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1.1 Subsections of the natural numbers

ARITHMETIC_11_3625613501923328

Definition 1.1. Let n,m be natural numbers. {n, . . . ,m} = {k ∈ N | n ≤ k ≤
m}.

ARITHMETIC_11_145331933151232

Proposition 1.2. Let n,m be natural numbers. If {1, . . . , n} = {1, . . . ,m} then
n = m.

Proof. Assume {1, . . . , n} = {1, . . . ,m}.

Case n = 0. Then {1, . . . , n} = ∅. Thus {1, . . . ,m} = ∅. Hence there exists no k ∈ N
such that 1 ≤ k ≤ m. Therefore m = 0. Consequently n = m. End.

Case m = 0. Then {1, . . . ,m} = ∅. Thus {1, . . . , n} = ∅. Hence there exists no k ∈ N
such that 1 ≤ k ≤ n. Therefore n = 0. Consequently n = m. End.
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Case n,m ≥ 1. For all k ∈ N we have 1 ≤ k ≤ n iff 1 ≤ k ≤ m. Hence for all k ∈ N
we have k ≤ n iff k ≤ m.

Let us show by contradiction that n = m. Suppose n ̸= m. Then n > m or m > n.

Case n > m. Take k = m+ 1. Then k ≤ n and k ≰ m. Hence it is wrong that k ≤ n
iff k ≤ m. Contradiction. End.

Case m > n. Take k = n+ 1. Then k ≤ m and k ≰ m. Hence it is wrong that k ≤ n
iff k ≤ m. Contradiction. End. End. End.

ARITHMETIC_11_658708738605056

Proposition 1.3. Let n be a natural number. Then {1, . . . , n+1} = {1, . . . , n}∪
{n+ 1}.

Proof. We have {1, . . . , n + 1} ⊆ {1, . . . , n} ∪ {n + 1} and {1, . . . , n} ∪ {n + 1} ⊆
{1, . . . , n+ 1}.

1.2 Finite and infinite sets

Finite sets

ARITHMETIC_11_3694156977274880

Definition 1.4. Let X be a set. X is finite iff there exists a natural number n
such that X is equinumerous to {1, . . . , n}.

ARITHMETIC_11_3929085203972096

Proposition 1.5. Let X,Y be sets. If X is finite and Y is equinumerous to X
then Y is finite.

Proof. Assume that X is finite and Y is equinumerous to X. Take a natural number
n and a bijection f between {1, . . . , n} and X and a bijection g between X and Y .
Then g ◦ f is a bijection between {1, . . . , n} and Y (by ??). Indeed X,Y are classes.
Hence Y is finite.
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Infinite sets

ARITHMETIC_11_6612510618681344

Definition 1.6. Let X be a set. X is infinite iff X is not finite.

ARITHMETIC_11_5814530911240192

Proposition 1.7. Let X,Y be sets. If X is infinite and Y is equinumerous to
X then Y is infinite.

Proof. Assume that Y is equinumerous to X. If Y is finite then X is finite. Hence if
X is infinite then Y is infinite.

The cardinality of a set

ARITHMETIC_11_4604295827685376

Signature 1.8. ∞ is an object that is not a natural number.

ARITHMETIC_11_4220669648699392

Definition 1.9. Let X be a set. The cardinality of X is the object κ such that

(if X is finite then κ is the natural number n such that X is equinumerous to
{1, . . . , n}) and

if X is infinite then κ = ∞.

Let |X| stand for the cardinality of X.

Let X has finitely many elements stand for |X| ∈ N. Let X has infinitely many
elements stand for |X| = ∞.

Let X has exactly n elements stand for |X| = n. Let X has at most n elements stand
for |X| ≤ n. Let X has at least n elements stand for |X| ≥ n.

ARITHMETIC_11_7260344969854976

Proposition 1.10. Let X be a set. X is empty iff |X| = 0.

Proof. Case X is empty. Then X = ∅ = {1, . . . , 0}. Hence X is equinumerous to
{1, . . . , 0}. Thus |X| = 0. End.

Case |X| = 0. Then X is equinumerous to {1, . . . , 0}. {1, . . . , 0} = ∅. Thus X = ∅.
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End.

ARITHMETIC_11_963914846175232

Proposition 1.11. Let X be a set. X is a singleton set iff |X| = 1.

Proof. Case X is a singleton set. Consider an object a such that X = {a}. Define
f(x) = 1 for x ∈ X. Then f is a bijection between X and {1}. We have {1} =
{1, . . . , 1}. Hence |X| = 1. End.

Case |X| = 1. Take a bijection f between {1, . . . , 1} andX. We have {1, . . . , 1} = {1}.
Hence X = {f(1)}. End.

ARITHMETIC_11_3151583407767552

Proposition 1.12. Let X be a set. X is an unordered pair iff |X| = 2.

