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Interdependencies of the chapters

Introduction

This is a library providing a foundation of mathematics based on a Kelley-
Morse like class theory with urelements. It introduces common operations on
classes like unions or intersections (chapter 1) together with detailed proofs
of their algebraic properties (chapter 2), the symmetric difference of two
classes (chapter 3) and the notions of ordered pairs and Cartesian products
(chapter 4) as well as proofs of the algebraic properties of the latter (chap-
ter 5). Moreover, it provides common operations on maps (chapter 6), various
properties of images and preimages (chapter 7) and the notions of injectiv-
ity, surjectivity, bijectivity (chapter 8) and invertibility of maps (chapter 9).
The library provides an axiom system characterizing sets (chapter 10) and,
furthermore, it covers the notions of binary relations (chapter 11), fixed-
points of subset preserving maps (chapter 12), including and equinumerosity
(chapter 13).

As two famous results it includes the Knaster-Tarski fixed point theorem
(theorem 12.4) and the Cantor-Schréder-Bernstein theorem (theorem 13.5).
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Chapter 1

Classes

File: foundations/sections/01_classes.ftl.tex

1.1 Preliminaries

[readtex vocabulary.ftl.tex]
[readtex axioms.ftl.tex]

[readtex macros.ftl.tex|

1.2 Sub- and superclasses

FOUNDATIONS_01_3275578358628352

Definition 1.1. Let A be a class. A subclass of A is a class B such that every
element of B is an element of A.

Let B C A stand for B is a subclass of A. Let B C A stand for B C A.

Let a superclass of B stand for a class A such that B C A. Let B O A stand for B
is a superclass of A. Let B D A stand for B C A.

Let a proper subclass of A stand for a subclass B of A such that B # A. Let BC A
stand for B is a proper subclass of A.
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Let a proper superclass of B stand for a superclass A of B such that A # B. Let
B 2 A stand for B is a proper superclass of A.

Let A includes B stand for B C A. Let B is included in A stand for B C A.

FOUNDATIONS_01_5994555614691328

Proposition 1.2. Let A be a class. Then

ACA.

Proof. Every element of A is contained in A. Therefore A C A. O

FOUNDATIONS_01_3939677545431040

Proposition 1.3. Let A, B, C be classes. Then

(ACBand BCC) implies ACC.

Proof. Assume A C B and B C C. Then every element of A is contained in B and
every element of B is contained in C. Hence every element of A is contained in C.
Thus A C C. O

FOUNDATIONS_01_7159957847801856

Proposition 1.4. Let A, B be classes. Then

(ACBand BC A) implies A=B.

Proof. Assume A C B and B C A. Then every element of A is contained in B and
every element of B is contained in A. Hence A = B. O

1.3 The empty class

FOUNDATIONS_01_6252477624090624

Definition 1.5. Let A be a class. A is empty iff A has no elements.

Let A is nonempty stand for A is not empty.
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FOUNDATIONS_01_7939928493129728

Definition 1.6.
0= {z | z # z}.

FOUNDATIONS_01_2263153161273344

Proposition 1.7. Let A be a class. A is empty iff A = (.

Proof. We can show that () is empty. Indeed any element z of () is nonequal to .
Hence if A = () then A is empty. If A is empty then A and () have no elements. Hence
if A is empty then A C () and ) C A. Thus if A is empty then A = (). O

FOUNDATIONS_01_1495141426659328

Corollary 1.8. (} is empty.

FOUNDATIONS_01_6931785090859008

Corollary 1.9. Let A be a class. Then

0C A

Proof. () has no elements. Hence every element of () is contained in A. O

1.4 Unordered pairs

FOUNDATIONS_01_3471035364016128

Definition 1.10. Let a,b be objects. The unordered pair of a and b is

{z |z =aorz=0}

Let {a, b} stand for the unordered pair of a and b.
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FOUNDATIONS_01_605432672419840

Definition 1.11. An unordered pair is a class A such that A = {a, b} for some
distinct objects a, b.

FOUNDATIONS_01_1160414603771904

Definition 1.12. Let a be an object. The singleton class of a is

{z |z =a}.

Let {a} stand for the singleton class of a.

FOUNDATIONS_01_6786618161627136

Definition 1.13. A singleton class is a class A such that A = {a} for some
object a.

FOUNDATIONS_01_6125259604361216

Proposition 1.14. Let a,a’,b,b’" be objects. Assume {a, b} = {a’, b'}. Then
(a=d and b=1¥) or (a =0 and b =d’).

Proof. We have a =a’ or a =¥. If a = a' then b=1V'. If a =V’ then b = a’. Hence
(a=d and b=1"V) or (a ="V and b =d'). O

FOUNDATIONS_01_6954678910713856

Corollary 1.15. Let a,a’ be objects. Then

{a} = {d’} implies a=ad'.

Definition 1.16. Let A be a class. A unique element of A is an element a of A
such that for each x € A we have = = a.
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Proposition 1.17. Let A be a class. Then A has a unique element iff A = {a}
for some object a.

1.5 Unions, intersections, complements

FOUNDATIONS_01_2159753924968448

Definition 1.18. Let A, B be classes. The union of A and B is

{z|z€Aorzec B}

Let AU B stand for the union of A and B.

FOUNDATIONS_01_5744033011859456

Definition 1.19. Let A, B be classes. The intersection of A and B is

{z |z € Aand z € B}.

Let AN B stand for the intersection of A and B.

FOUNDATIONS_01_7620345041256448

Definition 1.20. Let A, B be classes. The complement of B in A is

{z|x € Aand x ¢ B}.

Let A\ B stand for the complement of B in A.
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1.6 Disjoint classes

FOUNDATIONS_01_4981913324355584

Definition 1.21. Let A, B be classes. A and B are disjoint iff A and B have no
common elements.

FOUNDATIONS_01_1211191546347520

Proposition 1.22. Let A, B be classes. Then A and B are disjoint iff AN B is
empty.




Chapter 2

Computation laws for classes

File: foundations/sections/02_computation-laws-for-classes.ftl.tex

[readtex foundations/sections/01_classes.ftl.tex]

Commutativity of union and intersection

FOUNDATIONS_02_8446177632583680

Proposition 2.1. Let A, B be classes. Then

AUB=BUA.

Proof. Let us show that AUB C BUA. Let xt € AUB. Then x € A or xz € B.
Hence x € Bor x € A. Thus x € BU A. End.

Let us show that BUA C AUB. Let z € BUA. Thenxz € Borx € A. Hencex € A
orx € B. Thus x € AU B. End. O

FOUNDATIONS_02_7565102251245568

Proposition 2.2. Let A, B be classes. Then

ANB=BnA.

Proof. Let us show that ANB C BNA. Let x € ANB. Then z € A and x € B.
Hence x € B and z € A. Thus x € BN A. End.

11
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Let us show that BN AC ANB. Let x € BNA. Then z € B and z € A. Hence
z € Aand x € B. Thus z € AN B. End. O

Associativity of union and intersection

FOUNDATIONS_02_3854032263184384

Proposition 2.3. Let A, B, C be classes. Then

(AUB)UC =AU (BUC).

Proof. Let us show that (AUB)UC) C AU (BUC). Let z € (AU B)UC. Then
x€AUBorzeC. Hencex € Aorz € Borx € C. Thusz € Aor z € (BUC).
Therefore x € AU (BUC). End.

Let us show that AU(BUC) C (AUB)UC. Let € AU(BUC). Then z € A or
r € BUC. Hence x € Aorx € Borxz € C. Thus x € AU B or x € C. Therefore

z € (AUB)UC. End. 0

FOUNDATIONS_02_906751977193472

Proposition 2.4. Let A, B,C be classes. Then

(ANB)NC =ANn(BNC).

Proof. Let us show that (ANB)NC) C An(BNC). Let z € (AN B)NC. Then
r € ANBand x € C. Hence x € Aand x € B and x € C. Thus x € A and
xz € (BN C). Thereforex € AN (BNC). End.

Let us show that AN (BNC) C (ANB)NC. Let x € AN(BNC). Then z € A
and x € BNC. Hencex € Aand x € Band x € C. Thusz € AN B and z € C.
Therefore € (AN B)NC. End. O

Distributivity of union and intersection

FOUNDATIONS_02_371139087958016

Proposition 2.5. Let A, B, C be classes. Then

AN(BUC)=(ANB)U(ANCQC).
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Proof. Let us show that AN (BUC) C (ANB)U(ANC). Let z € An(BUC).
Then z € A and x € BUC. Hence € A and (x € B or z € C). Thus (x € A
and x € B) or (z € A and € C). Therefore z € AN B or x € AN C. Hence
ze€(ANB)U(ANC). End.

Let us show that (ANB)U(ANC)) CAN(BUC). Let z € (ANB)U(ANC).
Then x € ANBorx € ANC. Hence (x € Aand xz € B) or (x € A and z € C). Thus
z € Aand (x € Bor z € C). Therefore z € Aand 2 € BUC. Hencex € AN(BUC).
End. O

FOUNDATIONS_02_5937390721957888

Proposition 2.6. Let A, B, C be classes. Then

AU(BNC)=(AUB)N(AUC).

Proof. Let us show that AU(BNC) C (AUB)N(AUC). Let z € AU(BNC). Then
x€Aorz e BNC. Hence z € Aor (x € Band x € (). Thus (z € Aor z € B) and
(x € AorxzeC). Therefore z € AUB and x € AUC. Hence x € (AUB)N(AUC).
End.

Let us show that (AUB)N(AUC)) C AU(BNC). Let z € (AUB)N (AU Q).
Then 2z € AUB and 2 € AUC. Hence (z € Aor z € B) and (x € A or x € C). Thus
x € Aor (z € Band z € C). Therefore z € Aor x € BNC. Hence z € AU(BNC).
End. O

Idempocy laws for union and intersection

FOUNDATIONS_02_2096996737351680

Proposition 2.7. Let A be a class. Then

AUA=A.

Proof. AUA={z|x€ Aorx € A}. Hence AUA={z |z € A}. Thus AUA = A.
O

FOUNDATIONS_02_4053144145231872

Proposition 2.8. Let A be a class. Then

ANA=A.
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Proof. ANA={z|z€ Aandz € A}. Hence ANA={z |z € A}. Thus ANA = A.
O

Distributivity of complement

FOUNDATIONS_02_5296031436636160

Proposition 2.9. Let A, B, C be classes. Then

A\ (BNC)=(A\B)U 4\ ).

Proof. Let us show that A\ (BNC) C (A\B)U(A\C). Let x € A\ (BNC). Then
x € Aand z ¢ BN C. Hence it is wrong that (x € B and = € C). Thus = ¢ B or
x ¢ C. Therefore x € A and (x ¢ Bor z ¢ C). Then (x € Aand z ¢ B) or (x € A
and x ¢ C). Hence z € A\ Borx € A\C. Thusz € (A\ B)U (4\ C). End.

