The Chinese remainder theorem

Andrei Paskevich et. al.

2007 - 2021

The Chinese remainder theorem is a number theoretical result about the solution of simultaneous congruences in the case of coprime modules. The earliest known formulation of the theorem dates back to the Chinese mathematician Sun-tzu in the third century. In the following we present a formalization of a generalization of the theorem in terms of ideals in an integral domain. Checking the formalization takes about 3 minutes on a modest laptop.

1 Integral domain axioms

We assume that our universe is a fixed integral domain. We call elements of our universe simply "elements". In particular, we have two special elements, 0 and 1. Moreover, there is a unary operation, -, and two binary operations, + and \cdot .

[synonym element/-s]

```
Let a, b, c, x, y, z, u, v, w denote elements.

Signature 1 (SortsC). 0 is an element.

Signature 2 (SortsC). 1 is an element.

Signature 3 (Sortsu). -x is an element.

Signature 4 (SortsB). x + y is an element.

Signature 5 (SortsB). x \cdot y is an element.
```

Let x is nonzero stand for $x \neq 0$. Let x - y stand for x + (-y).

To ensure that our operations form a commutative ring we have to state the appropriate axioms. First we make sure that the addition yields an abelian group.

Axiom 6 (AddComm). x + y = y + x. Axiom 7 (AddAsso). (x + y) + z = x + (y + z). Axiom 8 (AddBubble). x + (y + z) = y + (x + z). Axiom 9 (AddZero). x + 0 = x = 0 + x. Axiom 10 (AddInvr). x + (-x) = 0 = -x + x.

In fact axiom AddBubble is redundant. We can easily prove it from Add-Comm and AddAsso:

$$x + (y + z) \stackrel{AddComm}{=} (y + z) + x \stackrel{AddAsso}{=} y + (z + x) \stackrel{AddComm}{=} y + (x + z).$$

Let us continue with the axioms that ensure that the multiplication yields a commutative monoid.

Axiom 11 (MulComm). $x \cdot y = y \cdot x$. Axiom 12 (MulAsso). $x \cdot (y \cdot z) = (x \cdot y) \cdot z$. Axiom 13 (MulBubble). $x \cdot (y \cdot z) = y \cdot (x \cdot z)$. Axiom 14 (MulUnit). $x \cdot 1 = x = 1 \cdot x$.

As above we can prove *MulBubble* from *MulComm* and *MulAsso*. Now we ensure that the distribution laws hold.

```
Axiom 15 (AMDistr1). x \cdot (y + z) = (x \cdot y) + (x \cdot z).
Axiom 16 (AMDistr2). (y + z) \cdot x = (y \cdot x) + (z \cdot x).
```

The next two statements are some simple computation rules. The first one concerning multiplication with -1 can be derived from our previous laws together with *MulZero*, even if we state it as an axiom here. We leave the proof of this claim as an exercise for the reader.

```
Axiom 17 (MulMnOne). (-1) \cdot x = -x = x \cdot (-1).

Lemma 18 (MulZero). x \cdot 0 = 0 = 0 \cdot x.

Proof. Let us show that x \cdot 0 = 0. x \cdot 0 = x \cdot (0 + 0) (by AddZero)

\cdot = (x \cdot 0) + (x \cdot 0) (by AMDistr1). End.

Let us show that 0 \cdot x = 0. 0 \cdot x = (0+0) \cdot x (by AddZero) \cdot = (0 \cdot x) + (0 \cdot x)

(by AMDistr2). End.
```

There are two axioms remaining to ensure that our universe is not just a commutative ring but an integral domain: There must be no non-trivial zerodivisors and our ring must not be trivial.

Axiom 19 (Cancel). $x \neq 0 \land y \neq 0 \implies x \cdot y \neq 0$. Axiom 20 (UnNeZr). $1 \neq 0$.

2 Sets

Next we consider subsets of our universe. To keep our notion of sets as easy as possible we state that *every* set is a subset of our universe.

[synonym set/-s] [synonym belong/-s]

Let X, Y, Z, U, V, W denote sets.

Axiom 21. Every element of X is an object.

Let x belongs to W denote x is an element of W.

Axiom 22 (SetEq). If every element of X belongs to Y and every element of Y belongs to X then X = Y.

Definition 23 (DefSum). $X \oplus Y$ is a set such that for every element z $(z \in X \oplus Y)$ iff there exist $x \in X, y \in Y$ such that z = x + y.

Definition 24 (DefSInt). $X \cap Y$ is a set such that for every element z $(z \in X \cap Y)$ iff $z \in X$ and $z \in Y$.

