Chapter 1

Cardinality

File:
[readtex foundations/sections/13_equinumerosity.ftl.tex]
[readtex arithmetic/sections/04_ordering.ftl.tex]

1.1 Subsections of the natural numbers

ARITHMETIC_11_3625613501923328

Definition 1.1. Let n, m be natural numbers. $\{n, \ldots, m\}=\{k \in \mathbb{N} \mid n \leq k \leq$ m.

ARITHMETIC_11_145331933151232

Proposition 1.2. Let n, m be natural numbers. If $\{1, \ldots, n\}=\{1, \ldots, m\}$ then $n=m$.

Proof. Assume $\{1, \ldots, n\}=\{1, \ldots, m\}$.
Case $n=0$. Then $\{1, \ldots, n\}=\emptyset$. Thus $\{1, \ldots, m\}=\emptyset$. Hence there exists no $k \in \mathbb{N}$ such that $1 \leq k \leq m$. Therefore $m=0$. Consequently $n=m$. End.
Case $m=0$. Then $\{1, \ldots, m\}=\emptyset$. Thus $\{1, \ldots, n\}=\emptyset$. Hence there exists no $k \in \mathbb{N}$ such that $1 \leq k \leq n$. Therefore $n=0$. Consequently $n=m$. End.

Case $n, m \geq 1$. For all $k \in \mathbb{N}$ we have $1 \leq k \leq n$ iff $1 \leq k \leq m$. Hence for all $k \in \mathbb{N}$ we have $k \leq n$ iff $k \leq m$.
Let us show by contradiction that $n=m$. Suppose $n \neq m$. Then $n>m$ or $m>n$.
Case $n>m$. Take $k=m+1$. Then $k \leq n$ and $k \not \leq m$. Hence it is wrong that $k \leq n$ iff $k \leq m$. Contradiction. End.
Case $m>n$. Take $k=n+1$. Then $k \leq m$ and $k \not \leq m$. Hence it is wrong that $k \leq n$ iff $k \leq m$. Contradiction. End. End. End.

ARITHMETIC_11_658708738605056
Proposition 1.3. Let n be a natural number. Then $\{1, \ldots, n+1\}=\{1, \ldots, n\} \cup$ $\{n+1\}$.

Proof. We have $\{1, \ldots, n+1\} \subseteq\{1, \ldots, n\} \cup\{n+1\}$ and $\{1, \ldots, n\} \cup\{n+1\} \subseteq$ $\{1, \ldots, n+1\}$.

1.2 Finite and infinite sets

Finite sets

ARITHMETIC_11_3694156977274880
Definition 1.4. Let X be a set. X is finite iff there exists a natural number n such that X is equinumerous to $\{1, \ldots, n\}$.

ARITHMETIC_11_3929085203972096
Proposition 1.5. Let X, Y be sets. If X is finite and Y is equinumerous to X then Y is finite.

Proof. Assume that X is finite and Y is equinumerous to X. Take a natural number n and a bijection f between $\{1, \ldots, n\}$ and X and a bijection g between X and Y. Then $g \circ f$ is a bijection between $\{1, \ldots, n\}$ and Y (by ??). Indeed X, Y are classes. Hence Y is finite.

Infinite sets

Definition 1.6. Let X be a set. X is infinite iff X is not finite.

ARITHMETIC_11_5814530911240192

Proposition 1.7. Let X, Y be sets. If X is infinite and Y is equinumerous to X then Y is infinite.

Proof. Assume that Y is equinumerous to X. If Y is finite then X is finite. Hence if X is infinite then Y is infinite.

The cardinality of a set

ARITHMETIC_11_4604295827685376
Signature 1.8. ∞ is an object that is not a natural number.

ARITHMETIC_11_4220669648699392

Definition 1.9. Let X be a set. The cardinality of X is the object κ such that (if X is finite then κ is the natural number n such that X is equinumerous to $\{1, \ldots, n\}$) and
if X is infinite then $\kappa=\infty$.

