Chapter 1

Prime numbers

File:
[readtex arithmetic/sections/07_divisibility.ftl.tex]
[readtex arithmetic/sections/08_euclidean-division.ftl.tex]

ARITHMETIC_10_5438991513944064
Definition 1.1. Let n be a natural number. A trivial divisor of n is a divisor m of n such that $m=1$ or $m=n$.

> ARITHMETIC_10_8768240253665280

Definition 1.2. Let n be a natural number. A nontrivial divisor of n is a divisor m of n such that $m \neq 1$ and $m \neq n$.

> ARITHMETIC_10_5450464558579712

Definition 1.3. Let n be a natural number. n is prime iff $n>1$ and n has no nontrivial divisors.

Let n is compound stand for n is not prime. Let a prime number stand for a natural number that is prime.

ARITHMETIC_10_3834705971511296
Definition 1.4. \mathbb{P} is the class of all prime numbers.

ARITHMETIC_10_8507257891323904
Proposition 1.5. \mathbb{P} is a set.

Definition 1.6. Let n be a natural number. n is composite iff $n>1$ and n has a nontrivial divisor.

Proposition 1.7. Let n be a natural number such that $n>1$. Then n is prime iff every divisor of n is a trivial divisor of n.

> ARITHMETIC_10_3685624758403072

Proposition 1.8. 2, 3, 5 and 7 are prime.
Proof. Let us show that 2 is prime. Let k be a divisor of 2 . Then $0<k \leq 2$. Hence $k=1$ or $k=2$. Thus k is a trivial divisor of 2 . End.

Let us show that 3 is prime. Let k be a divisor of 3 . Then $0<k \leq 3$. Hence $k=1$ or $k=2$ or $k=3$. 2 does not divide 3 . Therefore $k=1$ or $k=3$. Thus k is a trivial divisor of 3 . End.

Let us show that 5 is prime. Let k be a divisor of 5 . Then $0<k \leq 5$. Hence $k=1$ or $k=2$ or $k=3$ or $k=4$ or $k=5$. 2 does not divide 5 . 3 does not divide 5 . Indeed $3 \cdot m \neq 5$ for all $m \in \mathbb{N}$ such that $m \leq 5$. Indeed $3 \cdot 0,3 \cdot 1,3 \cdot 2,3 \cdot 3,3 \cdot 4,3 \cdot 5 \neq 5$. 4 does not divide 5 . Therefore $k=1$ or $k=5$. Thus k is a trivial divisor of 5 . End.
Let us show that 7 is prime. Let k be a divisor of 7 . Then $0<k \leq 7$. Hence $k=1$ or $k=2$ or $k=3$ or $k=4$ or $k=5$ or $k=6$ or $k=7$. 2 does not divide 7. 3 does not divide 7 . Indeed $3 \cdot m \neq 7$ for all $m \in \mathbb{N}$ such that $m \leq 7$. Indeed $3 \cdot 0,3 \cdot 1,3 \cdot 2,3 \cdot 3,3 \cdot 4,3 \cdot 5,3 \cdot 6,3 \cdot 7 \neq 7$. 4 does not divide 7 . 5 does not divide 7 . Indeed $5 \cdot m \neq 7$ for all $m \in \mathbb{N}$ such that $m \leq 7$. Indeed $5 \cdot 0,5 \cdot 1,5 \cdot 2,5 \cdot 3,5 \cdot 4,5 \cdot 5,5 \cdot 6,5 \cdot 7 \neq 7$. 6 does not divide 7 . Therefore $k=1$ or $k=7$. Thus k is a trivial divisor of 7. End.

ARITHMETIC_10_2539250413207552
Proposition 1.9. 4, 6, 8 and 9 are compound.
Proof. $4=2 \cdot 2$. Thus 4 is compound.
$6=2 \cdot 3$. Thus 6 is compound.
$8=2 \cdot 4$. Thus 8 is compound.
$9=3 \cdot 3$. Thus 9 is compound.

Proposition 1.10. Let n be a natural number such that $n>1$. Then n has a prime divisor.

