Chapter 1

Computation laws for classes

File:

foundations/sections/02_computation-laws-for-classes.ftl.tex

[readtex foundations/sections/01_classes.ftl.tex]

Commutativity of union and intersection

FOUNDATIONS_02_8446177632583680

Proposition 1.1. Let A, B be classes. Then

 $A \cup B = B \cup A.$

Proof. Let us show that $A \cup B \subseteq B \cup A$. Let $x \in A \cup B$. Then $x \in A$ or $x \in B$. Hence $x \in B$ or $x \in A$. Thus $x \in B \cup A$. End.

Let us show that $B \cup A \subseteq A \cup B$. Let $x \in B \cup A$. Then $x \in B$ or $x \in A$. Hence $x \in A$ or $x \in B$. Thus $x \in A \cup B$. End.

FOUNDATIONS_02_7565102251245568

Proposition 1.2. Let A, B be classes. Then

 $A\cap B=B\cap A.$

Proof. Let us show that $A \cap B \subseteq B \cap A$. Let $x \in A \cap B$. Then $x \in A$ and $x \in B$. Hence $x \in B$ and $x \in A$. Thus $x \in B \cap A$. End. Let us show that $B \cap A \subseteq A \cap B$. Let $x \in B \cap A$. Then $x \in B$ and $x \in A$. Hence $x \in A$ and $x \in B$. Thus $x \in A \cap B$. End.

Associativity of union and intersection

FOUNDATIONS_02_3854032263184384

Proposition 1.3. Let A, B, C be classes. Then

 $(A \cup B) \cup C = A \cup (B \cup C).$

Proof. Let us show that $((A \cup B) \cup C) \subseteq A \cup (B \cup C)$. Let $x \in (A \cup B) \cup C$. Then $x \in A \cup B$ or $x \in C$. Hence $x \in A$ or $x \in B$ or $x \in C$. Thus $x \in A$ or $x \in (B \cup C)$. Therefore $x \in A \cup (B \cup C)$. End.

Let us show that $A \cup (B \cup C) \subseteq (A \cup B) \cup C$. Let $x \in A \cup (B \cup C)$. Then $x \in A$ or $x \in B \cup C$. Hence $x \in A$ or $x \in B$ or $x \in C$. Thus $x \in A \cup B$ or $x \in C$. Therefore $x \in (A \cup B) \cup C$. End.

FOUNDATIONS_02_906751977193472

Proposition 1.4. Let A, B, C be classes. Then

 $(A \cap B) \cap C = A \cap (B \cap C).$

Proof. Let us show that $((A \cap B) \cap C) \subseteq A \cap (B \cap C)$. Let $x \in (A \cap B) \cap C$. Then $x \in A \cap B$ and $x \in C$. Hence $x \in A$ and $x \in B$ and $x \in C$. Thus $x \in A$ and $x \in (B \cap C)$. Therefore $x \in A \cap (B \cap C)$. End.

Let us show that $A \cap (B \cap C) \subseteq (A \cap B) \cap C$. Let $x \in A \cap (B \cap C)$. Then $x \in A$ and $x \in B \cap C$. Hence $x \in A$ and $x \in B$ and $x \in C$. Thus $x \in A \cap B$ and $x \in C$. Therefore $x \in (A \cap B) \cap C$. End.

Distributivity of union and intersection

FOUNDATIONS_02_371139087958016

Proposition 1.5. Let A, B, C be classes. Then

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$

Proof. Let us show that $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$. Let $x \in A \cap (B \cup C)$. Then $x \in A$ and $x \in B \cup C$. Hence $x \in A$ and $(x \in B \text{ or } x \in C)$. Thus $(x \in A$ and $x \in B)$ or $(x \in A \text{ and } x \in C)$. Therefore $x \in A \cap B$ or $x \in A \cap C$. Hence $x \in (A \cap B) \cup (A \cap C)$. End.

Let us show that $((A \cap B) \cup (A \cap C)) \subseteq A \cap (B \cup C)$. Let $x \in (A \cap B) \cup (A \cap C)$. Then $x \in A \cap B$ or $x \in A \cap C$. Hence $(x \in A \text{ and } x \in B)$ or $(x \in A \text{ and } x \in C)$. Thus $x \in A$ and $(x \in B \text{ or } x \in C)$. Therefore $x \in A$ and $x \in B \cup C$. Hence $x \in A \cap (B \cup C)$. End.