Let us show that ((A\ B)U(A\C)) C A\ (BNC). Let x € (A\ B)U(A\ C). Then
x€A\Borxz e A\C. Hence (r€ Aandx ¢ B)or (z € Aand x ¢ C). Thusz € A
and (z ¢ B or x ¢ C). Therefore x € A and not (z € B and z € C). Then xz € A
and not x € BNC. Hence z € A\ (BN C). End. O

FOUNDATIONS_02_2909554153095168

Proposition 2.10. Let A, B, C be classes. Then

A\ (BUC) = (A\B)N(4\0).

Proof. Let us show that A\ (BUC) C (A\B)N(A\C). Let z € A\ (BUC). Then
x € Aand x ¢ BUC. Hence it is wrong that (x € B or € C). Thus « ¢ B and
x ¢ C. Therefore z € A and (v ¢ B and = ¢ C). Then (z € A and = ¢ B) and
(x€e Aand x ¢ C). Hence z € A\ Band x € A\ C. Thus z € (A\ B)N(A\C).
End.

Let us show that ((A\ B)N(A\C)) C A\ (BUC). Let z € (A\ B)N(A\ C). Then
x€ A\ Band z € A\ C. Hence (x € Aand = ¢ B) and (z € A and x ¢ C). Thus
x € Aand (x ¢ B and & ¢ C). Therefore x € A and not (x € B or z € C). Then
2 € Aand not x € BUC. Hence z € A\ (BUC). End. O
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Subclass laws

FOUNDATIONS_02_3793981508943872

Proposition 2.11. Let A, B be classes. Then

ACAUB.

Proof. Let x € A. Then z € A or x € B. Hence z € AU B. O

FOUNDATIONS_02_1591517646946304

Proposition 2.12. Let A, B be classes. Then

ANBCA.

Proof. Let © € AN B. Then x € A and x € B. Hence x € A. O

FOUNDATIONS_02_6657236858306560

Proposition 2.13. Let A, B be classes. Then

ACB if AUuB=B.

Proof. Case A C B.

Let us show that AUB C B. Let t € AUB. Thenx € Aor x € B. If z € A then
r € B. Hence x € B. End.

Let us show that B C AUB. Let x € B. Then z € A or x € B. Hence z € AU B.
End. End.

Case AUB =B. Let z € A. Then x € Aor x € B. Hence x € AU B = B. End.
O

FOUNDATIONS_02_2356449346846720

Proposition 2.14. Let A, B be classes. Then

ACB iff AnB=A.

Proof. Case A C B.

Let us show that AN B C A. Let t € AN B. Then x € A and z € B. Hence z € A.
End.
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Let us show that A € AN B. Let z € A. Then z € B. Hence x € A and z € B.
Thus x € AN B. End. End.

Case ANB=A. Let x € A. Thenxz € ANB. Hence z € A and z € B. Thus =z € B.
End. ]

Complement laws

FOUNDATIONS_02_7433299337150464

Proposition 2.15. Let A be a class. Then

A\A=0.

Proof. A\ A has no elements. Indeed A\ A = {z |z € A and x ¢ A}. Hence the
thesis. O

FOUNDATIONS_02_3783696985358336

Proposition 2.16. Let A be a class. Then

A\D = A

Proof. A\D ={z |z € Aand z ¢ 0}. No element is an element of (). Hence
A\ 0= {z|x e A}. Then we have the thesis. O

FOUNDATIONS_02_7083929257377792

Proposition 2.17. Let A, B be classes. Then

A\ (A\ B)=AnB.

Proof. Let us show that A\ (A\B) CANB. Let x € A\ (A\ B). Then z € A and
x ¢ A\ B. Hence x ¢ A or x € B. Thus « € B. Therefore x € AN B. End.

Let us show that ANB C A\ (A\ B). Let z € ANB. Then « € A and z € B. Hence
x ¢ Aorx € B. Thus ¢ A\ B. Therefore z € A\ (4\ B). End. O
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FOUNDATIONS_02_4938646769631232

Proposition 2.18. Let A, B be classes. Then

BCA iff A\(A\B)=B.

Proof. Case B C A. Obvious.

Case A\ (A\ B) = B. Then every element of B is an element of A\ (A \ B). Thus
every element of B is an element of A. Then we have the thesis. End. O

FOUNDATIONS_02_5811954316738560

Proposition 2.19. Let A, B, C be classes. Then

AN(B\C)=(ANnB)\(ANCO).

Proof. Let us show that AN(B\C) C (ANB)\(ANC). Let x € AN (B\ C). Then
z€ Aandx € B\C. Hencex € Aand « € B. Thus z € ANB and x ¢ C. Therefore
x ¢ ANC. Then we have z € (AN B) \ (AN C). End.

Let us show that (ANB)\(ANC)) CAN(B\C). Let z € (AN B)\ (ANC).
Then © € Aand x € B. © ¢ ANC. Hence z ¢ C. Thus x € B\ C. Therefore
x€e AN (B\C). End. O

17



Chapter 3

Symmetric difference

File: foundations/sections/03_symmetric-difference.ftl.tex

[readtex foundations/sections/02_computation-laws-for-classes.ftl.tex]

3.1 Definitions

FOUNDATIONS_03_7457594151010304

Definition 3.1. Let A, B be classes.

AAB=(AUB)\ (AN B).

Let the symmetric difference of A and B stand for A A B.

FOUNDATIONS_03_4886447211413504

Proposition 3.2. Let A, B be classes. Then

AAB=(A\B)U(B\A).

Proof. Let us show that AAB C (A\B)U(B\A). Let u e AAB. Thenu e AUB
and u ¢ AN B. Hence (u € A or u € B) and not (u € A and w € B). Thus (u € A
oru € B) and (u ¢ A or u ¢ B). Therefore if u € A then u ¢ B. If u € B then
u ¢ A. Then we have (u € A and u ¢ B) or (u € B and u ¢ A). Hence u € A\ B or

18
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u€ B\ A Thusu € (A\B)U(B\ A). End.

Let us show that (A\ B)U(B\A)) C AAB. Let u € (A\ B)U (B \ A). Then
(ueAandu ¢ B)or (ue Bandu ¢ A). If u € A and u ¢ B then u € AU B and
u¢ ANB. Ifu € Band u ¢ Athenu € AUB and u ¢ AN B. Hence u € AU B and
u¢ ANB. Thusu € (AUB)\ (ANB) =AAB. End. O

3.2 Computation laws

Commutativity

FOUNDATIONS_03_4518372049944576

Proposition 3.3. Let A, B be classes. Then

AAB=DBAA.

Proof. AAB=(AUB)\(ANB)=(BUA)\ (BNA)=BAA. 0

Associativity

FOUNDATIONS_03_8680845204258816

Proposition 3.4. Let A, B, C be classes. Then

(AABYAC =ANABAC).

Proof. Take a class X such that X = (((A\B)U(B\A))\C)U(C\((A\B)U(B\A4))).
Take a class Y such that Y = (A\ (B\C)U(C\ B))U(((B\C)U(C\B))\A).

We have AAB = (A\ B)U(B\ A) and BAC = (B\ C)U (C\ B). Hence
(AAB)AC =X and AA(BAC) =Y.

Let us show that (I) X C Y. Let z € X.
(I1) Casexz e ((A\B)U(B\A))\C. Then z ¢ C.

(I 1a) Case x € A\ B. Then z ¢ B\ C and z ¢ C\ B. « € A. Hence x €
A\ ((B\C)U(C\ B)). Thus z € Y. End.

(I1b) Case x € B\ A. Then z € B\ C. Hence z € (B\C)U (C\ B). ¢ A. Thus
x € ((B\C)U(C\ B))\ A. Therefore z € Y. End. End.

(I2)CasexeC\((A\B)U(B\A)). ThenzeC. x¢ A\ B and x ¢ B\ A. Hence
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not (x € A\Borz e B\A). Thusnot ((zr € Aand x ¢ B) or (x € B and z ¢ A)).
Therefore (x ¢ Aor z € B) and (x ¢ B or z € A).

(I 2a) Case x € A. Then z € B. Hence ¢ (B\C)U (C\ B). Thus z € A\ ((B\
C)U (C\ B)). Therefore x € Y. End.

(I 2b) Case z ¢ A. Then = ¢ B. Hence z € C'\ B. Thus z € (B\ C)U (C\ B).
Therefore z € (B\ C)U (C'\ B)) \ A. Then we have z € Y. End. End. End.

Let us show that (IT) Y C X. Let y € Y.

(II'1) Casey € A\ ((B\C)U(C\B)). Thenyc€ A. y¢ B\C and y ¢ C'\ B. Hence
not (y € B\CoryeC\B). Thusnot ((y € Bandy ¢ C) or (y € C and y ¢ B)).
Therefore (y ¢ Bory € C) and (y ¢ C or y € B).

(II'la) Casey € B. Theny € C. y ¢ A\Bandy ¢ B\ A. Hencey ¢ (A\B)U(B\A).
Thus y € C'\ ((A\ B)U (B \ A)). Therefore y € X. End.

(IT 1b) Case y ¢ B. Theny ¢ C. y € A\ B. Hence y € (A\ B) U (B\ A). Thus
y€ ((A\B)U(B\ A))\ C. Therefore y € X. End. End.

(II2) Casey € (B\C)U(C'\ B))\ A. Then y ¢ A.

(IT 2a) Case y € B\ C. Theny € B\ A. Hencey € (A\ B)U (B\ A). Thus
y€ ((A\B)U(B\ A))\ C. Therefore y € X. End.

(I 2b) Case y € C\ B. Theny € C. y ¢ A\Band y ¢ B\ A. Hence y ¢
(A\B)U(B\A). Thusy € C\ ((A\ B)U(B\ A)). Therefore y € X. End. End.
End. O

Distributivity

FOUNDATIONS_03_4119141910839296

Proposition 3.5. Let A, B, C be classes. Then

AN(BAC)=(ANB)A(ANC).

Proof. AN(BAC)=AN((B\C)U(C\B))=(AN(B\C))U(AN(C\ B)).

AN(B\C)=(ANB)\(ANC). AN(C\B)=(ANnC)\ (AN B).

Hence AN(BAC)=((ANB)\(ANC))U(ANC)\(ANB))=(ANB)A(ANC).
O
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Miscellaneous rules

FOUNDATIONS_03_7383417205293056

Proposition 3.6. Let A, B be classes. Then

ACB iff AAB=DB\A.

Proof. Case A C B. Then AUB = B and AN B = A. Hence the thesis. End.

Case AAB=B\A. Letac A. Thena ¢ B\ A. Hencea ¢ AAB. Thusa ¢ AUB
ora € ANB. Indeed AAB = (AUB)\ (ANB). If a ¢ AU B then we have a
contradiction. Therefore a € AN B. Then we have the thesis. End. ]

FOUNDATIONS_03_4490230937681920

Proposition 3.7. Let A, B, C be classes. Then

AAB=AAC iff B=C.

Proof. Case AANB=ANC.
Let us show that B C C. Let b € B.

