Chapter 1

Euclidean division

File:

arithmetic/sections/08_euclidean-division.ftl.tex

[readtex arithmetic/sections/06_multiplication.ftl.tex]

1.1 Quotients and remainders

ARITHMETIC_08_7743986617810944

Theorem 1.1. Let n, m be natural numbers such that $m \neq 0$. Then there exist natural numbers q, r such that

$$n = (m \cdot q) + r$$

and r < m.

Proof. Define $\Phi = \{n' \in \mathbb{N} \mid \text{there exist natural numbers } q, r \text{ such that } r < m \text{ and } n' = (m \cdot q) + r\}.$

- (1) Φ contains 0. Proof. Take q=0 and r=0. Then r < m and $0=(m \cdot q) + r$. Hence $0 \in \Phi$. Qed.
- (2) For all $n' \in \Phi$ we have $n' + 1 \in \Phi$. Proof. Let $n' \in \Phi$.

Let us show that there exist natural numbers q, r such that r < m and $n' + 1 = (m \cdot q) + r$. Take natural numbers q', r' such that r' < m and $n' = (m \cdot q') + r'$. We have r' + 1 < m or r' + 1 = m.

Case r'+1 < m. Take q = q'+0 and r = r'+1. Then r < m and $n'+1 = ((q' \cdot m) + r') + 1 = (q' \cdot m) + (r'+1) = (q \cdot m) + r$. End.

Case r'+1 = m. Take q = q'+1 and r = 0. Then r < m and $n'+1 = ((q' \cdot m) + r') + 1 = (q' \cdot m) + (r'+1) = (q' \cdot m) + m = (q' \cdot m) + (1 \cdot m) = (q'+1) \cdot m = (q \cdot m) + r$. End. End.

Hence $n' + 1 \in \Phi$. Qed.

Then Φ contains every natural number. Thus there exist natural numbers q, r such that $n = (m \cdot q) + r$ and r < m.

ARITHMETIC_08_7801804481888256

2

Proposition 1.2. Let n, m be natural numbers such that $m \neq 0$. Let q, r be natural numbers such that $(m \cdot q) + r = n$ and r < m. Let q', r' be natural numbers such that $(m \cdot q') + r' = n$ and r' < m. Then q = q' and r = r'.

Proof. We have $(m \cdot q) + r = (m \cdot q') + r'$.

Case $q \geq q'$ and $r \geq r'$. (1) $((m \cdot q) + r) - r' = (m \cdot q) + (r - r')$ (by ??). (2) $((m \cdot q') + r') - r' = (m \cdot q') + (r' - r') = m \cdot q'$. Hence $(m \cdot q) + (r - r') = m \cdot q'$. Thus $((m \cdot q) - (m \cdot q')) + (r - r') = 0$. Consequently $(m \cdot q) - (m \cdot q') = 0$ and r - r' = 0. If $(m \cdot q) - (m \cdot q') = 0$ then q - q' = 0. Therefore q - q' = 0 and r - r' = 0. Thus we have q = q' and r = r'. End.

Case $q \ge q'$ and r < r'. Take q'' = q - q' and r'' = r' - r. Then $(m \cdot (q' + q'')) + r = (m \cdot q') + (r + r'')$. We have $(m \cdot q') + (r + r'') = (m \cdot q') + (r'' + r) = ((m \cdot q') + r'') + r$. Hence $(m \cdot (q' + q'')) + r = ((m \cdot q') + r'') + r$. Thus $m \cdot (q' + q'') = (m \cdot q') + r''$ (by ??). We have $m \cdot (q' + q'') = (m \cdot q') + (m \cdot q'')$. Hence $(m \cdot q') + (m \cdot q'') = (m \cdot q') + r''$. [prover vampire] Thus $m \cdot q'' = r''$ (by ??). Then we have $m \cdot q'' < m \cdot 1$. Indeed $m \cdot q'' = r'' \le r' < m = m \cdot 1$. Therefore q'' < 1 (by ??). Consequently q - q' = q'' = 0. Hence q = q'. Thus $(m \cdot q) + r = (m \cdot q) + r'$. Therefore r = r'. End.

Case q < q' and $r \ge r'$. Take q'' = q' - q and r'' = r - r'. Then $(m \cdot q) + (r' + r'') = (m \cdot (q + q'')) + r'$. We have $(m \cdot q) + (r' + r'') = (m \cdot q) + (r'' + r') = ((m \cdot q) + r'') + r'$. Hence $((m \cdot q) + r'') + r' = (m \cdot (q + q'')) + r'$. Thus $(m \cdot q) + r'' = m \cdot (q + q'')$ (by ??). We have $m \cdot (q + q'') = (m \cdot q) + (m \cdot q'')$. Hence $(m \cdot q) + r'' = (m \cdot q) + (m \cdot q'')$. [prover vampire] Thus $r'' = m \cdot q''$. Then we have $m \cdot q'' < m \cdot 1$. Indeed $m \cdot q'' = r'' \le r < m = m \cdot 1$. Therefore q'' < 1 (by ??). Consequently q' - q = q'' = 0. Hence q' = q. Thus $(m \cdot q) + r = (m \cdot q) + r'$. Therefore r = r'. End.