FOUNDATIONS_02_5937390721957888

Proposition 1.6. Let A, B, C be classes. Then

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$

Proof. Let us show that $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$. Let $x \in A \cup (B \cap C)$. Then $x \in A$ or $x \in B \cap C$. Hence $x \in A$ or $(x \in B \text{ and } x \in C)$. Thus $(x \in A \text{ or } x \in B)$ and $(x \in A \text{ or } x \in C)$. Therefore $x \in A \cup B$ and $x \in A \cup C$. Hence $x \in (A \cup B) \cap (A \cup C)$. End.

Let us show that $((A \cup B) \cap (A \cup C)) \subseteq A \cup (B \cap C)$. Let $x \in (A \cup B) \cap (A \cup C)$. Then $x \in A \cup B$ and $x \in A \cup C$. Hence $(x \in A \text{ or } x \in B)$ and $(x \in A \text{ or } x \in C)$. Thus $x \in A$ or $(x \in B \text{ and } x \in C)$. Therefore $x \in A$ or $x \in B \cap C$. Hence $x \in A \cup (B \cap C)$. End.

Idempocy laws for union and intersection

FOUNDATIONS_02_2096996737351680

Proposition 1.7. Let A be a class. Then

 $A \cup A = A.$

Proof. $A \cup A = \{x \mid x \in A \text{ or } x \in A\}$. Hence $A \cup A = \{x \mid x \in A\}$. Thus $A \cup A = A$.

FOUNDATIONS_02_4053144145231872

Proposition 1.8. Let A be a class. Then

 $A \cap A = A.$

Proof. $A \cap A = \{x \mid x \in A \text{ and } x \in A\}$. Hence $A \cap A = \{x \mid x \in A\}$. Thus $A \cap A = A$.

Distributivity of complement

FOUNDATIONS_02_5296031436636160

Proposition 1.9. Let A, B, C be classes. Then

$$A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C).$$

Proof. Let us show that $A \setminus (B \cap C) \subseteq (A \setminus B) \cup (A \setminus C)$. Let $x \in A \setminus (B \cap C)$. Then $x \in A$ and $x \notin B \cap C$. Hence it is wrong that $(x \in B \text{ and } x \in C)$. Thus $x \notin B$ or $x \notin C$. Therefore $x \in A$ and $(x \notin B \text{ or } x \notin C)$. Then $(x \in A \text{ and } x \notin B)$ or $(x \in A \text{ and } x \notin C)$. Hence $x \in A \setminus B$ or $x \in A \setminus C$. Thus $x \in (A \setminus B) \cup (A \setminus C)$. End.

Let us show that $((A \setminus B) \cup (A \setminus C)) \subseteq A \setminus (B \cap C)$. Let $x \in (A \setminus B) \cup (A \setminus C)$. Then $x \in A \setminus B$ or $x \in A \setminus C$. Hence $(x \in A \text{ and } x \notin B)$ or $(x \in A \text{ and } x \notin C)$. Thus $x \in A$ and $(x \notin B \text{ or } x \notin C)$. Therefore $x \in A$ and not $(x \in B \text{ and } x \in C)$. Then $x \in A$ and not $x \in B \cap C$. Hence $x \in A \setminus (B \cap C)$. End. \Box

FOUNDATIONS_02_2909554153095168

Proposition 1.10. Let A, B, C be classes. Then

$$A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C).$$

Proof. Let us show that $A \setminus (B \cup C) \subseteq (A \setminus B) \cap (A \setminus C)$. Let $x \in A \setminus (B \cup C)$. Then $x \in A$ and $x \notin B \cup C$. Hence it is wrong that $(x \in B \text{ or } x \in C)$. Thus $x \notin B$ and $x \notin C$. Therefore $x \in A$ and $(x \notin B \text{ and } x \notin C)$. Then $(x \in A \text{ and } x \notin B)$ and $(x \in A \text{ and } x \notin C)$. Hence $x \in A \setminus B$ and $x \in A \setminus C$. Thus $x \in (A \setminus B) \cap (A \setminus C)$. End.

Let us show that $((A \setminus B) \cap (A \setminus C)) \subseteq A \setminus (B \cup C)$. Let $x \in (A \setminus B) \cap (A \setminus C)$. Then $x \in A \setminus B$ and $x \in A \setminus C$. Hence $(x \in A \text{ and } x \notin B)$ and $(x \in A \text{ and } x \notin C)$. Thus $x \in A$ and $(x \notin B \text{ and } x \notin C)$. Therefore $x \in A$ and not $(x \in B \text{ or } x \in C)$. Then $x \in A$ and not $x \in B \cup C$. Hence $x \in A \setminus (B \cup C)$. End. \Box

Subclass laws

FOUNDATIONS_02_3793981508943872

Proposition 1.11. Let A, B be classes. Then

 $A \subseteq A \cup B.$

Proof. Let $x \in A$. Then $x \in A$ or $x \in B$. Hence $x \in A \cup B$.