Case b € A. Then b ¢ AAB. Hence b ¢ AAC. Therefore b € AN C. Indeed
ANC =(AUC)\ (ANC). Hence b € C. End.

Caseb¢ A. Thenbe AAB. Indeed be AUB and b¢ ANB. Hence be AAC.
Thus b€ AUC and b ¢ ANC. Therefore b € A or b € C. Then we have the thesis.
End. End.

Let us show that C C B. Let c € C.

Case c € A. Then ¢ ¢ AAC. Hence ¢ ¢ AA B. Therefore ¢ € AN B. Indeed
c¢ AUB or c € AN B. Hence ¢ € B. End.

Case c¢ A. Thence€ AAC. Indeed c€ AUC and ¢ ¢ ANC. Hence c € AA B.
Thus ¢ € AU B and ¢ ¢ AN B. Therefore ¢ € A or ¢ € B. Then we have the thesis.
End. End. End. O
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Proposition 3.8. Let A be a class. Then

ANA=0.
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Proof. ANA=(AUA)\(ANA)=A\A=0. O

FOUNDATIONS_03_6698730398941184

Proposition 3.9. Let A be a class. Then

AND = A.

Proof. AAD=(AUD)\ (AND)=A\)=A. O
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Proposition 3.10. Let A, B be classes. Then

A=B it AAB=0.

Proof. Case A= B. Then AAB=(AUA)\ (AN A) = A\ A= 0. Hence the thesis.
End.

Case AA B =0. Then (AU B) \ (AN B) is empty. Hence every element of AU B is
an element of AN B. Thus for all objects u if u € A or u € B then u € A and u € B.
Therefore every element of A is an element of B. Every element of B is an element
of A. Then we have the thesis. End. O
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4.1 Pairs
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Axiom 4.1. Let a,a’,b,b" be objects. Then

(a,b) = (a’,b') implies (a=a" and b=1).

FOUNDATIONS_04_4782386822774784

Definition 4.2. A pair is an object p such that p = (a,b) for some objects a, b.

Let an ordered pair stand for a pair.

23
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Definition 4.3. Let p be a pair. m;p is the object a such that p = (a,b) for
some object b.

Let the first entry of p stand for mp. Let the first component of p stand for the first
entry of p.
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Definition 4.4. Let p be a pair. mop is the object b such that p = (a, b) for some
object a.

Let the second entry of p stand for myp. Let the second component of p stand for the
second entry of p.

4.2 Cartesian products
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Definition 4.5. Let A, B be classes. The Cartesian product of A and B is

{(a,b) |a € A and b € B}.

Let the direct product of A and B stand for the Cartesian product of A and B. Let
A x B stand for the Cartesian product of A and B.
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Proposition 4.6. Let A, B be classes and a, b be objects. Then

(a,b) e Ax B iff (a€ Aandbe B).

Proof. Case (a,b) € A x B. We can take a’ € A and b’ € B such that (a,b) = (a’,V’).
Then a =a’ and b =1'. Hence a € A and b € B. End.

Case a € A and b € B. a and a are objects. Hence (a,b) is an object. Therefore
(a,b) € A x B. End. O
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Proposition 4.7. Let A, B be classes. Then A x B is empty iff A is empty or
B is empty.

Proof. Case A x B is empty. Assume that A and B are nonempty. Then we can take
an element a of A and an element b of B. Then (a,b) € A x B. Contradiction. End.

Case A is empty or B is empty. Assume that A x B is nonempty. Then we can take
an element ¢ of A x B. Then ¢ = (a,b) for some a € A and some b € B. Hence A
and B are nonempty. Contradiction. End. OJ
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Proposition 4.8. Let a,b be objects. Then

{a} x {0} = {(a,b)}.

Proof. Let us show that {a} x {b} C {(a,b)}. Let ¢ € {a} x {b}. Take a’ € {a} and
b € {b} such that ¢ = (a/,b’). We have ¢’ = a and b’ = b. Hence ¢ = (a,b). Thus
c € {(a,b)}. End.

Let us show that {(a,b)} C {a} x {b}. Let ¢ € {(a,b)}. Then ¢ = (a,b). We have
a € {a} and b € {b}. Hence c € {a} x {b}. End. O
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Proposition 4.9. Let A, A’, B, B’ be nonempty classes. Then

Ax B=A"x B implies (A= A"and B=B').

Proof. Assume A x B= A’ x B'.

(1) AC A’ and B C B
Proof. Let a € A and b € B. Then (a,b) € A x B. Hence (a,b) € A’ x B’. Thus
a€ A and be B'. Qed.

(2) A C Aand B’ C B.
Proof. Let a € A" and b € B’. Then (a,b) € A’ x B’. Hence (a,b) € A x B. Thus
a € Aandbée B. Qed. O
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Subclass laws
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Proposition 5.1. Let A, B, C be classes. Then

ACB implies AxCCBxC.

Proof. Assume A C B. Let © € A x C. Take a € A and ¢ € C such that = (a, ¢).
Then a € B. Hence (a,c) € B x C. O

FOUNDATIONS_05_4888282951319552

Proposition 5.2. Let A, A’, B, B be classes. Assume that A and A’ are nonempty.
Then
(AxA)YC(BxB') iff (ACBand A CB).

26



5 Computation laws for Cartesian products 27

Proof. Case (A x A’) C (B x B’). Let us show that for all @ € A and all o’ € A’
we have a € B and o’ € B’. Let a € A and o/ € A". Then (a,a’) € A x A’. Hence
(a,0') € Bx B'. Thus a € B and o’ € B’. End. End.

Case A C Band A’ C B'. Let x € A x A’. Take a € A and a’ € A’ such that
x = (a,a’). Then a € B and o’ € B'. Hence (a,a’) € B x B’. End. O

Distributivity of product and union
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Proposition 5.3. Let A, B, C be classes. Then

(AUB)xC=(AxC)U (B xC).

Proof. Let us show that (AUB) x C) C (AxC)U(BxC). Let z € (AUB) x C.
Take y € AU B and ¢ € C such that x = (y,c). Theny € Aory € B. If y € A then
r € AxCandify € Bthenx € BxC. Hencex € A x C or x € B x C. Thus
x€(AxC)U(B xC). End.

Let us show that (Ax C)U (B xC)) C(AUB)xC. Let z € (Ax C)U (B x C).
Then z € A X C or x € B x C. Take objects y, ¢ such that z = (y,c¢). Then (y € A
ory € B)and c€ C. Hence y € AUB. Thus z € (AU B) x C. End. O
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Proposition 5.4. Let A, B, C be classes. Then

Ax (BUC)=(AxB)U(AxC(O).

Proof. Let us show that A x (BUC) C (Ax B)U(AXC). Let x € Ax (BUC). Take
a € Aand y € BUC such that z = (a,y). Then y € Bory € C. Hence x € A x B
orz € Ax C. Indeed if y € B then x € A x B and if y € C then x € A x C. Thus
x € (AXx B)U(Ax (). End.

Let us show that (A x B)U(Ax (C)) CAx (BUC). Let z € (A x B)U (4 x C).
Then z € A x B or x € A x C. Take objects a,y such that z = (a,y). Then a € A
and (y € Bory e C). Hence z € A x (BUC). End. O
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Distributivity of product and intersection

FOUNDATIONS_05_1249567930580992

Proposition 5.5. Let A, B, C be classes. Then

(ANB)xC=(AxC)Nn(BxC).

Proof. Let us show that (ANB)xC)C (AxC)N(BxC). Let z € (ANB) x C.
Take y € AN B and ¢ € C such that z = (y,c¢). Then y € A and y € B. Hence
z€AXxCandz € BxC. Thusz € (AxC)N (B x (). End.

Let us show that (AX C)YN(BxC)) C(ANB)xC. Letx € (AxC)N (B xC).
Then z € A x C and = € B x C. Take objects y, z such that x = (y,z). Then (y € A
and y € B) and z € C. Hence y € AN B. Thus z € (AN B) x C. End. O
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Proposition 5.6. Let A, B, C be classes. Then

Ax(BNC)=(AxB)N(AxC(C).

Proof. Let us show that Ax (BNC) C (Ax B)N(AxC). Let x € Ax (BNC). Take
a € Aand be BNC such that x = (a,b). Then b€ B and b € C. Hence x € A x B
and x € A x C. Thus z € (A x B)N (A x C). End.

Let us show that (Ax B)N(AxC)) CAx (BNC). Let z € (Ax B)Nn (A x C).
Then € A x B and z € A x C. Take objects y, z such that z = (y,z). Then y € A
and (z € B and z € C). Hence x € A x (BN C). End. O

Distributivity of product and complement
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Proposition 5.7. Let A, B, C be classes. Then

(A\B)xC =(AxC)\ (B xC).

Proof. Let us show that ((A\B)xC) C (AxC)\(BxC).Let x € (A\ B) xC. Take
a € A\ B and ¢ € C such that x = (a,¢). Then a € A and a ¢ B. Hence z € A x C
and x ¢ Bx C. Thusz € (Ax C)\ (B x C). End.

Let us show that ((Ax C)\(BxC)) C (A\B)xC. Let x € (AxC)\ (B xC). Then
x€AxCand z ¢ BxC. Take a € A and ¢ € C such that z = (a,¢). Then a ¢ B.
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Indeed if a € B then z € B x C. Hence a € A\ B. Thus z € (A\ B) x C. End. O
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Proposition 5.8. Let A, B,C be classes. Then

Ax (B\C)=(AxB)\ (4Ax0).

Proof. Let us show that Ax (B\C) C (Ax B)\ (Ax (). Let x € Ax (B\C). Take
a € Aandbe B\ C such that z = (a,b). Then b€ B and b ¢ C. Hence x € A x B
and z ¢ Ax C. Thus x € (A x B)\ (A x C). End.

Let us show that (A x B)\ (AxC)) CAx (B\C). Let x € (Ax B)\ (A xC).
Then € A x B and = ¢ A x C. Take objects a,b such that x = (a,b). Then a € A
and (b€ B and b ¢ C). Hence x € A x (B\ C). End. O

Equality law
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Proposition 5.9. Let A, A’, B, B’ be classes. Assume that A and A’ are nonempty
or B and B’ are nonempty. Then

(Ax A'y=(BxB') iff (A=Band A =B).

Proof. Case A x A’ = B x B’. Then A and A’ are nonempty iff B and B’ are
nonempty.

Let us show that for all a € A and all @’ € A’ we have a € B and o/ € B’. Let
a € Aanda € A'. Then (a,a’) € Ax A’. Hence we can take z € B x B’ such that
x = (a,a’). Thus a € B and ¢’ € B’. End.

Therefore A C B and A’ C B’. Indeed A and A’ are nonempty.

Let us show that for all b € B and all ¥ € B’ we have b € A and b’ € A’. Let
be Band ' € B'. Then (b,b') € B x B’. Hence we can take z € A x A’ such that
= (b,1). Thus (b,b') € A x A’. End.

