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This is a formalization of the Knaster-Tarski Fixed Point Theorem (i.e. of the
assertion that every subset-preserving map has a fixed point) and of the Cantor-
Schröder-Bernstein Theorem (i.e. of the fact that two sets are equinumerous iff
they can be embedded into each other), where the proof of the latter theorem
is based on the former one, as in [1, p. 530].

On mid-range hardware Naproche needs approximately 3 Minutes to verify
this formalization plus approximately 7 minutes to verify the library files it
depends on.

[readtex foundations/sections/10_sets.ftl.tex]

The Knaster-Tarski fixed point theorem

Definition. Let h be a map. A fixed point of h is an element u of dom(h)
such that h(u) = u.

Definition. A map between systems of sets is a map from some system of
sets to some system of sets.

Definition. Let h be a map between systems of sets. h preserves subsets
iff for all u, v ∈ dom(h) we have

u ⊆ v =⇒ h(u) ⊆ h(v).

Theorem (Knaster-Tarski). Let x be a set. Let h be a map from P(x)
to P(x) that preserves subsets. Then h has a fixed point.

Proof. (1) Define A = {y | y ⊆ x and y ⊆ h(y)}. Then A is a subset of
P(x). We have

⋃
A ∈ P(x).

Let us show that (2)
⋃
A ⊆ h(

⋃
A). Let u ∈

⋃
A. Take y ∈ A such that

u ∈ y. Then u ∈ h(y). We have y ⊆
⋃

A. Hence h(y) ⊆ h(
⋃
A). Thus
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h(y) ⊆ h(
⋃
A). Therefore u ∈ h(

⋃
A). End.

Then h(
⋃
A) ∈ A (by 1). Indeed h(

⋃
A) ⊆ x. (3) Hence h(

⋃
A) ⊆

⋃
A.

Indeed every element of h(
⋃

A) is an element of some element of A.

Thus h(
⋃
A) =

⋃
A (by 2, 3).

The Cantor-Schröder-Bernstein theorem

Definition. Let x, y be sets. x and y are equinumerous iff there exists a
bijection between x and y.

Theorem (Cantor-Schröder-Bernstein). Let x, y be sets. x and y are
equinumerous iff there exists a injective map from x to y and there exists
an injective map from y to x.

Proof. Case x and y are equinumerous. Take a bijection f between x and
y. Then f−1 is a bijection between y and x. Hence f is an injective map
from x to y and f−1 is an injective map from y to x. End.

Case there exists an injective map from x to y and there exists an injective
map from y to x. Take an injective map f from x to y. Take an injective
map g from y to x. We have y \ f [a] ⊆ y for any a ∈ P(x).

(1) Define h(a) = x \ g[y \ f [a]] for a ∈ P(x).

h is a map from P(x) to P(x). Indeed h(a) is a subset of x for each subset
a of x.

Let us show that h preserves subsets. Let u, v be subsets of x. Assume u ⊆
v. Then f [u] ⊆ f [v]. Hence y \f [v] ⊆ y \f [u]. Thus g[y \f [v]] ⊆ g[y \f [u]].
Indeed y \ f [v] and y \ f [u] are subsets of y. Therefore x \ g[y \ f [u]] ⊆
x \ g[y \ f [v]]. Consequently h[u] ⊆ h[v]. End.

Hence we can take a fixed point c of h (by Knaster-Tarski).

(2) Define F (u) = f(u) for u ∈ c.

We have c = h(c) iff x \ c = g[y \ f [c]]. g−1 is a bijection between range(g)
and y. Thus x \ c = g[y \ f [c]] ⊆ range(g). Therefore x \ c is a subset of
dom(g−1).

(3) Define G(u) = g−1(u) for u ∈ x \ c.
F is a bijection between c and range(F ). G is a bijection between x\ c and
range(G).

Define

H(u) =

{
F (u) : u ∈ c

G(u) : u /∈ c

for u ∈ x.
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Let us show that H is a map to y. dom(H) is a set and every value of H
is an object. Hence H is a map.

Let us show that every value of H lies in y. Let v be a value of H. Take
u ∈ x such that H(u) = v. If u ∈ c then v = H(u) = F (u) = f(u) ∈ y. If
u /∈ c then v = H(u) = G(u) = g−1(u) ∈ y. End. End.

(4) H is surjective onto y. Indeed we can show that every element of y is
a value of H. Let v ∈ y.

Case v ∈ f [c]. Take u ∈ c such that f(u) = v. Then F (u) = v. End.

Case v /∈ f [c]. Then v ∈ y \ f [c]. Hence g(v) ∈ g[y \ f [c]]. Thus g(v) ∈
x \ h(c). We have g(v) ∈ x \ c. Therefore we can take u ∈ x \ c such that
G(u) = v. Then v = H(u). End. End.

(5) H is injective. Indeed we can show that for all u, v ∈ x if u ̸= v then
H(u) ̸= H(v). Let u, v ∈ x. Assume u ̸= v.

Case u, v ∈ c. ThenH(u) = F (u) andH(v) = F (v). We have F (u) ̸= F (v).
Hence H(u) ̸= H(v). End.

Case u, v /∈ c. ThenH(u) = G(u) andH(v) = G(v). We haveG(u) ̸= G(v).
Hence H(u) ̸= H(v). End.

Case u ∈ c and v /∈ c. Then H(u) = F (u) and H(v) = G(v). Hence
v ∈ g[y \ f [c]]. We have G(v) ∈ y \ F [c]. Thus G(v) ̸= F (u). End.

Case u /∈ c and v ∈ c. Then H(u) = G(u) and H(v) = F (v). Hence
u ∈ g[y \ f [c]]. We have G(u) ∈ y \ f [c]. Thus G(u) ̸= F (v). End. End.

Consequently H is a bijection between x and y (by 4, 5). Therefore x and
y are equinumerous. End.
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