3 Ideals and the Chinese Remainder Theorem

Now we can define ideals as sets which are closed under certain operations.

[synonym ideal/-s]

Definition 25 (DefIdeal). An ideal is a set X such that for every $x \in X$ we have $\forall y \in X(x + y \in X)$ and $\forall z(z \cdot x \in X)$.

Let I, J denote ideals.

We can show that the sum and the intersection of two ideals is again an ideal.

Lemma 26 (IdeSum). $I \oplus J$ is an ideal. *Proof.* Let x belong to $(I \oplus J)$.

 $\forall y \in (I \oplus J)(x+y) \in (I \oplus J).$

Proof. Let $y \in (I \oplus J)$. (1) Take $k \in I$ and $l \in J$ such that x = k + l. (2) Take $m \in I$ and $n \in J$ such that y = m + n. k + m belongs to I and l + n belongs to J. x + y. = (k + m) + (l + n) (by 1, 2, Add-Comm,AddAsso,AddBubble). Therefore the thesis. Qed.

For every element $z \ (z \cdot x) \in (I \oplus J)$. Proof. Let z be an element. (1) Take $k \in I$ and $l \in J$ such that x = k + l. $z \cdot k$ belongs to I and $z \cdot l$ belongs to J. $z \cdot x = (z \cdot k) + (z \cdot l)$ (by AMDistr1, 1). Therefore the thesis. Qed.

Lemma 27 (IdeInt). $I \cap J$ is an ideal (by DefIdeal).

Proof. Let x belong to $I \cap J$. $\forall y \in (I \cap J)(x + y) \in (I \cap J)$. For every element $z \ (z \cdot x) \in (I \cap J)$.

Now we can state the Chinese remainder theorem in terms of congruence modulo some ideal.

Definition 28 (DefMod). $x = y \pmod{I}$ iff $x - y \in I$.

Theorem 29 (ChineseRemainder). Suppose that every element belongs to $I \oplus J$. Let x, y be elements. There exists an element w such that $w = x \pmod{I}$ and $w = y \pmod{J}$.

Proof. Take $a \in I$ and $b \in J$ such that a + b = 1 (by DefSum). (1) Take $w = (y \cdot a) + (x \cdot b)$.

Let us show that $w = x \pmod{I}$ and $w = y \pmod{J}$.

w - x belongs to I. Proof. $w - x = (y \cdot a) + ((x \cdot b) - x)$. $x \cdot (b-1)$ belongs to I. $x \cdot (b-1) = (x \cdot b) - x$. Qed. w - y belongs to J.

Proof. $w-y = (x \cdot b) + ((y \cdot a) - y)$. $y \cdot (a-1)$ belongs to J. $y \cdot (a-1) = (y \cdot a) - y$. Qed. End. \Box

4 Greatest common divisors and principal ideals

In this section we extend our integral domain to a Euclidean domain. To be able to do this we first have to establish a notion of natural numbers.

[synonym number/-s]

Signature 30 (NatSort). A natural number is an object.

Now we can equip our domain with a Euclidean function $|\cdot|$.

Signature 31 (EucSort). Let x be a nonzero element. |x| is a natural number.

Axiom 32 (Division). Let x, y be elements and $y \neq 0$. There exist elements q, r such that $x = (q \cdot y) + r$ and $(r \neq 0 \implies |r| \prec |y|)$.

The Division axiom makes use of Naproche's built-in induction scheme: For any statement $\varphi(x)$ (with one free variable x) and any element r the following is true:

 $(\forall r'(|r'| \prec |r| \rightarrow \varphi(r'))) \rightarrow \varphi(r)$

This allows us to prove certain statements about r by induction on |r|.

Next let us have a look at the notion of *divisors* and, in particular, greatest common divisors (qcds).

[synonym divisor/-s] [synonym divide/-s]

Definition 33 (DefDiv). x divides y iff for some $z (x \cdot z = y)$.

Let $x \mid y$ stand for x divides y. Let x is divided by y stand for $y \mid x$.

Definition 34 (DefDvs). A divisor of x is an element that divides x.

Definition 35 (DefGCD). A gcd of x and y is a common divisor c of xand y such that any common divisor of x and y divides c.

Definition 36 (DefRel). x, y are relatively prime iff 1 is a gcd of x and y.

If we have two elements, say a and b, we will see that the ideal generated by a and b also contains the gcd of a and b (as long as a or b is non-zero). An ideal which is generated by a single element, a so-called *principal ideal*, is defined as follows.