Therefore B C A and B’ C A’. Indeed B and B’ are nonempty. End.
Case A = B and A’ = B’. Trivial. O
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Intersections of products
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Proposition 5.10. Let A, A’, B, B’ be classes. Then

(Ax B)N (A x B') = (AN A") x (BN B).

Proof. Let us show that ((Ax B)N (A" x B')) C (AN A') x (BN B'). Let z €
(Ax B)N (A’ x B'). Then z € A x B and z € A’ x B’. Take objects a, b such that
z = (a,b). Then a € A, A’ and b € B,B’. Hence a € AN A’ and b € BN B’. Thus
x € (ANA") x (BN B'). End.

Let us show that (ANA")x (BNB') C (AxB)N(A’xB’). Let x € (ANA")x (BNB').
Take elements a, b such that x = (a,b). Then a € AN A’ and b € BN B’. Hence
a € AJA" and b € B,B’. Thus v € A x B and x € A’ x B’. Therefore z €
(Ax B)n (A’ x B'). End. O

Unions of products
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Proposition 5.11. Let A, A’, B, B’ be classes. Then

(Ax B)U(A' x B') C (AUA') x (BUB).

Proof. Let x € (Ax B)U (A’ x B'). Then z € A x B or z € A’ x B'. Take objects
a,b such that z = (a,b). Then (a € Aora € A') and (b € B or b € B’). Hence
ac€ AUA andbe BUB'. Thusz € (AUA’) x (BUB'). O

Complements of products
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Proposition 5.12. Let A, A’, B, B’ be classes. Then

(Ax B)\ (A" x B') = (A x (B\ B)) U ((A\ 4) x B).

Proof. Let us show that ((Ax B)\ (A’ x B")) C (Ax (B\B'))U((A\ A’) x B). Let
z € (AxB)\(A'xB’). Thenz € AxBandz ¢ A’ x B'. Take a € A and b € B such
that = (a,b). Then it is wrong that a € A’ and b € B’. Hence a ¢ A’ or b ¢ B'.
Thusa € A\ A’ or b € B\ B’. Therefore x € Ax (B\B’) or x € (A\ A’) x B. Hence
we have x € (A x (B\ B'))U ((A\ 4") x B). End.
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Let us show that (A x (B\ B’)) U((A\ A') x B) C (A x B)\ (4" x B’). Let
x€(AX(B\B))U((A\A") x B). Thenx € (Ax (B\B’))orz e ((A\ A’) x B).
Take elements a, b such that z = (a,b). Then (a € Aand be B\ B’) or (a € A\ 4
and b € B).

Case a € Aand b € B\ B’. Then a € A and b € B. Hence x € A x B. We have
b¢ B'. Thus z ¢ A’ x B’. Therefore x € (A x B)\ (A’ x B'). End.

Case a € A\ A" and b € B. Then a € A and b € B. Hence x € A x B. We have
a¢ A'. Thus x ¢ A’ x B'. Therefore z € (A x B) \ (4’ x B’). End. End. O
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6.1 Ranges

FOUNDATIONS_06_4284980337311744

Definition 6.1. Let f be a map. A value of f is an object b such that b = f(a)
for some a € dom(f).
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Definition 6.2. Let f be a map. The range of f is

{f(a) | a € dom(f)}.

Let range(f) stand for the range of f.
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Proposition 6.3. Let f be a map and b be an object. b is a value of f iff
b € range(f).
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Proof. Case b is a value of f. Take a € dom(f) such that b = f(a). b is an object.
Hence b € range(f). End.

Case b € range(f). Then b is an object such that b = f(a) for some a € dom(f).
Hence b is a value of f. End. O

6.2 The identity map

FOUNDATIONS_06_1920902360989696

Definition 6.4. Let A be a class. id4 is the map h such that h is defined on A
and h(a) = a for all a € A.

Let the identity map on A stand for id 4.

6.3 Composition

FOUNDATIONS_06_7605717729017856

Definition 6.5. Let f, g be maps. Assume range(f) C dom(g). go f is the map
h such that h is defined on dom(f) and h(a) = g(f(a)) for all a € dom(f).

Let the composition of g and f stand for g o f.

6.4 Restriction

FOUNDATIONS_06_7095412741636096

Definition 6.6. Let f be a map and X C dom(f). f | X is the map h such
that h is defined on X and h(a) = f(a) for all a € X.

Let the restriction of f to X stand for f | X.
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Proposition 6.7. Let A be a class and X C A. Then idy [ X =idx.




6 Maps 34

6.5 Images and preimages
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Definition 6.8. Let f be a map and A be a class. The image of A under f is

{f(a) | a € dom(f) N A}.

Let the direct image of A under f stand for the image of A under f. Let f.(A) stand
for the image of A under f.

Let f[A] stand for f.(A).
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Definition 6.9. Let f be a map and B be a class. The preimage of B under f
is

{a € dom(f) | f(a) € B}.

Let the inverse image of B under f stand for the preimage of B under f. Let f*(B)
stand for the preimage of B under f.

6.6 Maps between classes
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Definition 6.10. Let A be a class. A map of A is amap f such that dom(f) = A.
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Definition 6.11. Let B be a class. A map to B is a map f such that f(a) € B
for each a € dom(f).
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Definition 6.12. Let A, B be classes. A map from A to B is a map f such that
dom(f) = A and f(a) € B for each a € A.
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Let f: A — B stand for f is a map from A to B.
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Definition 6.13. Let A be a class. A map on A is a map from A to A.
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Proposition 6.14. Let A, B be classes and f,g: A — B. Assume that f(a) =
g(a) for all a € A. Then f = g.

Proposition 6.15. Let A, B be classes and f be a map of A. Assume that
f(a) € Bfor all a € A. Then f is a map from A to B iff range(f) C B.
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Proposition 6.16. Let A be a class. Then id4 is a map on A.
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Proposition 6.17. Let A, B,C be classes and f: A — Band g: B — C. Then
gof:A—=C.
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Proposition 6.18. Let A, B be classes and f : A — B and X C A. Then
f1X:X—B.
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Proposition 6.19. Let A, B be classes and f: A — B. Then

foidy = f =idpgof.

Proof. A is the domain of foidy and the domain of f and the domain of idg of. We
have (foida)(a) = f(ida(a)) = f(a) =idp(f(a)) = (idp of)(a) for all a € A. Hence
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foidy = f =idpof. O

FOUNDATIONS_06_3118771061391360

Proposition 6.20. Let A be a class and X C A. Then

idy [ X =idy.

Proof. We have dom(ids [ X) = X = dom(idx). (ida | X)(a) = ida(a) = a
idx(a) for all @ € X. Hence id4 [ X =idx.

o
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Proposition 6.21. Let A, B,C, D be classes and f: A — Band g : B — C and
h:C — D. Then

ho(gof)=(hog)of.

Proof. ho(go f) and (hog)o f are maps from A to D.

Let us show that (ho(go f))(a) = ((hog)o f)(a) for all a € A. Let a € A. Then
(ho(ge f))(a) =h((go f)(a)) = hg(f(a))) = (hog)(f(a)) = ((hog) o f)(a). End.
Hence ho(go f) =(hog)o f. !

6.7 Maps and products
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Definition 6.22. Let f be a map such that dom(f) = A x B for some nonempty
classes A, B. Let a be an object such that (a,b) € dom(f) for some object b.
f(a,—) is the map such that dom(f(a,—)) = B and f(a,—)(b) = f(a,b) for all
b € B where B is the class such that dom(f) = A x B for some class A.
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Definition 6.23. Let f be a map such that dom(f) = A x B for some nonempty
classes A, B. Let b be an object such that (a,b) € dom(f) for some object a.
f(=,b) is the map such that dom(f(—,b)) = A and f(—,b)(a) = f(a,b) for all
a € A where A is the class such that dom(f) = A x B for some class B.
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Proposition 6.24. Let A, B,C be classes such that A, B are nonempty and
a € A. Let f be amap from A x B to C. Then f(a,—) is a map from B to C.

FOUNDATIONS_06_8080207992848384

Proposition 6.25. Let A, B,C be classes such that A, B are nonempty and
b e B. Let f be a map from A x B to C. Then f(—,b) is a map from A to C.

FOUNDATIONS_06_2754759509409792

Proposition 6.26. Let A, B,C be classes and f be a map of A x B. Assume
that f(a,b) € C for all a € A and all b € B. Then f is a map from A X B to C.

FOUNDATIONS_06_2304295212941312

Proposition 6.27. Let A, B,C be classes and f be a map from A x B to C.
Let a € A and b € B. Then f(a,b) € C.
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Proposition 7.1. Let A, B be classes and f: A — B and X C A. Then

fo(X) ={f(z) | v € X}.

FOUNDATIONS_07_5543924730953728

Corollary 7.2. Let A, B be classes and f: A — B. Then

f+(A) = range(f).
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Corollary 7.3. Let A, B be classes and f: A — B and X C A. Then

fu(X) = range(f | X).
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Proposition 7.4. Let A be a class and X C A. Then

(idA)*(X) =X.
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Proposition 7.5. Let B be a class and Y C B. Then

(idp)"(Y) =Y.
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Proposition 7.6. Let A, B be classes and f : A - Band Y C B and a € A.
Then
fl@)eY iff ae f*(Y).

Proof. We have f*(Y) = {x € A| f(z) € Y}. Hence a € f*(Y) iff a € A and
f(a) €Y. Then we have the thesis. O
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Proposition 7.7. Let A, B be classes and f: A — B. Then

f+(4) € B.

Proof. f.(A) = f«(dom(f)) = range(f) C B. O
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Proposition 7.8. Let A, B be classes and f : A — B. Then

F5(B) = A.
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Proof. We have f*(B) = {a € A | f(a) € B}. f(a) € B for all a € A. Hence the
thesis. 0
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Proposition 7.9. Let A, B be classes and f: A — B. Then

f(f7(B)) = fo(A).

Proof. Let us show that f.(f*(B)) C f«(A4). Let b € f.(f*(B)). Take a € f*(B)N A
such that b = f(a). Then a € A. Hence b € f.(A). End.

Let us show that f.(A) C f.(f*(B)). Let b € f.(A). Take a € A such that b= f(a).
We have b € B. Hence a € f*(B). Thus f(a) € f.(f*(B)). Indeed f*(B) C A.
Therefore b € f.(f*(B)). End. O
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Proposition 7.10. Let A, B be classes and f: A — B. Then

fr(f(4)) = A.

Proof. f*(f«(A)) = {a € A| f(a) € f.(A)}. For all a € A we have f(a) € f.(A).
Hence every element of f*(f«(A)) is contained in A and every element of A is contained

in £(£.(4)). Thus f*(£.(4)) = A. O
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Proposition 7.11. Let A, B be classes and f: A — B and Y C B. Then

f(F7(Y) =Y 0 fu(A).

Proof. Let us show that f.(f*(Y)) CY N fu(A). Let b € f.(f*(Y)). Take a € f*(Y)
such that b = f(a). Then f(a) € Y N f.(A). Hence we have b € Y N f.(A). End.