Let $|X|$ stand for the cardinality of X.
Let X has finitely many elements stand for $|X| \in \mathbb{N}$. Let X has infinitely many elements stand for $|X|=\infty$.

Let X has exactly n elements stand for $|X|=n$. Let X has at most n elements stand for $|X| \leq n$. Let X has at least n elements stand for $|X| \geq n$.

ARITHMETIC_11_7260344969854976
Proposition 1.10. Let X be a set. X is empty iff $|X|=0$.

Proof. Case X is empty. Then $X=\emptyset=\{1, \ldots, 0\}$. Hence X is equinumerous to $\{1, \ldots, 0\}$. Thus $|X|=0$. End.
Case $|X|=0$. Then X is equinumerous to $\{1, \ldots, 0\} .\{1, \ldots, 0\}=\emptyset$. Thus $X=\emptyset$.

End.

Proposition 1.11. Let X be a set. X is a singleton set iff $|X|=1$.

Proof. Case X is a singleton set. Consider an object a such that $X=\{a\}$. Define $f(x)=1$ for $x \in X$. Then f is a bijection between X and $\{1\}$. We have $\{1\}=$ $\{1, \ldots, 1\}$. Hence $|X|=1$. End.
Case $|X|=1$. Take a bijection f between $\{1, \ldots, 1\}$ and X. We have $\{1, \ldots, 1\}=\{1\}$. Hence $X=\{f(1)\}$. End.

ARITHMETIC_11_3151583407767552
Proposition 1.12. Let X be a set. X is an unordered pair iff $|X|=2$.

Proof. Case X is an unordered pair. Consider distinct objects a, b such that $X=$ $\{a, b\}$. Define

$$
f(x)= \begin{cases}1 & : x=a \\ 2 & : x=b\end{cases}
$$

for $x \in X$. Then f is a bijection between X and $\{1,2\}$. We have $\{1, \ldots, 2\}=\{1,2\}$. Hence $|X|=2$. End.

Case $|X|=2$. Take a bijection f between $\{1, \ldots, 2\}$ and X. We have $\{1, \ldots, 2\}=$ $\{1,2\}$. Hence $X=\{f(1), f(2)\}$. End.

1.3 Countable and uncountable sets

Countably infinite sets

ARITHMETIC_11_6249029537103872
Definition 1.13. Let X be a set. X is countably infinite iff X is equinumerous to \mathbb{N}.

> ARITHMETIC_11_803449379749888

Proposition 1.14. Let X, Y be sets. If X is countably infinite and Y is equinumerous to X then Y is countably infinite.

Proof. Assume that X is countably infinite and Y is equinumerous to X. Take a
bijection f between \mathbb{N} and X and a bijection g between X and Y. Then $g \circ f$ is a bijection between \mathbb{N} and Y (by ??). Indeed X, Y are classes. Hence Y is countably infinite.

Countable sets

Definition 1.15. Let X be a set. X is countable iff X is finite or X is countably infinite.

> ARITHMETIC_11_4182588499427328

Proposition 1.16. Let X, Y be sets. If X is countable and Y is equinumerous to X then Y is countable.

Proof. Assume that X is countable and Y is equinumerous to X. If X is finite then Y is finite. If X is countably infinite then Y is countably infinite. Hence Y is countable.

Uncountable sets

> ARITHMETIC_11_2411928395710464

Definition 1.17. Let X be a set. X is uncountable iff X is not countable.

> ARITHMETIC_11_1073385358491648

Proposition 1.18. Let X, Y be sets. If X is uncountable and Y is equinumerous to X then Y is uncountable.

Proof. Assume that Y is equinumerous to X. If Y is countable then X is countable. Hence if X is uncountable then Y is uncountable.

1.4 Systems of sets

Definitions

ARITHMETIC_11_1387314525765632
Definition 1.19. A system of finite sets is a system of sets X such that every element of X is finite.

