Chapter 1 Cardinality

arithmetic/sections/11_cardinality.ftl.tex

[readtex foundations/sections/13_equinumerosity.ftl.tex]
[readtex arithmetic/sections/04_ordering.ftl.tex]

1.1 Subsections of the natural numbers

ARITHMETIC_11_3625613501923328 Definition 1.1. Let n, m be natural numbers. $\{n, \ldots, m\} = \{k \in \mathbb{N} \mid n \leq k \leq m\}.$

ARITHMETIC_11_145331933151232 **Proposition 1.2.** Let n, m be natural numbers. If $\{1, \ldots, n\} = \{1, \ldots, m\}$ then n = m.

Proof. Assume $\{1, \ldots, n\} = \{1, \ldots, m\}$.

Case n = 0. Then $\{1, \ldots, n\} = \emptyset$. Thus $\{1, \ldots, m\} = \emptyset$. Hence there exists no $k \in \mathbb{N}$ such that $1 \leq k \leq m$. Therefore m = 0. Consequently n = m. End.

Case m = 0. Then $\{1, \ldots, m\} = \emptyset$. Thus $\{1, \ldots, n\} = \emptyset$. Hence there exists no $k \in \mathbb{N}$ such that $1 \leq k \leq n$. Therefore n = 0. Consequently n = m. End.

File:

Case $n, m \ge 1$. For all $k \in \mathbb{N}$ we have $1 \le k \le n$ iff $1 \le k \le m$. Hence for all $k \in \mathbb{N}$ we have $k \le n$ iff $k \le m$.

Let us show by contradiction that n = m. Suppose $n \neq m$. Then n > m or m > n.

Case n > m. Take k = m + 1. Then $k \le n$ and $k \le m$. Hence it is wrong that $k \le n$ iff $k \le m$. Contradiction. End.

Case m > n. Take k = n + 1. Then $k \le m$ and $k \le m$. Hence it is wrong that $k \le n$ iff $k \le m$. Contradiction. End. End.

Proposition 1.3. Let n be a natural number. Then $\{1, \ldots, n+1\} = \{1, \ldots, n\} \cup \{n+1\}.$

Proof. We have $\{1, \ldots, n+1\} \subseteq \{1, \ldots, n\} \cup \{n+1\}$ and $\{1, \ldots, n\} \cup \{n+1\} \subseteq \{1, \ldots, n+1\}$.

1.2 Finite and infinite sets

Finite sets

ARITHMETIC_11_3694156977274880

ARITHMETIC_11_658708738605056

Definition 1.4. Let X be a set. X is finite iff there exists a natural number n such that X is equinumerous to $\{1, \ldots, n\}$.

ARITHMETIC_11_3929085203972096

Proposition 1.5. Let X, Y be sets. If X is finite and Y is equinumerous to X then Y is finite.

Proof. Assume that X is finite and Y is equinumerous to X. Take a natural number n and a bijection f between $\{1, \ldots, n\}$ and X and a bijection g between X and Y. Then $g \circ f$ is a bijection between $\{1, \ldots, n\}$ and Y (by ??). Indeed X, Y are classes. Hence Y is finite.

Infinite sets

ARITHMETIC_11_6612510618681344

Definition 1.6. Let X be a set. X is infinite iff X is not finite.

ARITHMETIC_11_5814530911240192

Proposition 1.7. Let X, Y be sets. If X is infinite and Y is equinumerous to X then Y is infinite.

Proof. Assume that Y is equinumerous to X. If Y is finite then X is finite. Hence if X is infinite then Y is infinite. \Box

The cardinality of a set

ARITHMETIC_11_4604295827685376

Signature 1.8. ∞ is an object that is not a natural number.

ARITHMETIC_11_4220669648699392

Definition 1.9. Let X be a set. The cardinality of X is the object κ such that (if X is finite then κ is the natural number n such that X is equinumerous to $\{1, \ldots, n\}$) and

if X is infinite then $\kappa = \infty$.

