The Chinese remainder theorem

Andrei Paskevich et. al.

$$
2007-2021
$$

The Chinese remainder theorem is a number theoretical result about the solution of simultaneous congruences in the case of coprime modules. The earliest known formulation of the theorem dates back to the Chinese mathematician Sun-tzu in the third century. In the following we present a formalization of a generalization of the theorem in terms of ideals in an integral domain. Checking the formalization takes about 3 minutes on a modest laptop.

1 Integral domain axioms

We assume that our universe is a fixed integral domain. We call elements of our universe simply "elements". In particular, we have two special elements, 0 and 1. Moreover, there is a unary operation, - , and two binary operations, + and \cdot
[synonym element/-s]
Let $a, b, c, x, y, z, u, v, w$ denote elements.
Signature 1 (SortsC). 0 is an element.
Signature 2 (SortsC). 1 is an element.
Signature 3 (Sortsu). $-x$ is an element.
Signature 4 (SortsB). $x+y$ is an element.
Signature 5 (SortsB). $x \cdot y$ is an element.
Let x is nonzero stand for $x \neq 0$. Let $x-y$ stand for $x+(-y)$.
To ensure that our operations form a commutative ring we have to state the appropriate axioms. First we make sure that the addition yields an abelian group.

Axiom 6 (AddComm). $x+y=y+x$.
Axiom 7 (AddAsso). $(x+y)+z=x+(y+z)$.
Axiom 8 (AddBubble). $x+(y+z)=y+(x+z)$.

Axiom 9 (AddZero). $x+0=x=0+x$.
Axiom 10 (AddInvr). $x+(-x)=0=-x+x$.
In fact axiom $A d d B u b b l e$ is redundant. We can easily prove it from $A d d$ Comm and AddAsso:

$$
x+(y+z) \stackrel{\text { AddComm }}{=}(y+z)+x \stackrel{\text { AddAsso }}{=} y+(z+x) \stackrel{\text { AddComm }}{=} y+(x+z)
$$

Let us continue with the axioms that ensure that the multiplication yields a commutative monoid.

Axiom 11 (MulComm). $x \cdot y=y \cdot x$.
Axiom 12 (MulAsso). $x \cdot(y \cdot z)=(x \cdot y) \cdot z$.
Axiom 13 (MulBubble). $x \cdot(y \cdot z)=y \cdot(x \cdot z)$.
Axiom 14 (MulUnit). $x \cdot 1=x=1 \cdot x$.
As above we can prove MulBubble from MulComm and MulAsso. Now we ensure that the distribution laws hold.

Axiom 15 (AMDistr1). $x \cdot(y+z)=(x \cdot y)+(x \cdot z)$.
Axiom 16 (AMDistr2). $(y+z) \cdot x=(y \cdot x)+(z \cdot x)$.
The next two statements are some simple computation rules. The first one concerning multiplication with -1 can be derived from our previous laws together with MulZero, even if we state it as an axiom here. We leave the proof of this claim as an exercise for the reader.

Axiom 17 (MulMnOne). $(-1) \cdot x=-x=x \cdot(-1)$.
Lemma 18 (MulZero). $x \cdot 0=0=0 \cdot x$.
Proof. Let us show that $x \cdot 0=0 . \quad x \cdot 0 .=x \cdot(0+0)$ (by AddZero) .$=(x \cdot 0)+(x \cdot 0)($ by AMDistr1). End.

Let us show that $0 \cdot x=0.0 \cdot x .=(0+0) \cdot x$ (by AddZero).$=(0 \cdot x)+(0 \cdot x)$
(by AMDistr2). End.
There are two axioms remaining to ensure that our universe is not just a commutative ring but an integral domain: There must be no non-trivial zerodivisors and our ring must not be trivial.

Axiom 19 (Cancel). $x \neq 0 \wedge y \neq 0 \Longrightarrow x \cdot y \neq 0$.
Axiom 20 (UnNeZr). $1 \neq 0$.

2 Sets

Next we consider subsets of our universe. To keep our notion of sets as easy as possible we state that every set is a subset of our universe.
[synonym set/-s] [synonym belong/-s]
Let X, Y, Z, U, V, W denote sets.
Axiom 21. Every element of X is an object.
Let x belongs to W denote x is an element of W.
Axiom 22 (SetEq). If every element of X belongs to Y and every element of Y belongs to X then $X=Y$.
Definition 23 (DefSum). $X \oplus Y$ is a set such that for every element z $(z \in X \oplus Y)$ iff there exist $x \in X, y \in Y$ such that $z=x+y$.
Definition 24 (DefSInt). $X \cap Y$ is a set such that for every element z $(z \in X \cap Y)$ iff $z \in X$ and $z \in Y$.