FOUNDATIONS_02_1591517646946304

Proposition 1.12. Let A, B be classes. Then

 $A \cap B \subseteq A.$

Proof. Let $x \in A \cap B$. Then $x \in A$ and $x \in B$. Hence $x \in A$.

FOUNDATIONS_02_6657236858306560

Proposition 1.13. Let A, B be classes. Then

 $A \subseteq B$ iff $A \cup B = B$.

Proof. Case $A \subseteq B$.

Let us show that $A \cup B \subseteq B$. Let $x \in A \cup B$. Then $x \in A$ or $x \in B$. If $x \in A$ then $x \in B$. Hence $x \in B$. End.

Let us show that $B \subseteq A \cup B$. Let $x \in B$. Then $x \in A$ or $x \in B$. Hence $x \in A \cup B$. End. End.

Case $A \cup B = B$. Let $x \in A$. Then $x \in A$ or $x \in B$. Hence $x \in A \cup B = B$. End.

FOUNDATIONS_02_2356449346846720

Proposition 1.14. Let A, B be classes. Then

 $A \subseteq B$ iff $A \cap B = A$.

Proof. Case $A \subseteq B$.

Let us show that $A \cap B \subseteq A$. Let $x \in A \cap B$. Then $x \in A$ and $x \in B$. Hence $x \in A$. End.

Let us show that $A \subseteq A \cap B$. Let $x \in A$. Then $x \in B$. Hence $x \in A$ and $x \in B$. Thus $x \in A \cap B$. End. End.

Case $A \cap B = A$. Let $x \in A$. Then $x \in A \cap B$. Hence $x \in A$ and $x \in B$. Thus $x \in B$. End.

Complement laws

FOUNDATIONS_02_7433299337150464

Proposition 1.15. Let A be a class. Then

 $A \setminus A = \emptyset.$

Proof. $A \setminus A$ has no elements. Indeed $A \setminus A = \{x \mid x \in A \text{ and } x \notin A\}$. Hence the thesis.

FOUNDATIONS_02_3783696985358336

Proposition 1.16. Let A be a class. Then

 $A \setminus \emptyset = A.$

Proof. $A \setminus \emptyset = \{x \mid x \in A \text{ and } x \notin \emptyset\}$. No element is an element of \emptyset . Hence $A \setminus \emptyset = \{x \mid x \in A\}$. Then we have the thesis.

FOUNDATIONS_02_7083929257377792

Proposition 1.17. Let A, B be classes. Then

 $A \setminus (A \setminus B) = A \cap B.$

Proof. Let us show that $A \setminus (A \setminus B) \subseteq A \cap B$. Let $x \in A \setminus (A \setminus B)$. Then $x \in A$ and $x \notin A \setminus B$. Hence $x \notin A$ or $x \in B$. Thus $x \in B$. Therefore $x \in A \cap B$. End.

Let us show that $A \cap B \subseteq A \setminus (A \setminus B)$. Let $x \in A \cap B$. Then $x \in A$ and $x \in B$. Hence $x \notin A$ or $x \in B$. Thus $x \notin A \setminus B$. Therefore $x \in A \setminus (A \setminus B)$. End. \Box

FOUNDATIONS_02_4938646769631232

Proposition 1.18. Let A, B be classes. Then

 $B \subseteq A$ iff $A \setminus (A \setminus B) = B$.

Proof. Case $B \subseteq A$. Obvious.

Case $A \setminus (A \setminus B) = B$. Then every element of B is an element of $A \setminus (A \setminus B)$. Thus every element of B is an element of A. Then we have the thesis. End.

FOUNDATIONS_02_5811954316738560

Proposition 1.19. Let A, B, C be classes. Then

$$A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C).$$

Proof. Let us show that $A \cap (B \setminus C) \subseteq (A \cap B) \setminus (A \cap C)$. Let $x \in A \cap (B \setminus C)$. Then $x \in A$ and $x \in B \setminus C$. Hence $x \in A$ and $x \in B$. Thus $x \in A \cap B$ and $x \notin C$. Therefore $x \notin A \cap C$. Then we have $x \in (A \cap B) \setminus (A \cap C)$. End.

Let us show that $((A \cap B) \setminus (A \cap C)) \subseteq A \cap (B \setminus C)$. Let $x \in (A \cap B) \setminus (A \cap C)$. Then $x \in A$ and $x \in B$. $x \notin A \cap C$. Hence $x \notin C$. Thus $x \in B \setminus C$. Therefore $x \in A \cap (B \setminus C)$. End.