Let us show that Y N f.(A4) C fu(f*(Y)). Let b € Y N f.(A). Take a € A such that
b= f(a). Then a € f*(Y). Hence f(a) € f.(f*(Y)). End. O
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Corollary 7.12. Let A, B be classes and f: A — B and Y C B. Then

f(fr(Y)) cY.
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Proposition 7.13. Let A, B be classes and f: A — B and X C A. Then

f(f (X)) 2 X.

Proof. Let a € X. Then f(a) € f«(X). Hence a € f*(f.(X)). Indeed f.(X) C B.
O
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Proposition 7.14. Let A, B be classes and f: A — B and X C A. Then

f(X)=0 iff X =0.

Proof. Case f.(X) is empty. Then there is no a € X such that f(a) € f.(X). For all
a € X we have f(a) € f«(X). Hence X is empty. End.

Case X is empty. For all b € f.(X) we have b = f(a) for some a € X. There is no
a € X. Hence f,(X) is empty. End. O
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Proposition 7.15. Let A, B be classes and f: A — B and Y C B. Then

f*Y)=0 if Y CB\ f.(A).

Proof. Case f*(Y) is empty. Let b € Y. Then b € B.

There is no a € A such that b = f(a).
Proof. Assume the contrary. Take a € A such that b = f(a). Then a € f*(Y).
Contradiction. Qed.

Hence b ¢ f.(A). Therefore b € B\ f.(A). End.

Case Y C B\ f.(A). Then no element of Y is an element of f,(A). Assume that f*(Y)
is nonempty. Take a € f*(Y). Then f(a) € Y and f(a) € f.(A). Contradiction.
End. 0
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Proposition 7.16. Let A, B be classesand f: A— Band X C Aand Y C B.
Then
HX)NY =0 if XNnfYy)=0.

Proof. Case f.(X)NY is empty. Assume that X N f*(Y) is nonempty. Take a €
XNf*(Y). Then f(a) € fi(X)and f(a) € Y. Hence f(a) € f.(X)NY. Contradiction.
End.

Case X N f*(Y) is empty. Assume that f.(X)NY is nonempty. Take b € f.(X)NY.
Consider a a € X such that b = f(a). Then a € f*(Y). Indeed b € Y. Hence
a € XN f*(Y). Contradiction. End. O
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Proposition 7.17. Let A, B,C be classes and f: A — B and g : B — C and
X C A. Then

(g0 f)(X) = g« (fx(X)).

Proof. ((go f)«(X)) = {9(f(a)) | a € X}. f«(X) is a subclass of B. We have
9+(f«(X)) = {g(b) | b€ fu(X)} and fu(X) = {f(a) | a € X}. Thus g.(fu(X)) =
{9(f(a)) | a € X}. Therefore (g o f).(X) = g«(f+(X)). O
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Proposition 7.18. Let A, B, C be classes and f: A — B and g : B — C and
Z C C. Then

(90 /) (2) = f*(9°(2))-

Proof. ((go f)*(Z)) ={a € A|g(f(a)) € Z}. We have g*(Z) ={be B | g(b) € Z}
and f*(9*(Z)) ={a € A| f(a) € g*(2)}. Hence f*(g"(Z)) ={a € A | g(f(a)) € Z}.
Thus (go f)*(Z) = f*(9"(2)). O
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Proposition 7.19. Let A, B be classes and f: A — B and X, X’ C A. Then

X C X' implies f.(X)C f(X).
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Proof. Assume X C X'. Let b € f.(X). Take a € X such that f(a) = b. Then
a € X'. Hence b = f(a) € fu(X'). O
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Proposition 7.20. Let A, B be classes and f: A — B and Y, Y’ C B. Then

Y CY' implies f*(Y)C f*(Y’).

Proof. Assume Y C Y'. Let a € f*(Y). Then f(a) € Y. Hence f(a) € Y'. Thus
a€ f*(Y'). O
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Proposition 7.21. Let A, B be classes and f: A — B and X, X’ C A. Then

f*(XUX/) = f*(X) Uf*(X/)~

Proof. Let us show that f. (X UX’) C fu(X) U fu(X’). Let b € f.(X UX'). Take
a € X UX' such that b = f(a). Then a € X or a € X'. Hence f(a) € f.(X) or
fla) € fo(X’). Thus b= f(a) € f.(X)U fi(X'). End.

Let us show that f.(X) U f(X’) C fu(X UX’). Let b € fi(X) U fu(X').

Case b € f.(X). Take a € X such that b = f(a). Then ¢ € X U X’. Hence
be f(XUX'). End.

Case b € f«(X’'). Take a € X' such that b = f(a). Then a € X U X’. Hence
be f(XUX'). End. End. O
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Proposition 7.22. Let A, B be classes and f: A — B and Y, Y’ C B. Then

fryuy’)=fry)uf ).

Proof. Let us show that f*(YUY”') C f*(Y)U f*(Y’). Let a € f*(Y UY’). Then
f(a) € YUY'. Hence f(a) € Y or f(a) € Y'. If f(a) € Y then a € f*(Y). If
f(a) €Y' then a € f*(Y’). Thus a € f*(Y)U f*(Y”'). End.

Let us show that f*(Y)U f*(Y’) C f*(YUY’). Let a € f*(Y)U f*(Y’). Then
a€ f*(Y)orae f*(Y'). Ifa€ f*(Y) then f(a) €Y. If a € f*(Y’) then f(a) € Y.
Hence f(a) e YUY'. Thusa € f*(Y UY’). End. O
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Proposition 7.23. Let A, B be classes and f : A — B and X, X’ C A. Then

F(XNX') C fu(X) N fiu(X).

Proof. Let b € fo.(X N X'). Take a € X N X' such that b = f(a). Then a € X and
a € X'. Hence f(a) € f(X) and f(a) € fo(X’). Thus b € f.(X) N fu(X). O
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Proposition 7.24. Let A, B be classes and f: A — B and Y,Y’ C B. Then

fryny)=f)nfE).

Proof. Let us show that f*(Y NY’) C f*(Y) N f*(Y’). Let a € f*(Y NY’). Then
fla) e YNY'. Hence f(a) €Y and f(a) € Y'. Thus a € f*(Y) and a € f*(Y”).
Therefore a € f*(Y) N f*(Y'). End.

Let us show that f*(Y) N f*(Y') C f*(Y NY’). Let a € f*(Y) N f*(Y’). Then
a € f*(Y) and a € f*(Y’). Hence f(a) € Y and f(a) € Y'. Thus f(a) e Y NY".
Therefore a € f*(Y NY”’). End. O
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Proposition 7.25. Let A, B be classes and f: A — B and X, X’ C A. Then

H(XNX) 2 fu(X)\ fu(X).

Proof. Let b € f.(X)\ f«(X’). Then b € f.(X) and b ¢ f.(X’). Take a € X such
that b= f(a). If a € X' then b € f.(X’). Hence a ¢ X’. Thus a € X \ X'. Therefore
b= f(a) € fu(X \ X'). O
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Proposition 7.26. Let A, B be classes and f: A — B and Y, Y’ C B. Then

fr\Y) = frY)\ £ ().

Proof. Let us show that f*(Y \Y') C f*(Y)\ f*(Y’). Let a € f*(Y \Y’). Then
f(a) € Y\Y’'. Hence f(a) € Y and f(a) ¢ Y’'. Thus a € f*(Y) and a ¢ f*(Y").
Therefore a € f*(Y) \ f*(Y’). End.
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Let us show that f*(Y)\ f*Y”’) C f* Y \Y’). Let a € f*(Y)\ f*(Y’). Then
a€ f*(Y)and a ¢ f*(Y'). Hence f(a) € Y and f(a) ¢ Y'. Thus f(a) € Y \ Y.
Therefore a € f*(Y \ Y’). End. O
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8.1 Surjective maps
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Definition 8.1. Let f be a map and B be a class. f is surjective onto B iff
range(f) = B.

Let f surjects onto B stand for f is surjective onto B. Let a surjective map onto B
stand for a map that is surjective onto B.
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Definition 8.2. Let A, B be classes. A surjective map from A to B is a map of
A that is surjective onto B.
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Let a surjective map from A onto B stand for a surjective map from A to B. Let
f: A — B stand for f is a surjective map from A onto B.
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Proposition 8.3. Let B be a class and f be a map to B. f is surjective onto
B iff every element of B is a value of f.

Proof. Case f is surjective onto B. Then B = range(f). Let b be an element of B.
Then b € range(f). Hence b is a value of f. End.

Case every element of B is a value of f. Let us show that B C range(f). Let b € B.
Then b is a value of f. Hence b € range(f). End.

Let us show that range(f) C B. Let b € range(f). Then b is a value of f. Hence
b € B. End. End. OJ

8.2 Injective maps
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Definition 8.4. Let f be a map. f is injective iff for all a,a’ € dom(f) if
f(a) = f(a') then a = d'.

Let f: A< B stand for f is an injective map from A to B.

8.3 Bijective maps
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Definition 8.5. Let A, B be classes. A bijection between A and B is an injective
map of A that is surjective onto B.

Let a bijection from A to B stand for a bijection between A and B.
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Proposition 8.6. Let A, B be classes and f : A — B. Then f is a bijection
between A and range(f).
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Proof. f is injective and surjects onto range(f). Hence f is a bijection between A
and range(f). O
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Definition 8.7. Let A be a class. A permutation of A is a bijection between A
and A.

8.4 Some basic facts
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Proposition 8.8. Let A be a class. Then id4 is a permutation of A.

Proof. (1) id4 is a map on A.

(2) id 4 is surjective onto A.
Proof. Let a € A. Then a = ida(a). Hence a € range(id). Qed.

(3) id4 is injective.
Proof. Let a,a’ € A. Assume id4(a) = ida(a’). Then a = a’. Qed. O

FOUNDATIONS_08_8542698338254848

Proposition 8.9. Let A, B,C be classes and f: A — B and g: B —» C. Then
go f is a surjective map from A onto C.

Proof. go f is a map of A.

Let us show that go f is surjective onto C. Let ¢ € C. Take b € B such that ¢ = g(b).
Take a € A such that b = f(a). Then ¢ = g(f(a)) = (go f)(a). End. O
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Proposition 8.10. Let A, B,C be classesand f: A< Band g: B < C. Then
g o f is an injective map from A to C.

Proof. go f is a map of A.
Let us show that g o f is injective. Let a,a’ € A. Assume (go f)(a) = (go f)(a).
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Then g(f(a)) = g(f(a’)). Hence f(a) = f(a’). Indeed f(a), f(a') € B. Thus a = a'.
End. O
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Corollary 8.11. Let A, B, C be classes. Let f be a bijection between A and B
and g be a bijection between B and C. Then go f is a bijection between A and
C.
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Proposition 8.12. Let A, B be classesand f: A< Band X C A. Then f [ X
is injective.