3 Ideals and the Chinese Remainder Theorem

Now we can define ideals as sets which are closed under certain operations.
[synonym ideal/-s]
Definition 25 (DefIdeal). An ideal is a set X such that for every $x \in X$ we have $\forall y \in X(x+y \in X)$ and $\forall z(z \cdot x \in X)$.

Let I, J denote ideals.
We can show that the sum and the intersection of two ideals is again an ideal.

Lemma 26 (IdeSum). $I \oplus J$ is an ideal.
Proof. Let x belong to $(I \oplus J)$.
$\forall y \in(I \oplus J)(x+y) \in(I \oplus J)$.
Proof. Let $y \in(I \oplus J)$. (1) Take $k \in I$ and $l \in J$ such that $x=k+l$.
(2) Take $m \in I$ and $n \in J$ such that $y=m+n . \quad k+m$ belongs to I and $l+n$ belongs to $J . x+y .=(k+m)+(l+n)$ (by 1, 2, AddComm,AddAsso,AddBubble). Therefore the thesis. Qed.

For every element $z(z \cdot x) \in(I \oplus J)$.
Proof. Let z be an element. (1) Take $k \in I$ and $l \in J$ such that $x=k+l$. $z \cdot k$ belongs to I and $z \cdot l$ belongs to $J . z \cdot x .=(z \cdot k)+(z \cdot l)$ (by AMDistr1, 1). Therefore the thesis. Qed.

Lemma 27 (IdeInt). $I \cap J$ is an ideal (by DefIdeal).

Proof. Let x belong to $I \cap J . \forall y \in(I \cap J)(x+y) \in(I \cap J)$. For every element $z(z \cdot x) \in(I \cap J)$.

Now we can state the Chinese remainder theorem in terms of congruence modulo some ideal.

Definition 28 (DefMod). $x=y(\bmod I)$ iff $x-y \in I$.
Theorem 29 (ChineseRemainder). Suppose that every element belongs to $I \oplus J$. Let x, y be elements. There exists an element w such that $w=x(\bmod I)$ and $w=y(\bmod J)$.
Proof. Take $a \in I$ and $b \in J$ such that $a+b=1$ (by DefSum). (1) Take $w=(y \cdot a)+(x \cdot b)$.
Let us show that $w=x(\bmod I)$ and $w=y(\bmod J)$.
$w-x$ belongs to I.
Proof. $w-x=(y \cdot a)+((x \cdot b)-x) . x \cdot(b-1)$ belongs to $I \cdot x \cdot(b-1)=(x \cdot b)-x$. Qed.
$w-y$ belongs to J.
Proof. $w-y=(x \cdot b)+((y \cdot a)-y) \cdot y \cdot(a-1)$ belongs to $J \cdot y \cdot(a-1)=(y \cdot a)-y$.
Qed. End.

4 Greatest common divisors and principal ideals

In this section we extend our integral domain to a Euclidean domain. To be able to do this we first have to establish a notion of natural numbers.

> [synonym number/-s]

Signature 30 (NatSort). A natural number is an object.
Now we can equip our domain with a Euclidean function $|\cdot|$.

Signature 31 (EucSort). Let x be a nonzero element. $|x|$ is a natural number.

Axiom 32 (Division). Let x, y be elements and $y \neq 0$. There exist elements q, r such that $x=(q \cdot y)+r$ and $(r \neq 0 \Longrightarrow|r| \prec|y|)$.

The Division axiom makes use of Naproche's built-in induction scheme: For any statement $\varphi(x)$ (with one free variable x) and any element r the following is true:

$$
\left(\forall r^{\prime}\left(\left|r^{\prime}\right| \prec|r| \rightarrow \varphi\left(r^{\prime}\right)\right)\right) \rightarrow \varphi(r)
$$

This allows us to prove certain statements about r by induction on $|r|$.

Next let us have a look at the notion of divisors and, in particular, greatest common divisors ($g c d \mathrm{~s}$).
[synonym divisor/-s] [synonym divide/-s]
Definition 33 (DefDiv). x divides y iff for some $z(x \cdot z=y)$.
Let $x \mid y$ stand for x divides y. Let x is divided by y stand for $y \mid x$.
Definition 34 (DefDvs). A divisor of x is an element that divides x.
Definition 35 (DefGCD). A gcd of x and y is a common divisor c of x and y such that any common divisor of x and y divides c.
Definition 36 (DefRel). x, y are relatively prime iff 1 is a gcd of x and y.

If we have two elements, say a and b, we will see that the ideal generated by a and b also contains the gcd of a and b (as long as a or b is non-zero). An ideal which is generated by a single element, a so-called principal ideal, is defined as follows.