Let |X| stand for the cardinality of X.

Let X has finitely many elements stand for $|X| \in \mathbb{N}$. Let X has infinitely many elements stand for $|X| = \infty$.

Let X has exactly n elements stand for |X| = n. Let X has at most n elements stand for $|X| \le n$. Let X has at least n elements stand for $|X| \ge n$.

ARITHMETIC_11_7260344969854976

Proposition 1.10. Let X be a set. X is empty iff |X| = 0.

Proof. Case X is empty. Then $X = \emptyset = \{1, ..., 0\}$. Hence X is equinumerous to $\{1, ..., 0\}$. Thus |X| = 0. End.

Case |X| = 0. Then X is equinumerous to $\{1, \ldots, 0\}$. $\{1, \ldots, 0\} = \emptyset$. Thus $X = \emptyset$.

End.

ARITHMETIC_11_963914846175232

ARITHMETIC_11_3151583407767552

Proposition 1.11. Let X be a set. X is a singleton set iff |X| = 1.

Proof. Case X is a singleton set. Consider an object a such that $X = \{a\}$. Define f(x) = 1 for $x \in X$. Then f is a bijection between X and $\{1\}$. We have $\{1\} = \{1, \ldots, 1\}$. Hence |X| = 1. End.

Case |X| = 1. Take a bijection f between $\{1, \ldots, 1\}$ and X. We have $\{1, \ldots, 1\} = \{1\}$. Hence $X = \{f(1)\}$. End.

Proposition 1.12. Let X be a set. X is an unordered pair iff |X| = 2.

Proof. Case X is an unordered pair. Consider distinct objects a, b such that $X = \{a, b\}$. Define

$$f(x) = \begin{cases} 1 & : x = a \\ 2 & : x = b \end{cases}$$

for $x \in X$. Then f is a bijection between X and $\{1, 2\}$. We have $\{1, \ldots, 2\} = \{1, 2\}$. Hence |X| = 2. End.

Case |X| = 2. Take a bijection f between $\{1, ..., 2\}$ and X. We have $\{1, ..., 2\} = \{1, 2\}$. Hence $X = \{f(1), f(2)\}$. End.

1.3 Countable and uncountable sets

Countably infinite sets

ARITHMETIC_11_6249029537103872

Definition 1.13. Let X be a set. X is countably infinite iff X is equinumerous to \mathbb{N} .

ARITHMETIC_11_803449379749888

Proposition 1.14. Let X, Y be sets. If X is countably infinite and Y is equinumerous to X then Y is countably infinite.

Proof. Assume that X is countably infinite and Y is equinumerous to X. Take a

bijection f between \mathbb{N} and X and a bijection g between X and Y. Then $g \circ f$ is a bijection between \mathbb{N} and Y (by ??). Indeed X, Y are classes. Hence Y is countably infinite.

Countable sets

ARITHMETIC_11_5412969443753984

Definition 1.15. Let X be a set. X is countable iff X is finite or X is countably infinite.

ARITHMETIC_11_4182588499427328

Proposition 1.16. Let X, Y be sets. If X is countable and Y is equinumerous to X then Y is countable.

Proof. Assume that X is countable and Y is equinumerous to X. If X is finite then Y is finite. If X is countably infinite then Y is countably infinite. Hence Y is countable. \Box

Uncountable sets

ARITHMETIC_11_2411928395710464

Definition 1.17. Let X be a set. X is uncountable iff X is not countable.

ARITHMETIC_11_1073385358491648

Proposition 1.18. Let X, Y be sets. If X is uncountable and Y is equinumerous to X then Y is uncountable.

Proof. Assume that Y is equinumerous to X. If Y is countable then X is countable. Hence if X is uncountable then Y is uncountable. \Box

1.4 Systems of sets

Definitions

ARITHMETIC_11_1387314525765632

Definition 1.19. A system of finite sets is a system of sets X such that every element of X is finite.