Proof. Case X is an unordered pair. Consider distinct objects a, b such that X =
{a, b}. Define

f(x) =

{
1 : x = a

2 : x = b

for x ∈ X. Then f is a bijection between X and {1, 2}. We have {1, . . . , 2} = {1, 2}.
Hence |X| = 2. End.

Case |X| = 2. Take a bijection f between {1, . . . , 2} and X. We have {1, . . . , 2} =
{1, 2}. Hence X = {f(1), f(2)}. End.

1.3 Countable and uncountable sets

Countably infinite sets

ARITHMETIC_11_6249029537103872

Definition 1.13. Let X be a set. X is countably infinite iff X is equinumerous
to N.

ARITHMETIC_11_803449379749888

Proposition 1.14. Let X,Y be sets. If X is countably infinite and Y is equinu-
merous to X then Y is countably infinite.

Proof. Assume that X is countably infinite and Y is equinumerous to X. Take a
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bijection f between N and X and a bijection g between X and Y . Then g ◦ f is a
bijection between N and Y (by ??). Indeed X,Y are classes. Hence Y is countably
infinite.

Countable sets

ARITHMETIC_11_5412969443753984

Definition 1.15. Let X be a set. X is countable iff X is finite or X is countably
infinite.

ARITHMETIC_11_4182588499427328

Proposition 1.16. Let X,Y be sets. If X is countable and Y is equinumerous
to X then Y is countable.

Proof. Assume that X is countable and Y is equinumerous to X. If X is finite then Y
is finite. If X is countably infinite then Y is countably infinite. Hence Y is countable.

Uncountable sets

ARITHMETIC_11_2411928395710464

Definition 1.17. Let X be a set. X is uncountable iff X is not countable.

ARITHMETIC_11_1073385358491648

Proposition 1.18. LetX,Y be sets. IfX is uncountable and Y is equinumerous
to X then Y is uncountable.

Proof. Assume that Y is equinumerous to X. If Y is countable then X is countable.
Hence if X is uncountable then Y is uncountable.
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1.4 Systems of sets

Definitions

ARITHMETIC_11_1387314525765632

Definition 1.19. A system of finite sets is a system of sets X such that every
element of X is finite.

ARITHMETIC_11_3786392159125504

Definition 1.20. A system of countably infinite sets is a system of sets X such
that every element of X is countably infinite.

ARITHMETIC_11_7341152585908224

Definition 1.21. A system of countable sets is a system of sets X such that
every element of X is countable.

ARITHMETIC_11_6106935677943808

Definition 1.22. A system of uncountable sets is a system of sets X such that
every element of X is uncountable.

Closure under unions

ARITHMETIC_11_3959378992431104

Definition 1.23. Let X be a system of sets. X is closed under arbitrary unions
iff

⋃
U ∈ X for every nonempty subset U of X.

Let X is closed under unions stand for X is closed under arbitrary unions.

ARITHMETIC_11_2377279311183872

Definition 1.24. Let X be a system of sets. X is closed under countable unions
iff

⋃
U ∈ X for every nonempty countable subset U of X.
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ARITHMETIC_11_7040118193913856

Definition 1.25. Let X be a system of sets. X is closed under finite unions iff⋃
U ∈ X for every nonempty finite subset U of X.

ARITHMETIC_11_4164024962908160

Proposition 1.26. Let X be a system of sets. X is closed under finite unions
iff U ∪ V ∈ X for every U, V ∈ X.

Proof. Case X is closed under finite unions. Let U, V ∈ X. Then {U, V } is a
nonempty finite subset of X. Hence U ∪ V =

⋃
{U, V } ∈ X. End.

Case U ∪ V ∈ X for every U, V ∈ X. Define Φ = {n ∈ N |
⋃
U ∈ X for every

nonempty subset U of X such that |U | = n}.

(1) Φ contains 0.

(2) For every n ∈ Φ we have n+ 1 ∈ Φ.
Proof. Let n ∈ Φ. Then

⋃
U ∈ X for every nonempty subset U of X such that

|U | = n.

Let us show that
⋃
U ∈ X for every nonempty subset U of X such that |U | = n+ 1.

Case n = 0. Obvious.

Case n ̸= 0. Let U be a nonempty subset of X such that |U | = n+1. Take a bijection
f between {1, . . . , n+1} and U . We have {1, . . . , n+1} = {1, . . . , n}∪{n+1}. Take
V = f [{1, . . . , n}]. We have {1, . . . , n} ⊆ {1, . . . , n+ 1}.

Let us show that V ⊆ U . Let x ∈ V . Take k ∈ {1, . . . , n} such that x = f(k). Hence
x ∈ U . End.

V is a nonempty set. Hence V is a nonempty subset of X. U is a class and f :
{1, . . . , n + 1} ↪→ U . [prover vampire] Hence f ↾ {1, . . . , n} is a bijection between
{1, . . . , n} and V (by ??). [prover eprover] Thus |V | = n. Consequently

⋃
V ∈ X.