Proof. Let a,a’ € X. Assume (f [ X)(a) = (f | X)(a'). Then f(a) = f(a’). Hence
a=ad. O
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Proposition 8.13. Let A, B be classesand f: A< Band X C A. Then f [ X
is a bijection between X and f,(X).
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Corollary 8.14. Let A, B be classes and f : A < B. Then f is a bijection
between A and f.(A).
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9.1 Invertible maps
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Definition 9.1. Let f be a map. An inverse of f is a map g from range(f) to
dom(f) such that
f@)=b iff g(b)=a

for all a € dom(f) and all b € dom(g).
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Definition 9.2. Let f be a map. f is invertible iff f has an inverse.
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Lemma 9.3. Let f be a map and g, ¢’ be inverses of f. Then g = ¢'.

Proof. We have dom(g) = range(f) = dom(g’).
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Let us show that g(b) = ( ) for all b € range(f). Let b € range(f). Take a = ¢'(b).
Then g(b) = a iff f(a) = b. We have f(a) = b iff ¢’(b) = a. Thus g(b) = ¢'(b). End.
O
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Definition 9.4. Let f be an invertible map. f~! is the inverse of f.

Let f is involutory stand for f is the inverse of f. Let f is selfinverse stand for f is
the inverse of f.

9.2 Some basic facts about invertible maps
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Proposition 9.5. Let A, B be classes and f: A — Band g: B —» A. Then g is
the inverse of f iff go f =ids and fo g =idg.

Proof. Case g is the inverse of f. We have dom(g o f) = dom(f) = A = dom(id4).
For all a € A we have (go f)(a) = g(f(a)) = a. Hence go f =id4.

We have dom(f o g) = dom(g) = B = dom(idg). For all b € B we have (f o g)(b) =
f(g(b)) =b. Hence fog=1idp. End.

Case go f =ids and fog = idg. Then dom(g) = B = range(f) and range(g) =
A = dom(f). Let a € dom(f) and b € dom(g). If f(a) = b then g(b) = g(f(a))
(90 f)(a) =ida(a) = a. If g(b) = a then f(a) = f(g(b)) = (f 0 g)(b) = idp(b) =
Hence f(a) = b iff g(b) = a. End.

D°“||
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Proposition 9.6. Let A, B be classes and f : A — B. Assume that f is
invertible. Then f~! is an invertible surjective map from B onto A such that

() =1

Proof. f~!is a map from B to A. Indeed range(f) = B and dom(f) = A. f~!is
surjective onto A. Indeed for any a € A we have f~(f(a)) = a. f~! is the inverse
of f. Thus fo f~' =idg and f~!o f =id4. Therefore f is the inverse of f=t. [
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Proposition 9.7. Let A, B be classes and f : A — B. Assume that f is
invertible. Then

fof'=idp
and
flof=ida.
Proof. f~! is a surjective map from B onto A . f~! is the inverse of f. O
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Proposition 9.8. Let A, B be classes and f: A — B and a € A. Assume that
f is invertible. Then
F7H(f@) = a.

Proof. We have f~1(f(a)) = (f~'o f)(a) =ida(a) = a. O

Proposition 9.9. Let A, B be classes and f: A - B and b € B. Assume that
f is invertible. Then
D) =0.

Proof. We have f(f=1(b)) = (f o f~1)(b) = idp(b) = b. O
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Proposition 9.10. Let A, B,C be classes and f : A - B and g : B — C.
Assume that f and g are invertible. Then g o f is invertible and

(gof)~t=ftog™h

Proof. f~!is asurjective map from B onto A. ¢! is a surjective map from C onto B.

Take h = f~'og~!. Then h is a surjective map from C onto A (by proposition 8.9).
go fis a map from A to C.

Let us show that ((go f)oh) =idc. We have fo(f~log™!) = (fof~1)og~t. Indeed
fo(f~tog™t) and (fof~1)og~! are maps of C. foh is a map from C to B. Hence

(gof)oh

=go(foh)
=go(fo(fTtog™)
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=go((fofHog™)
=go(idgog™)
=gog™!
=id¢.
End.

Let us show that ho(go f) =ida. We have (f~log l)og=f"lo(gtog). gof
is a map from A to C. Hence

ho(gof)
=(hog)of
=((ftogog)of
=(fto(g7log))of
= (ftoidg)o f

=ftof
=idya .
End.
Thus h is the inverse of g o f. Indeed g o f is a surjective map from A onto C' and h
is a surjective map from C onto A. O
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Proposition 9.11. Let A, B be classes and f : A - B and X C A. Assume
that f is invertible. Then f | X is invertible and

(f 127 =711 (X))

Proof. f | X is a surjective map from X onto f.(X). Take g = f~! | (f«(X)). Then
g is a map of f.(X).

Let us show that X C range(g). Let a € X. Then f(a) € f.(X). Hence g(f(a)) =
f~'(f(a)) = a. Thus a is a value of g. End.

Let us show that range(g) C X. Let a € range(g). Take b € f.(X) such that a = g(b).
Take ¢ € X such that b = f(c). Thena = (f~1 | (f.(X)))(b) = f~1(b) = f1(f(c)) =
c. Hence a € X. End.

Hence range(g) = X. Thus g is a surjective map onto X.

Let us show that g((f | X)(a)) =a for all a € X. Let a € X. Then g((f | X)(a)) =
9(f(a)) = (f 71 I (f«(X))(f(a)) = f~1(f(a)) = a. End.
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Let us show that ((f | X)(g(b))) = b . (X).

such that b = f(a). We have g(b) = g(f(a)) = (f ™" I (fe(X)))(f(a)) = f~'(f(a)) =

a. Hence (f | X)(g(®)) = (f | X)(a) = f(a) = b. End.

Thus go (f [ X) =idx and (f [ X)og =idy, (x). Therefore g is the inverse of f [ X.
O
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Proposition 9.12. Let A, B be classes and f : A — B and Y C B. Assume
that f is invertible. Then

Proof. We have (f~1).(Y)={f"1(b) | b€ Y} and f*(Y)={a€ A| f(a) € Y}.

Let us show that f*(Y) C (f71)«(Y). Let a € f*(Y). Take b € Y such that b = f(a).
Then f~1(b) = f~*(f(a)) = a. Hence a € (f~1).(Y). End.

Let us show that f,1(Y) C f*(Y). Let a € f}(Y). Take b € Y such that a = f~1(b).
Then f(a) = f(f~1(b)) = b. Hence a € f*(Y). End. O
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Corollary 9.13. Let A, B be classes and f: A — B and b € B. Assume that f

is invertible. Then
oY) = {10}

Proof. f*({b}) = f'({8}). We have f£i1({b}) = {f~'(c) | ¢ € {b}}. Hence
£ = {F o) O
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Proposition 9.14. Let A, B be classes and f : A — B. Then f is invertible iff
f is injective.

Proof. Case f is invertible. Let a,b € A. Assume f(a) = f(b). Thena = f~1(f(a)) =
f71(f(b)) = b. End.

Case f is injective. Define g(b) = “choose a € A such that f(a) =b in a” for b € B.
Then g is a map from B to A. For all a € A we have a = g(f(a)). Hence g is a
surjective map from B onto A. For all a € A we have g(f(a)) = a. For all b € B we
have f(g(b)) = b. Hence g is the inverse of f. End. O
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Corollary 9.15. Let A, B be classes and f : A — B. Assume that f is invertible.
Then f~! is a bijection between B and A.

Proof. f~! is a surjective map from B onto A. f~! is invertible. Hence f~! is
injective. Therefore f~! is a bijection between B and A. O

9.3 Involutions
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Definition 9.16. Let A be a class. An involution on A is a selfinverse map f
on A.
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Proposition 9.17. Let A be a class. id 4 is an involution on A.

Proof. We have id4 oid4 = ida. Hence id 4 is selfinverse. O
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Proposition 9.18. Let A be a class and f, g be involutions on A. Then go f is
an involution on A iff go f = fog.

Proof. Case g o f is an involution on A. Then (go f)™' = f~log™! = fog. End.
Case gof=fog. fof, fogand fog are maps on A. Hence

(goflolgef)

=(gof)o(foyg)

=((goflef)oyg

=(go(fof))oyg

=(goidg)og

=g°g
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Thus g o f is selfinverse. End. O
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Corollary 9.19. Let A be a class and f be an involutions on A. Then f o f is
an involution on A.
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Proposition 9.20. Let A be a class and f be an involution on A. Then f is a
permutation of A.

Proof. f is an invertible map of A that surjects onto A. Hence f is a bijection between
A and A. Thus f is a permutation of A. O
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10.1 Sub- and supersets
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Definition 10.1. A proper class is a class that is not a set.
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Definition 10.2. Let A be a class. A subset of A is a subclass of A that is a
set.

Let a superset of A stand for a superclass of A that is a set. Let a proper subset of
A stand for a proper subclass of A that is a set. Let a proper superset of A stand for
a proper superclass of A that is a set.

o7
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10.2 Powerclasses

FOUNDATIONS_10_1448589907722240

Definition 10.3. Let A be a class. The powerclass of A is

{z | z is a subset of A}.

Let P(A) stand for the powerclass of A.

10.3 Systems of sets
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Definition 10.4. A system of sets is a class X such that every element of X is
a set.

FOUNDATIONS_10_1631952387964928

Definition 10.5. A system of nonempty sets is a class X such that every element
of X is a nonempty set.
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Definition 10.6. Let A be a class. A system of subsets of A is a class X such
that every element of X is a subset of A.
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Proposition 10.7. Let A be a class. Then () is a system of subsets of A.

FOUNDATIONS_10_7546016869908480

Proposition 10.8. Let A be a class. Then P(A) is a system of subsets of A.
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Proposition 10.9. Let X, Y be systems of sets. Then X UY is a system of sets.

sets.

Proposition 10.10. Let X,Y be systems of sets. Then X NY is a system of

sets.

Proposition 10.11. Let X,Y be systems of sets. Then X \ Y is a system of

10.4 Unions

Definition 10.12. Let X be a system of sets. The union over X is

{a | a € z for some z € X}.

FOUNDATIONS_10_541772562300928

Let |J X stand for the union over X.

Proposition 10.13.

Yo=o.

FOUNDATIONS_10_4872701241982976

Proof. |0 ={a | a € z for some z € 0}. () has no elements. Hence there is no object

a such that a € x for some x € (). Thus |0 = 0.

O

Proposition 10.14. Let z,y be sets. Then

Utz v} =z vy

FOUNDATIONS_10_2559541585641472

Proof. Let us show that | J{z, y} C zUy. Let a € J{z, y}. Then a is contained in
some element of {z, y}. Hence a € z or a € y. Thus a € xUy. End.
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Let us show that 2 Uy C (J{z, y}. Let a € x Uy. Then a € x or a € y. Hence a is
contained in some element of {z, y}. Therefore a € |J{z, y}. End. O

FOUNDATIONS_10_2157223832715264

Corollary 10.15. Let x be a set. Then

U{x} = 2.