ARITHMETIC_11_3786392159125504

Definition 1.20. A system of countably infinite sets is a system of sets X such that every element of X is countably infinite.

ARITHMETIC_11_7341152585908224

Definition 1.21. A system of countable sets is a system of sets X such that every element of X is countable.

ARITHMETIC_11_6106935677943808

Definition 1.22. A system of uncountable sets is a system of sets X such that every element of X is uncountable.

Closure under unions

ARITHMETIC_11_3959378992431104

Definition 1.23. Let X be a system of sets. X is closed under arbitrary unions iff $\bigcup U \in X$ for every nonempty subset U of X.

Let X is closed under unions stand for X is closed under arbitrary unions.

ARITHMETIC_11_2377279311183872

Definition 1.24. Let X be a system of sets. X is closed under countable unions iff $\bigcup U \in X$ for every nonempty countable subset U of X.

ARITHMETIC_11_7040118193913856

Definition 1.25. Let X be a system of sets. X is closed under finite unions iff $\bigcup U \in X$ for every nonempty finite subset U of X.

ARITHMETIC_11_4164024962908160

Proposition 1.26. Let X be a system of sets. X is closed under finite unions iff $U \cup V \in X$ for every $U, V \in X$.

Proof. Case X is closed under finite unions. Let $U, V \in X$. Then $\{U, V\}$ is a nonempty finite subset of X. Hence $U \cup V = \bigcup \{U, V\} \in X$. End.

Case $U \cup V \in X$ for every $U, V \in X$. Define $\Phi = \{n \in \mathbb{N} \mid \bigcup U \in X \text{ for every nonempty subset } U \text{ of } X \text{ such that } |U| = n\}.$

(1) Φ contains 0.

(2) For every $n \in \Phi$ we have $n + 1 \in \Phi$.

Proof. Let $n \in \Phi$. Then $\bigcup U \in X$ for every nonempty subset U of X such that |U| = n.

Let us show that $\bigcup U \in X$ for every nonempty subset U of X such that |U| = n + 1.

Case n = 0. Obvious.

Case $n \neq 0$. Let U be a nonempty subset of X such that |U| = n+1. Take a bijection f between $\{1, \ldots, n+1\}$ and U. We have $\{1, \ldots, n+1\} = \{1, \ldots, n\} \cup \{n+1\}$. Take $V = f[\{1, \ldots, n\}]$. We have $\{1, \ldots, n\} \subseteq \{1, \ldots, n+1\}$.

Let us show that $V \subseteq U$. Let $x \in V$. Take $k \in \{1, ..., n\}$ such that x = f(k). Hence $x \in U$. End.

V is a nonempty set. Hence V is a nonempty subset of X. U is a class and f: $\{1, \ldots, n+1\} \hookrightarrow U$. [prover vampire] Hence $f \upharpoonright \{1, \ldots, n\}$ is a bijection between $\{1, \ldots, n\}$ and V (by ??). [prover eprover] Thus |V| = n. Consequently $\bigcup V \in X$. We have $U = V \cup \{f(n+1)\}$. Indeed $U = f[\{1, \ldots, n+1\}] = f[\{1, \ldots, n\} \cup \{n+1\}] = f[\{1, \ldots, n\}] \cup f[\{n+1\}] = f[\{1, \ldots, n\}] \cup \{f(n+1)\}$.

Let us show that $\bigcup (A \cup B) = (\bigcup A) \cup (\bigcup B)$ for any nonempty systems of sets A, B. Let A, B be nonempty systems of sets. $\bigcup (A \cup B) \subseteq (\bigcup A) \cup (\bigcup B)$. $((\bigcup A) \cup (\bigcup B)) \subseteq \bigcup (A \cup B)$. End.

Hence $\bigcup U = \bigcup (V \cup \{f(n+1)\}) = (\bigcup V) \cup (\bigcup \{f(n+1)\}) = (\bigcup V) \cup f(n+1) \in X$. Indeed V and $\{f(n+1)\}$ are nonempty systems of sets. End. End. Qed.