We have U = V ∪{f(n+1)}. Indeed U = f [{1, . . . , n+1}] = f [{1, . . . , n}∪{n+1}] =
f [{1, . . . , n}] ∪ f [{n+ 1}] = f [{1, . . . , n}] ∪ {f(n+ 1)}.

Let us show that
⋃
(A ∪B) = (

⋃
A) ∪ (

⋃
B) for any nonempty systems of sets A,B.

Let A,B be nonempty systems of sets.
⋃
(A∪B) ⊆ (

⋃
A)∪(

⋃
B). ((

⋃
A)∪(

⋃
B)) ⊆⋃

(A ∪B). End.

Hence
⋃
U =

⋃
(V ∪ {f(n+ 1)}) = (

⋃
V ) ∪ (

⋃
{f(n+ 1)}) = (

⋃
V ) ∪ f(n+ 1) ∈ X.

Indeed V and {f(n+ 1)} are nonempty systems of sets. End. End. Qed.

Therefore Φ contains every natural number. Thus
⋃
U ∈ X for every nonempty finite

subset U of X. Consequently X is closed under finite unions. End.
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Closure under intersections

ARITHMETIC_11_2369621166391296

Definition 1.27. Let X be a system of sets. X is closed under arbitrary inter-
sections iff

⋂
U ∈ X for every nonempty subset U of X.

Let X is closed under intersections stand for X is closed under arbitrary intersections.

ARITHMETIC_11_451771879129088

Definition 1.28. Let X be a system of sets. X is closed under countable inter-
sections iff

⋂
U ∈ X for every nonempty countable subset U of X.

ARITHMETIC_11_4297814324543488

Definition 1.29. LetX be a system of sets. X is closed under finite intersections
iff

⋂
U ∈ X for every nonempty finite subset U of X.

ARITHMETIC_11_1405012582334464

Proposition 1.30. Let X be a system of sets. X is closed under finite intersec-
tions iff U ∩ V ∈ X for every U, V ∈ X.

Proof. Case X is closed under finite intersections. Let U, V ∈ X. Then {U, V } is a
nonempty finite subset of X. Hence U ∩ V =

⋂
{U, V } ∈ X. End.

Case U ∩ V ∈ X for every U, V ∈ X. Define Φ = {n ∈ N |
⋂
U ∈ X for every

nonempty subset U of X such that |U | = n}.

(1) Φ contains 0.

(2) For every n ∈ Φ we have n+ 1 ∈ Φ.
Proof. Let n ∈ Φ. Then

⋂
U ∈ X for every nonempty subset U of X such that

|U | = n.

Let us show that
⋂
U ∈ X for every nonempty subset U of X such that |U | = n+ 1.

Case n = 0. Obvious.

Case n ̸= 0. Let U be a nonempty subset of X such that |U | = n+1. Take a bijection
f between {1, . . . , n+1} and U . We have {1, . . . , n+1} = {1, . . . , n}∪{n+1}. Take
V = f [{1, . . . , n}]. We have {1, . . . , n} ⊆ {1, . . . , n+ 1}.

Let us show that V ⊆ U . Let x ∈ V . Take k ∈ {1, . . . , n} such that x = f(k). Hence
x ∈ U . End.
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V is a nonempty set. Hence V is a nonempty subset of X. U is a class and f :
{1, . . . , n + 1} ↪→ U . [prover vampire] Hence f ↾ {1, . . . , n} is a bijection between
{1, . . . , n} and V (by ??). [prover eprover] Thus |V | = n. Consequently

⋂
V ∈ X.

We have U = V ∪{f(n+1)}. Indeed U = f [{1, . . . , n+1}] = f [{1, . . . , n}∪{n+1}] =
f [{1, . . . , n}] ∪ f [{n+ 1}] = f [{1, . . . , n}] ∪ {f(n+ 1)}.

Let us show that
⋂
(A ∪B) = (

⋂
A) ∩ (

⋂
B) for any nonempty systems of sets A,B.

Let A,B be nonempty systems of sets.
⋂
(A∪B) ⊆ (

⋂
A)∩(

⋂
B). ((

⋂
A)∩(

⋂
B)) ⊆⋂

(A ∪B). End.

Hence
⋂
U =

⋂
(V ∪ {f(n+ 1)}) = (

⋂
V ) ∩ (

⋂
{f(n+ 1)}) = (

⋂
V ) ∩ f(n+ 1) ∈ X.

Indeed V and {f(n+ 1)} are nonempty systems of sets. End. End. Qed.

Therefore Φ contains every natural number. Thus
⋂
U ∈ X for every nonempty finite

subset U of X. Consequently X is closed under finite intersections. End.
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