10.5 Intersections

FOUNDATIONS_10_2659345095458816

Definition 10.16. Let X be a system of sets. The intersection over X is

{a|a€xforal xe X}

Let () X stand for the intersection over X.

FOUNDATIONS_10_2809770322952192

Proposition 10.17. (0 is the class of all objects.

Proof. Define V = {z | z is an object }. We have (0 C V. Indeed every element of
(0 is an object.

Let us show that V' C (0. Let a € V. Then a is an object. For every = € () we have
a € x. Indeed @ has no elements. Thus a € (0. End. O

FOUNDATIONS_10_7851827447988224

Proposition 10.18. Let z,y be sets. Then

iz v} =zny.

Proof. Let us show that ({z, y} C 2 Ny. Let a € ({z, y}. Then a is contained in
every element of {z, y}. Hence a € z and a € y. Thus a € zNy. End.

Let us show that x Ny C ({z, y}. Let a € x Ny. Then a € z and a € y. Hence a is
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contained in every element of {z, y}. Therefore a € (\{z, y}. End.

FOUNDATIONS_10_7239895674257408

Corollary 10.19. Let x be a set. Then

ﬂ{x} =%

10.6 Classes of functions

FOUNDATIONS_10_5119110467813376

Definition 10.20. Let z,y be sets. [z — y] is the class of all maps from x to y.

FOUNDATIONS_10_3702893448265728

Proposition 10.21. Let x,y be sets. Then every element of [z — y| is a func-
tion.

10.7 Axioms for mathematics

Definition 10.22. Let A be a class and a be an object and f be a map such
that A C dom(f). A is inductive regarding a and f iff a € A and for all x € A
we have f(z) € A.

FOUNDATIONS_10_2362039748001792

Axiom 10.23 (Set existence). There exists a set.

FOUNDATIONS_10_2263707272871936

Axiom 10.24 (Separation). Let A be a class. If there exists a set x such that
every element of A is contained in z then A is a set.
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Axiom 10.25 (Pairing). Let a,b be objects. Then {a, b} is a set.

FOUNDATIONS_10_5536459412996096

Axiom 10.26 (Union). Let X be a system of sets. If X is a set then |J X is a
set.

FOUNDATIONS_10_367388832825344

Axiom 10.27 (Infinity). Let A be a class and a € A and f: A — A. Then
there exists a subset of A that is inductive regarding a and f.

FOUNDATIONS_10_5862230203564032

Axiom 10.28 (Powerset). Let  be a set. Then P(x) is a set.

Let the powerset of x stand for P(x).

FOUNDATIONS_10_1897613305577472

Axiom 10.29 (Choice). Let X be a system of nonempty sets. Then there
exists a map f such that dom(f) = X and f(z) € = for any =z € X.

FOUNDATIONS_10_1320008569323520

Axiom 10.30 (Foundation). Let X be a nonempty system of sets. Then X
has an element x such that X and z are disjoint.

FOUNDATIONS_10_8142956584239104

Axiom 10.31 (Replacement). Let f be a map and « be a set. Then f[z] is a
set.
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Axiom 10.32 (Function). Let f be a map. If dom(f) is a set then f is a
function.

10.8 Consequences of the axioms

FOUNDATIONS_10_5891530432708608

Proposition 10.33. () is a set.

Proof. Take a set x (by axiom 10.23). Define A = {y € x | y # y}. Then A is a set
(by axiom 10.24). We have A = (). Hence 0 is a set. O

FOUNDATIONS_10_7556516257202176

Proposition 10.34. Let a be an object. Then {a} is a set.

Let the singleton set of a stand for the singleton class of a. Let a singleton set stand
for a singleton class.

FOUNDATIONS_10_8408517115379712

Corollary 10.35. Let A be a class that has a unique element. Then A is a set.

FOUNDATIONS_10_4052198354845696

Proposition 10.36. Let z,y be sets. Then x Uy is a set.

Proof. Take X = {z, y}. Then X is a set. Hence |JX is a set (by axiom 10.26).
Indeed X is a system of sets. We have x Uy = JX. Thus z Uy is a set. O

FOUNDATIONS_10_4475839687163904

Proposition 10.37. Let z,y be sets. Then x Ny is a set.

Proof. We have x Ny C . Hence z Ny is a set (by axiom 10.24). O
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FOUNDATIONS_10_7795203882614784

Proposition 10.38. Let z,y be sets. Then z \ y is a set.

Proof. We have z \ y C . Hence z \ y is a set (by axiom 10.24). O]

FOUNDATIONS_10_4458706448154624

Proposition 10.39. Let x,y be sets. Then x X y is a set.

Proof. {a} and {a, b} are sets for each a € z and each b € y. Define P =
{{{a}, {a, b}} | a € x and b € y}.

(1) P is a set.

Proof. Let us show that P C P(P(x Uy)). Let p € P. Consider a € x and b € y
such that p = {{a}, {a, b}}. Then a,b € zUy. Hence {a}, {a, b} € P(zxUy). Thus
{{a}, {a, b}} € P(P(x Uy)). End.

x Uy is a set. Consequently P(P(x Uy)) is a set (by axiom 10.28). Therefore P is a
set (by axiom 10.24). Qed.

Define I(p) = “choose a € z, choose b € y such that p = {{a}, {a, b}} in a” for p € P.
Define r(p) = “choose a € z, choose b € y such that p = {{a}, {a, b}} in b” for p € P.
Define f(p) = (i(p),r(p)) for p € P.

Let us show that for any objects w, ', v, v’ if {{u}, {u, v}} = {{v'}, {¢/, v'}} thenu =
v and v = v'. Let u,u/,v,v" be objects. Assume {{u}, {u, v}} = {{u'}, {u/, v'}}.
Then ({u} = {«'} or {u} = {/, v'}) and ({u, v} = {v'} or {u, v} = {u/, v'}).
Thus ({u} = {«'} and ({u, v} = {v'} or {u, v} = {u/, v'})) or ({u} = {u/, v'} and
({u, v} = {u'} or {u, v} = {u/, v'})).

I?Iase {u} :/{u’} and ({u, v} = {u'} or {u, v} = {/, v'}). We have {u} = {u'}.
Case {u, v} = {u'}. Then u = v’ = v. Hence {{u}, {u, u}} = {{u}, {u, v'}} (by 1).
Thus {{u}} = {{u}, {u, v'}}. Therefore {u} = {u, v'}. Consequently v’ = u = v.
End.

Case {u, v} = {u/, v'}. Then {u, v} = {u, v'}. Hence v = v'. End. End.

ICL]Iase {u} = {/u', v’} and ({u, v} = {u'} or {u, v} = {u/, v'}). We have {u} = {u/, v'}.

Case {u, v} = {u'}. Then u=v =u'. Hence v =v'. End.

Case {u, v} = {v/, v'}. Then {u, v} = {u, v'}. Hence v ='. End. End. End.
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Let us show that for any a € z and any b € y we have f({{a}, {a, b}}) = (a,b). Let
a € z and b € y. Take p = {{a}, {a, b}}. Then p is a set. Then we can choose
a' € x and b € y such that p = {{a’}, {d/, ¥'}} and I(p) = @’. Then a = o’ and
b =1V". Hence l(p) = a. Choose a” € z and V" € y such that p = {{a"}, {a”, V'}}
and r(p) = b”. Then a = o” and b = b”. Thus r(p) = b. Therefore f(p) = (a,b).
End.

(2)  x y = f[P].
Proof. For all p € P we have I(p) € z and r(p) € y. Hence f(p) € x x y for all p € P.
Therefore f[P] C z X y.

Let us show that  x y C f[P]. Let z €  x y. Take a € z and b € y such that
z = (a,b). Then (a,b) = f({{a}, {a, b}}). Hence there exists a p € P such that
(a,b) = f(p). Thus (a,b) € f[P]. End.

Consequently = x y = f[P]. Qed.

Thus z X y is the image of some set under some map. Therefore z X y is a set (by
axiom 10.31). O

FOUNDATIONS_10_5486815207227392

Proposition 10.40. Let X be a nonempty system of sets. Then [ X is a set.

Proof. Take an element z of X. Then (X C x. Hence () X is a set (by axiom 10.24).
O

FOUNDATIONS_10_7598384349184000

Proposition 10.41. Let f be a map such that dom(f) is a set. Then range(f)
is a set.

Proof. range(f) = f«(dom(f)) and fi(dom(f)) is a set. Hence range(f) is a set (by
axiom 10.31). ]

FOUNDATIONS_10_8631339572002816

Proposition 10.42. Let A be a class and z be a set. Assume that there exists
an injective map from A to x. Then A is a set.

Proof. Consider an injective map f from A to . Then f~! is a bijection between
range(f) and A. range(f) is a set and A is the image of range(f) under f~!. Thus
A is a set (by axiom 10.31). O
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Proposition 10.43. There exist no sets x,y such that x € y and y € =x.

Proof. Assume the contrary. Take sets z,y such that x € y and y € z. Consider
an element z of {z, y} such that {z, y} and z are disjoint (by axiom 10.30). Indeed
{z, y} is a nonempty system of sets. Then we have z = z or z = y.

Case z = . Then « and {z, y} are disjoint. Hence y ¢ z. Contradiction. End.
Case z = y. Then y and {z, y} are disjoint. Hence z ¢ y. Contradiction. End. O

FOUNDATIONS_10_3086917813927936

Corollary 10.44. Let « be a set. Then z ¢ x.

FOUNDATIONS_10_4105036244189184

Proposition 10.45. Let =,y be sets. Then [z — y] is a set.

Proof. Define R = {F € P(x x y) | (for all a € x there exists a b € y such that
(a,b) € F) and for all @ € x and all b,b' € y such that (a,b),(a,b’) € F we have
b="V'}

[prover vampire][timelimit 5] Every element of R is a set. Define h(F) = Aa € z.
“choose b € y such that (a,b) € F in b” for F' € R. [prover eprover|[/timelimit]

Let us show that [x — y] C range(h). Let f € [x — y|. Define F = {(a, f(a)) | a € z}.

Then F € R.
Proof. Define g(a) = (a, f(a)) for a € z. Then F = range(g). Hence F is a set. Thus
F eP(xxy). Indeed F C x x y.

(1) For all a € z there exists a b € y such that (a,b) € F.
(2) For all a € z and all b, b’ € y such that (a,b), (a,b’) € F we have b =¥'. End.

We have dom(f) = z = dom(h(F)). For each a € x we have h(F)(a) = f(a). Hence
f=h(F). Thus f € range(h). End.

Therefore [z — y] is a set. Indeed R is a set. O
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Binary relations
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Definition 11.1. A binary relation is a class R such that every element of R is
a pair.

11.1 Properties of relations

Reflexivity

FOUNDATIONS_11_1126092393938944

Definition 11.2. Let R be a binary relation and A be a class. R is reflexive on
A iff for all a € A we have (a,a) € R.
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Irreflexivity

FOUNDATIONS_11_365656446861312

Definition 11.3. Let R be a binary relation and A be a class. R is irreflexive
on A iff for no a € A we have (a,a) € R.