Therefore Φ contains every natural number. Thus $\bigcup U \in X$ for every nonempty finite subset U of X. Consequently X is closed under finite unions. End.

Closure under intersections

ARITHMETIC_11_2369621166391296

Definition 1.27. Let X be a system of sets. X is closed under arbitrary intersections iff $\bigcap U \in X$ for every nonempty subset U of X.

Let X is closed under intersections stand for X is closed under arbitrary intersections.

ARITHMETIC_11_451771879129088

Definition 1.28. Let X be a system of sets. X is closed under countable intersections iff $\bigcap U \in X$ for every nonempty countable subset U of X.

ARITHMETIC_11_4297814324543488

Definition 1.29. Let X be a system of sets. X is closed under finite intersections iff $\bigcap U \in X$ for every nonempty finite subset U of X.

ARITHMETIC_11_1405012582334464

Proposition 1.30. Let X be a system of sets. X is closed under finite intersections iff $U \cap V \in X$ for every $U, V \in X$.

Proof. Case X is closed under finite intersections. Let $U, V \in X$. Then $\{U, V\}$ is a nonempty finite subset of X. Hence $U \cap V = \bigcap \{U, V\} \in X$. End.

Case $U \cap V \in X$ for every $U, V \in X$. Define $\Phi = \{n \in \mathbb{N} \mid \bigcap U \in X \text{ for every nonempty subset } U \text{ of } X \text{ such that } |U| = n\}.$

(1) Φ contains 0.

(2) For every $n \in \Phi$ we have $n + 1 \in \Phi$. Proof. Let $n \in \Phi$. Then $\bigcap U \in X$ for every nonempty subset U of X such that |U| = n.

Let us show that $\bigcap U \in X$ for every nonempty subset U of X such that |U| = n + 1.

Case n = 0. Obvious.

Case $n \neq 0$. Let U be a nonempty subset of X such that |U| = n+1. Take a bijection f between $\{1, \ldots, n+1\}$ and U. We have $\{1, \ldots, n+1\} = \{1, \ldots, n\} \cup \{n+1\}$. Take $V = f[\{1, \ldots, n\}]$. We have $\{1, \ldots, n\} \subseteq \{1, \ldots, n+1\}$.

Let us show that $V \subseteq U$. Let $x \in V$. Take $k \in \{1, ..., n\}$ such that x = f(k). Hence $x \in U$. End.

V is a nonempty set. Hence V is a nonempty subset of X. U is a class and f: $\{1, \ldots, n+1\} \hookrightarrow U$. [prover vampire] Hence $f \upharpoonright \{1, \ldots, n\}$ is a bijection between $\{1, \ldots, n\}$ and V (by ??). [prover eprover] Thus |V| = n. Consequently $\bigcap V \in X$. We have $U = V \cup \{f(n+1)\}$. Indeed $U = f[\{1, \ldots, n+1\}] = f[\{1, \ldots, n\} \cup \{n+1\}] = f[\{1, \ldots, n\}] \cup f[\{n+1\}] = f[\{1, \ldots, n\}] \cup \{f(n+1)\}$.

Let us show that $\bigcap (A \cup B) = (\bigcap A) \cap (\bigcap B)$ for any nonempty systems of sets A, B. Let A, B be nonempty systems of sets. $\bigcap (A \cup B) \subseteq (\bigcap A) \cap (\bigcap B)$. $((\bigcap A) \cap (\bigcap B)) \subseteq \bigcap (A \cup B)$. End.

Hence $\bigcap U = \bigcap (V \cup \{f(n+1)\}) = (\bigcap V) \cap (\bigcap \{f(n+1)\}) = (\bigcap V) \cap f(n+1) \in X$. Indeed V and $\{f(n+1)\}$ are nonempty systems of sets. End. End. Qed.

Therefore Φ contains every natural number. Thus $\bigcap U \in X$ for every nonempty finite subset U of X. Consequently X is closed under finite intersections. End. \Box