Definition 37 (DefPrIdeal). $\langle c \rangle$ is a set such that for every z z is an element of $\langle c \rangle$ iff there exists an element x such that $z = c \cdot x$.

Lemma 38 (PrIdeal). $\langle c \rangle$ is an ideal.

Proof. Let x belong to $\langle c \rangle$.

 $\forall y \in \langle c \rangle x + y \in \langle c \rangle.$

Proof. Let $y \in \langle c \rangle$. (1) Take an element u such that $c \cdot u = x$. (2) Take an element v such that $c \cdot v = y$. $x + y = c \cdot (u + v)$ (by 1, 2, AMDistr1). Therefore the thesis. Qed.

 $\forall zz \cdot x \in \langle c \rangle.$ Proof. Let z be an element. (1) Take an element u such that $c \cdot u = x$. $z \cdot x = c \cdot (u \cdot z)$ (by 1, MulComm, MulAsso, MulBubble). Therefore the thesis. Qed.

The notion of a principal ideal allows us write the ideal which is generated by two elements a and b as $\langle a \rangle \oplus \langle b \rangle$. As mentioned before if not both a and b are zero, $\langle a \rangle \oplus \langle b \rangle$ contains the gcd of a and b. That means that if c is the gcd of a and b then c is of the form $x \cdot a + y \cdot b$ for certain elements x and y. For example if we take \mathbb{Z} as our Euclidean domain we get *Bézout's identity*: For two integers n, m with a gcd d there exist integers x, y such that $d = x \cdot n + y \cdot m$. For instance

$$gcd(8, 14) = 2 = 2 \cdot 8 + (-1) \cdot 14$$

and

$$gcd(9,25) = 1 = -11 \cdot 9 + 4 \cdot 25$$

Theorem 39 (GCDin). Let a, b be elements. Assume that a is nonzero or b is nonzero. Let c be a gcd of a and b. Then c belongs to $\langle a \rangle \oplus \langle b \rangle$. *Proof.* Take an ideal I equal to $\langle a \rangle \oplus \langle b \rangle$. We have $0, a \in \langle a \rangle$ and $0, b \in \langle b \rangle$ (by MulZero, MulUnit). Hence there exists a nonzero element of $\langle a \rangle \oplus \langle b \rangle$. Indeed $a \in \langle a \rangle \oplus \langle b \rangle$ and $b \in \langle a \rangle \oplus \langle b \rangle$ (by AddZero).

Take a nonzero $u \in I$ such that for no nonzero $v \in I$ $(|v| \prec |u|)$. Indeed we can show by induction on |w| that for every nonzero $w \in I$ there exists nonzero $u \in I$ such that for no nonzero $v \in I$ $(|v| \prec |u|)$. Obvious.

u is a common divisor of a and b. Proof by contradiction. Assume the contrary.

For some elements $x, y \ u = (a \cdot x) + (b \cdot y)$. Proof. Take $k \in \langle a \rangle$ and $l \in \langle b \rangle$ such that u = k + l. Take elements x, y such that $(k = a \cdot x \text{ and } l = b \cdot y)$. Hence the thesis. Qed.

Case u does not divide a. Take elements q, r such that $a = (q \cdot u) + r$ and $(r = 0 \lor |r| \prec |u|)$ (by Division). r is nonzero. $-(q \cdot u)$ belongs to I. a belongs to I (by AddZero). $r = -(q \cdot u) + a$. Hence r belongs to I (by DefIdeal). End.

Case u does not divide b. Take elements q, r such that $b = (q \cdot u) + r$ and $(r = 0 \lor |r| \prec |u|)$ (by Division). r is nonzero. $-(q \cdot u)$ belongs to I. b belongs to I (by AddZero). $r = -(q \cdot u) + b$. Hence r belongs to I (by DefIdeal). End. Qed.

Hence u divides c.

Hence the thesis.

Proof. Take an element z such that $c = z \cdot u$. Then $c \in I$ (by DefIdeal). Qed.

Bézout's identity ensures that for any two coprime integers n, m we have $n\mathbb{Z} \oplus m\mathbb{Z} = \mathbb{Z}$. Because we can take integers x, y such that $x \cdot n + y \cdot m = 1$ and thus for every integer z we have $zx \cdot n + zy \cdot m = z$, hence $z \in n\mathbb{Z} \oplus m\mathbb{Z}$. So as a special case of the Chinese remainder theorem if n and m are coprime then for all integers x, y the simultaneous congruence

$$w = x \pmod{n}$$
$$w = y \pmod{m}$$

has a solution.