Proof. Define $\Phi=\left\{n^{\prime} \in \mathbb{N} \mid\right.$ if $n^{\prime}>1$ then n^{\prime} has a prime divisor $\}$.
Let us show that for every $n^{\prime} \in \mathbb{N}$ if Φ contains all predecessors of n^{\prime} then Φ contains n^{\prime}. Let $n^{\prime} \in \mathbb{N}$. Assume that Φ contains all predecessors of n^{\prime}. We have $n^{\prime}=0$ or $n^{\prime}=1$ or n^{\prime} is prime or n^{\prime} is composite.
Case $n^{\prime}=0$ or $n^{\prime}=1$. Trivial.
Case n^{\prime} is prime. Obvious.
Case n^{\prime} is composite. Take a nontrivial divisor m of n^{\prime}. Then $1<m<n^{\prime}$. m is contained in Φ. Hence we can take a prime divisor p of m. Then we have $p|m| n^{\prime}$. Thus $p \mid n^{\prime}$. Therefore p is a prime divisor of n^{\prime}. End. End.
[prover vampire] Thus every natural number belongs to Φ (by ??).

ARITHMETIC_10_463197419077632
Definition 1.11. Let n, m be natural numbers. n and m are coprime iff for all nonzero natural numbers k such that $k \mid n$ and $k \mid m$ we have $k=1$.

Let n and m are relatively prime stand for n and m are coprime. Let n and m are mutually prime stand for n and m are coprime. Let n is prime to m stand for n and m are coprime.

Proposition 1.12. Let n, m be natural numbers. n and m are coprime iff n and m have no common prime divisor.

Proof. Case n and m are coprime. Let p be a prime number such that $p \mid n$ and $p \mid m$. Then p is nonzero and $p \neq 1$. Contradiction. End.

Case n and m have no common prime divisor. Assume that n and m are not coprime. Let k be a nonzero natural number such that $k \mid n$ and $k \mid m$. Assume that $k \neq$ 1. Consider a prime divisor p of k. Then $p|k| n, m$. Hence $p \mid n$ and $p \mid m$. Contradiction. End.

ARITHMETIC_10_7212152851005440

Proposition 1.13. Let n, m be natural numbers and p be a prime number. If p does not divide n then p and n are coprime.

Proof. Assume $p \nmid n$. Suppose that p and n are not coprime. Take a nonzero natural number k such that $k \mid p$ and $k \mid n$. Then $k=p$. Hence $p \mid n$. Contradiction.

ARITHMETIC_10_8313676557713408
Proposition 1.14. Let n, m be natural numbers and p be a prime number. Then

$$
p \mid n \cdot m \quad \text { implies } \quad(p \mid n \text { or } p \mid m) .
$$

Proof. Assume $p \mid n \cdot m$.
Case $p \mid n$. Trivial.
Case $p \nmid n$. Define $\Phi=\{k \in \mathbb{N} \mid k \neq 0$ and $p \mid k \cdot m\}$. Then $p \in \Phi$ and $n \in \Phi$. Hence Φ contains some natural number. Thus we can take a least element a of Φ regarding <.
Let us show that a divides all elements of Φ. Let $k \in \Phi$. Take natural numbers q, r such that $k=(a \cdot q)+r$ and $r<a$ (by ??). Indeed a is nonzero. Then $k \cdot m=((q \cdot a)+r) \cdot m=((q \cdot a) \cdot m)+(r \cdot m)$. We have $p \mid k \cdot m$. Hence $p \mid((q \cdot a) \cdot m)+(r \cdot m)$.
We can show that $p \mid r \cdot m$. We have $p \mid a \cdot m$. Hence $p \mid(q \cdot a) \cdot m$. Indeed $((q \cdot a) \cdot m)=q \cdot(a \cdot m)$. Take $A=(q \cdot a) \cdot m$ and $B=r \cdot m$. Then $p \mid A+B$ and $p \mid A$. Thus $p \mid B$ (by ??). Indeed p, A and B are natural numbers. Consequently $p \mid r \cdot m$. End.
Therefore $r=0$. Indeed if $r \neq 0$ then r is an element of Φ that is less than a. Hence
$k=q \cdot a$. Thus a divides k. End.
Then we have $a \mid p$ and $a \mid n$. Hence $a=p$ or $a=1$. Thus $a=1$. Indeed if $a=p$ then $p \mid n$. Then $1 \in \Phi$. Therefore $p \mid 1 \cdot m=m$. End.