ARITHMETIC_11_3786392159125504
Definition 1.20. A system of countably infinite sets is a system of sets X such that every element of X is countably infinite.

ARITHMETIC_11_7341152585908224

Definition 1.21. A system of countable sets is a system of sets X such that every element of X is countable.

ARITHMETIC_11_6106935677943808
Definition 1.22. A system of uncountable sets is a system of sets X such that every element of X is uncountable.

Closure under unions

> ARITHMETIC_11_3959378992431104

Definition 1.23. Let X be a system of sets. X is closed under arbitrary unions iff $\bigcup U \in X$ for every nonempty subset U of X.

Let X is closed under unions stand for X is closed under arbitrary unions.

ARITHMETIC_11_2377279311183872
Definition 1.24. Let X be a system of sets. X is closed under countable unions iff $\bigcup U \in X$ for every nonempty countable subset U of X.

Definition 1.25. Let X be a system of sets. X is closed under finite unions iff $U U \in X$ for every nonempty finite subset U of X.

Proposition 1.26. Let X be a system of sets. X is closed under finite unions iff $U \cup V \in X$ for every $U, V \in X$.

Proof. Case X is closed under finite unions. Let $U, V \in X$. Then $\{U, V\}$ is a nonempty finite subset of X. Hence $U \cup V=\bigcup\{U, V\} \in X$. End.
Case $U \cup V \in X$ for every $U, V \in X$. Define $\Phi=\{n \in \mathbb{N} \mid \cup U \in X$ for every nonempty subset U of X such that $|U|=n\}$.
(1) Φ contains 0 .
(2) For every $n \in \Phi$ we have $n+1 \in \Phi$.

Proof. Let $n \in \Phi$. Then $\bigcup U \in X$ for every nonempty subset U of X such that $|U|=n$.

Let us show that $U U \in X$ for every nonempty subset U of X such that $|U|=n+1$.
Case $n=0$. Obvious.
Case $n \neq 0$. Let U be a nonempty subset of X such that $|U|=n+1$. Take a bijection f between $\{1, \ldots, n+1\}$ and U. We have $\{1, \ldots, n+1\}=\{1, \ldots, n\} \cup\{n+1\}$. Take $V=f[\{1, \ldots, n\}]$. We have $\{1, \ldots, n\} \subseteq\{1, \ldots, n+1\}$.
Let us show that $V \subseteq U$. Let $x \in V$. Take $k \in\{1, \ldots, n\}$ such that $x=f(k)$. Hence $x \in U$. End.
V is a nonempty set. Hence V is a nonempty subset of $X . U$ is a class and f : $\{1, \ldots, n+1\} \hookrightarrow U$. [prover vampire] Hence $f \upharpoonright\{1, \ldots, n\}$ is a bijection between $\{1, \ldots, n\}$ and V (by ??). [prover eprover] Thus $|V|=n$. Consequently $\bigcup V \in X$. We have $U=V \cup\{f(n+1)\}$. Indeed $U=f[\{1, \ldots, n+1\}]=f[\{1, \ldots, n\} \cup\{n+1\}]=$ $f[\{1, \ldots, n\}] \cup f[\{n+1\}]=f[\{1, \ldots, n\}] \cup\{f(n+1)\}$.
Let us show that $\bigcup(A \cup B)=(\bigcup A) \cup(\bigcup B)$ for any nonempty systems of sets A, B. Let A, B be nonempty systems of sets. $\cup(A \cup B) \subseteq(\bigcup A) \cup(\cup B)$. $((\cup A) \cup(\bigcup B)) \subseteq$ $U(A \cup B)$. End.
Hence $\bigcup U=\bigcup(V \cup\{f(n+1)\})=(\bigcup V) \cup(\bigcup\{f(n+1)\})=(\bigcup V) \cup f(n+1) \in X$. Indeed V and $\{f(n+1)\}$ are nonempty systems of sets. End. End. Qed.
Therefore Φ contains every natural number. Thus $\bigcup U \in X$ for every nonempty finite subset U of X. Consequently X is closed under finite unions. End.