Symmetry

FOUNDATIONS_11_2056300137545728

Definition 11.4. Let R be a binary relation and A be a class. R is symmetric
on A iff for all a,b € A if (a,b) € R then (b,a) € R.

Antisymmetry

FOUNDATIONS_11_8301693043212288

Definition 11.5. Let R be a binary relation and A be a class. R is antisymmetric
on A iff for all distinct a,b € A we have (a,b) ¢ R or (b,a) ¢ R.

Asymmetry

FOUNDATIONS_11_6895428727472128

Definition 11.6. Let R be a binary relation and A be a class. R is asymmetric
on A iff for all a,b € A if (a,b) € R then (b,a) ¢ R.

Transitivity

FOUNDATIONS_11_5377309666181120

Definition 11.7. Let R be a binary relation and A be a class. R is transitive
on A iff for all a,b,c € A if (a,b) € R and (b,¢) € R then (a,c) € R.
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Connectedness

FOUNDATIONS_11_5902056743239680

Definition 11.8. Let R be a binary relation and A be a class. R is connected
on A iff for all distinct a,b € A we have (a,b) € R or (b,a) € R.

Strong connectedness

FOUNDATIONS_11_6492592562765824

Definition 11.9. Let R be a binary relation and A be a class. R is strongly
connected on A iff for all a,b € A we have (a,b) € R or (b,a) € R.

11.2 Order relations

Preorders.

FOUNDATIONS_11_4005024520732672

Definition 11.10. Let A be a class. A preorder on A is a binary relation that
is reflexive on A and transitive on A.

Partial orders.

FOUNDATIONS_11_2162776243961856

Definition 11.11. Let A be a class. A partial order on A is a binary relation R
that is reflexive on A and antisymmetric on A and transitive on A.

Let A is partially ordered by R stand for R is a partial order on A.



11 Binary relations 70

Strict partial orders.

FOUNDATIONS_11_4067384857985024

Definition 11.12. Let A be a class. A strict preorder on A is a binary relation
that is irreflexive on A and transitive on A.

Let A is strictly preordered by R stand for R is a strict preorder on A.

FOUNDATIONS_11_5567849812721664

Proposition 11.13. Let A be a class. Any strict preorder on A is antisymmetric
on A.

Let a strict partial order on A stand for a strict preorder on A. Let A is strictly
partially ordered by R stand for R is a strict partial order on A.

Total orders.

FOUNDATIONS_11_5872706501214208

Definition 11.14. Let A be a class. A total order on A is a partial order on A
that is connected on A.

Let A is totally ordered by R stand for R is a total order on A.

Let a linear order on A stand for a total order on A. Let A is linearly ordered by R
stand for R is a linear order on A.

Strict total orders.

FOUNDATIONS_11_5840248768561152

Definition 11.15. Let A be a class. A strict total order on A is a strict partial
order on A that is connected on A.

Let A is stritcly totally ordered by R stand for R is a strict total order on A.

Let a strict linear order on A stand for a strict total order on A. Let A is strictly
linearly ordered by R stand for R is a strict linear order on A.
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11.3 Well-founded relations

FOUNDATIONS_11_2729326472593408

Definition 11.16. Let A be a class and R be a binary relation. A least element
of A regarding R is an element a of A such that there exists no x € A such that
(z,a) € R.

FOUNDATIONS_11_2420057567133696

Definition 11.17. Let A be a class and R be a binary relation. R is wellfounded
on A iff every nonempty subclass of A has a least element regarding R.

FOUNDATIONS_11_3262141912055808

Definition 11.18. Let A be a class and R be a binary relation. R is strongly
wellfounded on A iff R is wellfounded on A and for all b € A there exists a set
X such that

X ={a€A|(a,b) € R}

FOUNDATIONS_11_6149137814781952

Definition 11.19. Let A be a class. A wellorder on A is a strict linear order on
A that is wellfounded on A.

FOUNDATIONS_11_8163723743068160

Definition 11.20. Let A be a class. A strong wellorder on A is a strict linear
order on A that is strongly wellfounded on A.
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11.4 Epsilon induction

FOUNDATIONS_11_4800525813940224

Definition 11.21.

€ ={(a,x) | z is a set that contains a}.

FOUNDATIONS_11_5668859243659264

Proposition 11.22. € is strongly wellfounded on any system of sets.

Proof. Let X be a system of sets.

(1) € is wellfounded on X.
Proof. Let A be a nonempty subclass of X. Take an element x of A such that A and
x are disjoint. Then z is a least element of A regarding €. Indeed for any a € A if
a € x then a € ANz. Qed.

(2) For all 2 € X there exists a set Y such that Y = {y € X | (y,x) € €}.
Proof. Let x € X. Define Y = {y € X | (y,2) € €}. Then Y ={y € X |y € z}.
Hence Y is a subclass of . Thus Y is a set. Qed. O

FOUNDATIONS_11_6337807438053376

Corollary 11.23. Every nonempty system of sets has a least element regarding
&

FOUNDATIONS_11_2812087589928960

Proposition 11.24. Let ® be a class. (Induction hypothesis) Assume that for
all sets x if ® contains every element of = that is a set then ® contains x. Then
® contains every set.

Proof. Assume the contrary. Define M = {z | = is a set such that ¢ ®}. Then M
is nonempty. Hence we can take a least element = of M regarding €. Then z is a set
such that every element of x that is a set is contained in ®. Thus ® contains z (by
induction hypothesis). Contradiction. O
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Definition 12.1. Let f be a map. A fixed point of f is an element = of dom(f)
such that f(x) = «.

FOUNDATIONS_12_1394550966845440

Definition 12.2. A map between systems of sets is a map from some system of
sets to some system of sets.

FOUNDATIONS_12_3290499861446656

Definition 12.3. Let f be a map between systems of sets. f is subset preserving
iff for all z,y € dom(f)

vCy implies f(x)C f(y).
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Theorem 12.4 (Knaster-Tarski). Let = be a set. Let f be a subset preserving
map from P(z) to P(x). Then f has a fixed point.

Proof. (1) Define A ={y |y C « and y C f(y)}. Then A is a subset of P(x). We
have |J A € P(z).

Let us show that (2) A C f(IUA). Let uw € | JA. Take y € A such that u € y. Then
u € f(y). We have y C |JA. Hence f(y) C f(JA). Thus f(y) C f(IUA). Therefore
ue f(UA). End.

Then f(|JA) € A (by 1). Indeed f(JA) C z. (3) Hence f(IJA) C UA. Indeed
every element of f(|JA) is an element of some element of A.

Thus f(JA) = A (by 2, 3). O
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Equinumerosity
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Definition 13.1. Let A, B be classes. A is equinumerous to B iff there exists a
bijection between A and B.

FOUNDATIONS_13_3703161885818880

Proposition 13.2. Let A be a class. Then A is equinumerous to A.

Proof. id 4 is a bijection between A and A. O

FOUNDATIONS_13_8050301789536256

Proposition 13.3. Let A, B be classes. If A and B are equinumerous then B
and A are equinumerous.

Proof. Assume that A and B are equinumerous. Take a bijection f between A and
B. Then f~! is a bijection between B and A. Hence B and A are equinumerous.
O

I0)
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FOUNDATIONS_13_3609912414306304

Proposition 13.4. Let A, B, C be classes. If A and B are equinumerous and B
and C are equinumerous then A and C' are equinumerous.

Proof. Assume that A and B are equinumerous and B and C' are equinumerous. Take
a bijection f between A and B and a bijection g between B and C. Then go f is a
bijection between A and C. Hence A and C' are equinumerous. OJ
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Theorem 13.5 (Cantor-Schrioder-Bernstein). Let z,y be sets. Then x and
y are equinumerous iff there exists an injective map from z to y and there exists
an injective map from y to x.

Proof. Case x and y are equinumerous. Take a bijection f between z and y. Then
f~1 is a bijection between y and x. Hence f is an injective map from x to y and f~—!
is an injective map from y to z. End.

Case there exists an injective map from z to y and there exists an injective map from
y to . Take an injective map f from z to y. Take an injective map g from y to x.
We have y \ fla] C y for any a € P(z).

(1) Define h(a) =z \ gy \ fla]] for a € P(z).
h is a map from P(z) to P(x). Indeed h(a) is a subset of x for each subset a of x.

Let us show that h is subset preserving. Let u, v be subsets of z. Assume u C v. Then

flul € flv]. Hence y\ f[v] € y\ flu]. Thus gy \ f[v]] € gly \ flul]. Indeed y\ f[v]
and y \ f[u] are subsets of y. Therefore z \ gly \ f[u]] C « \ g[y \ f[v]]. Consequently

hlu] C hlv]. End.
Hence we can take a fixed point ¢ of h (by theorem 12.4).
(2) Define F(u) = f(u) for u € c.

We have ¢ = h(c) iff z\ ¢ = g[y\ flc]]. g~! is a bijection between range(g) and y.
Thus z \ ¢ = g[y \ fl¢]] C range(g). Therefore x \ ¢ is a subset of dom(g—1).

(3) Define G(u) = g~ '(u) foru € z \ c.

F is a bijection between ¢ and range(F'). G is a bijection between z \ ¢ and range(G).
Define

CRL P
for u € x.

Let us show that H is a map to y. dom(H) is a set and every value of H is an object.
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Hence H is a map.

Let us show that every value of H lies in y. Let v be a value of H. Take u € z
such that H(u) = v. If u € ¢ then v = H(u) = F(u) = f(u) € y. If u ¢ c then
v=H(u)=G(u) =g '(u) €y. End. End.

(4) H is surjective onto y. Indeed we can show that every element of y is a value of
H. Let v € y.

Case v € f[c]. Take u € ¢ such that f(u) = v. Then F(u) = v. End.

Case v ¢ flc]. Then v € y\ flc]. Hence g(v) € gy \ flc]]. Thus g(v) € z \ h(c).
We have g(v) € z \ ¢. Therefore we can take u € x \ ¢ such that G(u) = v. Then
v = H(u). End. End.

(5) H is injective. Indeed we can show that for all u,v € z if u # v then H(u) # H(v).
Let u,v € . Assume u # v.

Case u,v € ¢. Then H(u) = F(u) and H(v) = F(v). We have F(u) # F(v). Hence
H(u) # H(v). End.

Case u,v ¢ c¢. Then H(u) = G(u) and H(v) = G(v). We have G(u) # G(v). Hence
H(u) # H(v). End.

Case u € ¢ and v ¢ ¢. Then H(u) = F(u) and H(v) = G(v). Hence v € g[y \ f[c]].
We have G(v) € y \ Flc]. Thus G(v) # F(u). End.

F
Case u ¢ ¢ and v € ¢. Then H(u) = G(u) and H(v) = F(v). Hence u € g[y \ f[c]].
We have G(u) € y\ flc]. Thus G(u) # F(v). End. End.

Consequently H is a bijection between z and y (by 4, 5). Therefore 2 and y are
equinumerous. End. O
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