $x \in A$ and $x \in B$. Hence $x \in A$.

## FOUNDATIONS_02_6657236858306560

Proposition 1.13. Let $A, B$ be classes. Then

$$
A \subseteq B \quad \text { iff } \quad A \cup B=B
$$

Proof. Case $A \subseteq B$.
Let us show that $A \cup B \subseteq B$. Let $x \in A \cup B$. Then $x \in A$ or $x \in B$. If $x \in A$ then $x \in B$. Hence $x \in B$. End.

Let us show that $B \subseteq A \cup B$. Let $x \in B$. Then $x \in A$ or $x \in B$. Hence $x \in A \cup B$. End. End.
Case $A \cup B=B$. Let $x \in A$. Then $x \in A$ or $x \in B$. Hence $x \in A \cup B=B$. End.

Proposition 1.14. Let $A, B$ be classes. Then

$$
A \subseteq B \quad \text { iff } \quad A \cap B=A
$$

Proof. Case $A \subseteq B$.
Let us show that $A \cap B \subseteq A$. Let $x \in A \cap B$. Then $x \in A$ and $x \in B$. Hence $x \in A$. End.

Let us show that $A \subseteq A \cap B$. Let $x \in A$. Then $x \in B$. Hence $x \in A$ and $x \in B$. Thus $x \in A \cap B$. End. End.
Case $A \cap B=A$. Let $x \in A$. Then $x \in A \cap B$. Hence $x \in A$ and $x \in B$. Thus $x \in B$. End.

## Complement laws

FOUNDATIONS_02_7433299337150464
Proposition 1.15. Let $A$ be a class. Then

$$
A \backslash A=\emptyset .
$$

Proof. $A \backslash A$ has no elements. Indeed $A \backslash A=\{x \mid x \in A$ and $x \notin A\}$. Hence the thesis.

> FOUNDATIONS_02_3783696985358336

Proposition 1.16. Let $A$ be a class. Then

$$
A \backslash \emptyset=A .
$$

Proof. $A \backslash \emptyset=\{x \mid x \in A$ and $x \notin \emptyset\}$. No element is an element of $\emptyset$. Hence $A \backslash \emptyset=\{x \mid x \in A\}$. Then we have the thesis.
FOUNDATIONS_02_7083929257377792

Proposition 1.17. Let $A, B$ be classes. Then

$$
A \backslash(A \backslash B)=A \cap B
$$

Proof. Let us show that $A \backslash(A \backslash B) \subseteq A \cap B$. Let $x \in A \backslash(A \backslash B)$. Then $x \in A$ and $x \notin A \backslash B$. Hence $x \notin A$ or $x \in B$. Thus $x \in B$. Therefore $x \in A \cap B$. End.
Let us show that $A \cap B \subseteq A \backslash(A \backslash B)$. Let $x \in A \cap B$. Then $x \in A$ and $x \in B$. Hence $x \notin A$ or $x \in B$. Thus $x \notin A \backslash B$. Therefore $x \in A \backslash(A \backslash B)$. End.

FOUNDATIONS_02_4938646769631232
Proposition 1.18. Let $A, B$ be classes. Then

$$
B \subseteq A \quad \text { iff } \quad A \backslash(A \backslash B)=B
$$

Proof. Case $B \subseteq A$. Obvious.
Case $A \backslash(A \backslash B)=B$. Then every element of $B$ is an element of $A \backslash(A \backslash B)$. Thus every element of $B$ is an element of $A$. Then we have the thesis. End.

Proposition 1.19. Let $A, B, C$ be classes. Then

$$
A \cap(B \backslash C)=(A \cap B) \backslash(A \cap C)
$$

Proof. Let us show that $A \cap(B \backslash C) \subseteq(A \cap B) \backslash(A \cap C)$. Let $x \in A \cap(B \backslash C)$. Then $x \in A$ and $x \in B \backslash C$. Hence $x \in A$ and $x \in B$. Thus $x \in A \cap B$ and $x \notin C$. Therefore $x \notin A \cap C$. Then we have $x \in(A \cap B) \backslash(A \cap C)$. End.
Let us show that $((A \cap B) \backslash(A \cap C)) \subseteq A \cap(B \backslash C)$. Let $x \in(A \cap B) \backslash(A \cap C)$. Then $x \in A$ and $x \in B . \quad x \notin A \cap C$. Hence $x \notin C$. Thus $x \in B \backslash C$. Therefore $x \in A \cap(B \backslash C)$. End.