Closure under intersections

ARITHMETIC_11_2369621166391296
Definition 1.27. Let X be a system of sets. X is closed under arbitrary intersections iff $\bigcap U \in X$ for every nonempty subset U of X.

Let X is closed under intersections stand for X is closed under arbitrary intersections.

ARITHMETIC_11_451771879129088
Definition 1.28. Let X be a system of sets. X is closed under countable intersections iff $\bigcap U \in X$ for every nonempty countable subset U of X.

ARITHMETIC_11_4297814324543488
Definition 1.29. Let X be a system of sets. X is closed under finite intersections iff $\bigcap U \in X$ for every nonempty finite subset U of X.

ARITHMETIC_11_1405012582334464
Proposition 1.30. Let X be a system of sets. X is closed under finite intersections iff $U \cap V \in X$ for every $U, V \in X$.

Proof. Case X is closed under finite intersections. Let $U, V \in X$. Then $\{U, V\}$ is a nonempty finite subset of X. Hence $U \cap V=\bigcap\{U, V\} \in X$. End.
Case $U \cap V \in X$ for every $U, V \in X$. Define $\Phi=\{n \in \mathbb{N} \mid \cap U \in X$ for every nonempty subset U of X such that $|U|=n\}$.
(1) Φ contains 0 .
(2) For every $n \in \Phi$ we have $n+1 \in \Phi$.

Proof. Let $n \in \Phi$. Then $\bigcap U \in X$ for every nonempty subset U of X such that $|U|=n$.
Let us show that $\bigcap U \in X$ for every nonempty subset U of X such that $|U|=n+1$.
Case $n=0$. Obvious.
Case $n \neq 0$. Let U be a nonempty subset of X such that $|U|=n+1$. Take a bijection f between $\{1, \ldots, n+1\}$ and U. We have $\{1, \ldots, n+1\}=\{1, \ldots, n\} \cup\{n+1\}$. Take $V=f[\{1, \ldots, n\}]$. We have $\{1, \ldots, n\} \subseteq\{1, \ldots, n+1\}$.

Let us show that $V \subseteq U$. Let $x \in V$. Take $k \in\{1, \ldots, n\}$ such that $x=f(k)$. Hence $x \in U$. End.
V is a nonempty set. Hence V is a nonempty subset of $X . U$ is a class and f : $\{1, \ldots, n+1\} \hookrightarrow U$. [prover vampire] Hence $f \upharpoonright\{1, \ldots, n\}$ is a bijection between $\{1, \ldots, n\}$ and V (by ??). [prover eprover] Thus $|V|=n$. Consequently $\cap V \in X$. We have $U=V \cup\{f(n+1)\}$. Indeed $U=f[\{1, \ldots, n+1\}]=f[\{1, \ldots, n\} \cup\{n+1\}]=$ $f[\{1, \ldots, n\}] \cup f[\{n+1\}]=f[\{1, \ldots, n\}] \cup\{f(n+1)\}$.

Let us show that $\bigcap(A \cup B)=(\bigcap A) \cap(\bigcap B)$ for any nonempty systems of sets A, B. Let A, B be nonempty systems of sets. $\bigcap(A \cup B) \subseteq(\bigcap A) \cap(\bigcap B) .((\bigcap A) \cap(\bigcap B)) \subseteq$ $\bigcap(A \cup B)$. End.
Hence $\bigcap U=\bigcap(V \cup\{f(n+1)\})=(\bigcap V) \cap(\bigcap\{f(n+1)\})=(\bigcap V) \cap f(n+1) \in X$. Indeed V and $\{f(n+1)\}$ are nonempty systems of sets. End. End. Qed.
Therefore Φ contains every natural number. Thus $\bigcap U \in X$ for every nonempty finite subset U of X. Consequently X is closed under finite intersections. End.