Definition 37 (DefPrIdeal). $\langle c\rangle$ is a set such that for every $z z$ is an element of $\langle c\rangle$ iff there exists an element x such that $z=c \cdot x$.
Lemma 38 (PrIdeal). $\langle c\rangle$ is an ideal.
Proof. Let x belong to $\langle c\rangle$.
$\forall y \in\langle c\rangle x+y \in\langle c\rangle$.
Proof. Let $y \in\langle c\rangle$. (1) Take an element u such that $c \cdot u=x$. (2) Take an element v such that $c \cdot v=y \cdot x+y \cdot=c \cdot(u+v)$ (by 1, 2, AMDistr1). Therefore the thesis. Qed.
$\forall z z \cdot x \in\langle c\rangle$.
Proof. Let z be an element. (1) Take an element u such that $c \cdot u=x$. $z \cdot x .=c \cdot(u \cdot z)$ (by 1, MulComm, MulAsso, MulBubble). Therefore the thesis. Qed.

The notion of a principal ideal allows us write the ideal which is generated by two elements a and b as $\langle a\rangle \oplus\langle b\rangle$. As mentioned before if not both a and b are zero, $\langle a\rangle \oplus\langle b\rangle$ contains the gcd of a and b. That means that if c is the gcd of a and b then c is of the form $x \cdot a+y \cdot b$ for certain elements x and y. For example if we take \mathbb{Z} as our Euclidean domain we get Bézout's identity: For two integers n, m with a gcd d there exist integers x, y such that $d=x \cdot n+y \cdot m$. For instance

$$
\operatorname{gcd}(8,14)=2=2 \cdot 8+(-1) \cdot 14
$$

and

$$
\operatorname{gcd}(9,25)=1=-11 \cdot 9+4 \cdot 25
$$

Theorem 39 (GCDin). Let a, b be elements. Assume that a is nonzero or b is nonzero. Let c be a gcd of a and b. Then c belongs to $\langle a\rangle \oplus\langle b\rangle$.
Proof. Take an ideal I equal to $\langle a\rangle \oplus\langle b\rangle$. We have $0, a \in\langle a\rangle$ and $0, b \in\langle b\rangle$ (by MulZero, MulUnit). Hence there exists a nonzero element of $\langle a\rangle \oplus\langle b\rangle$. Indeed $a \in\langle a\rangle \oplus\langle b\rangle$ and $b \in\langle a\rangle \oplus\langle b\rangle$ (by AddZero).

Take a nonzero $u \in I$ such that for no nonzero $v \in I(|v| \prec|u|)$.
Indeed we can show by induction on $|w|$ that for every nonzero $w \in I$ there exists nonzero $u \in I$ such that for no nonzero $v \in I(|v| \prec|u|)$. Obvious.
u is a common divisor of a and b.
Proof by contradiction. Assume the contrary.
For some elements $x, y u=(a \cdot x)+(b \cdot y)$.
Proof. Take $k \in\langle a\rangle$ and $l \in\langle b\rangle$ such that $u=k+l$. Take elements x, y such that $(k=a \cdot x$ and $l=b \cdot y)$. Hence the thesis. Qed.
Case u does not divide a. Take elements q, r such that $a=(q \cdot u)+r$ and $(r=0 \vee|r| \prec|u|)$ (by Division). r is nonzero. $-(q \cdot u)$ belongs to I. a belongs to I (by AddZero). $r=-(q \cdot u)+a$. Hence r belongs to I (by DefIdeal). End.

Case u does not divide b. Take elements q, r such that $b=(q \cdot u)+r$ and $(r=0 \vee|r| \prec|u|)$ (by Division). r is nonzero. $-(q \cdot u)$ belongs to I. b belongs to I (by AddZero). $r=-(q \cdot u)+b$. Hence r belongs to I (by DefIdeal). End. Qed.
Hence u divides c.
Hence the thesis.
Proof. Take an element z such that $c=z \cdot u$. Then $c \in I$ (by DefIdeal).
Qed.
Bézout's identity ensures that for any two coprime integers n, m we have $n \mathbb{Z} \oplus m \mathbb{Z}=\mathbb{Z}$. Because we can take integers x, y such that $x \cdot n+y \cdot m=1$ and thus for every integer z we have $z x \cdot n+z y \cdot m=z$, hence $z \in n \mathbb{Z} \oplus m \mathbb{Z}$. So as a special case of the Chinese remainder theorem if n and m are coprime then for all integers x, y the simultaneous congruence

$$
\begin{aligned}
w & =x(\bmod n) \\
w & =y(\bmod m)
\end{aligned}
$$

has a solution.