Case q < q' and r < r'. (1) $((m \cdot q') + r') - r = (m \cdot q') + (r' - r)$ (by ??). (2) $((m \cdot q) + r) - r = (m \cdot q) + (r - r) = m \cdot q$. Hence $(m \cdot q') + (r' - r) = m \cdot q$. Thus $((m \cdot q') - (m \cdot q)) + (r' - r) = 0$. Consequently $(m \cdot q') - (m \cdot q) = 0$ and r' - r = 0. If $(m \cdot q') - (m \cdot q) = 0$ then q' - q = 0. Therefore q' - q = 0 and r' - r = 0. Thus we have q' = q and r' = r. End.

ARITHMETIC_08_8621463798022144

Definition 1.3. Let n, m be natural numbers such that $m \neq 0$. $n \operatorname{div} m$ is the natural number q such that $n = (m \cdot q) + r$ for some natural number r that is less than m.

Let the quotient of n over m stand for n div m.

ARITHMETIC_08_3560980160184320

Definition 1.4. Let n, m be natural numbers such that $m \neq 0$. $n \mod m$ is the natural number r such that r < m and there exists a natural number q such that $n = (m \cdot q) + r$.

Let the remainder of n over m stand for $n \mod m$.

1.2 Modular arithmetic

ARITHMETIC_08_5448561831444480

Definition 1.5. Let n, m, k be natural numbers such that $k \neq 0$. $n \equiv m \pmod{k}$ iff $n \mod k = m \mod k$.

Let n and m are congruent modulo k stand for $n \equiv m \pmod{k}$.

ARITHMETIC_08_3818318544764928

Proposition 1.6. Let n, k be natural numbers such that $k \neq 0$. Then

 $n \equiv n \pmod{k}$.

Proof. We have $n \mod k = n \mod k$. Hence $n \equiv n \pmod k$.

ARITHMETIC_08_2337210737098752

Proposition 1.7. Let n, m, k be natural numbers such that $k \neq 0$. Then

 $n \equiv m \pmod{k}$ implies $m \equiv n \pmod{k}$.

Proof. Assume $n \equiv m \pmod{k}$. Then $n \mod k = m \mod k$. Hence $m \mod k = m \mod k$.

4

 $n \mod k$. Thus $m \equiv n \pmod{k}$.

ARITHMETIC_08_7464329746055168

Proposition 1.8. Let n, m, l, k be natural numbers such that $k \neq 0$. Then

 $(n \equiv m \pmod{k})$ and $m \equiv l \pmod{k}$ implies $n \equiv l \pmod{k}$.

Proof. Assume $n \equiv m \pmod{k}$ and $m \equiv l \pmod{k}$. Then $n \mod k = m \mod k$ and $m \mod k = l \mod k$. Hence $n \mod k = l \mod k$. Thus $n \equiv l \pmod{k}$.

ARITHMETIC_08_2034122983735296

Proposition 1.9. Let n, m, k be natural numbers such that $k \neq 0$. Assume $n \geq m$. Then $n \equiv m \pmod{k}$ iff $n = (k \cdot x) + m$ for some natural number x.

Proof. Case $n \equiv m \pmod{k}$. Then $n \mod k = m \mod k$. Take a natural number r such that r < k and $n \mod k = r = m \mod k$. Take a nonzero natural number l such that k = r + l. Consider natural numbers q, q' such that $n = (q \cdot k) + r$ and $m = (q' \cdot k) + r$.

Then $q \geq q'$.

Proof. Assume the contrary. Then q < q'. Hence $q \cdot k < q' \cdot k$. Thus $(q \cdot k) + r < (q' \cdot k) + r$ (by $\ref{eq:proof.}$). Indeed $q \cdot k$ and $q' \cdot k$ are natural numbers. Therefore n < m. Contradiction. Qed.

Take a natural number x such that q = q' + x.

Let us show that $n = (k \cdot x) + m$. We have

$$(k \cdot x) + m$$

$$= (k \cdot x) + ((q' \cdot k) + r)$$

$$= ((k \cdot x) + (q' \cdot k)) + r$$

$$= ((k \cdot x) + (k \cdot q')) + r$$

$$= (k \cdot (q' + x)) + r$$

$$= (k \cdot q) + r$$

$$= n.$$

End. End.

Case $n = (k \cdot x) + m$ for some natural number x. Consider a natural number x such that $n = (k \cdot x) + m$. Take natural numbers r, r' such that $n \mod k = r$ and

 $m \mod k = r'$. Then r, r' < k. Take natural numbers q, q' such that $n = (k \cdot q) + r$ and $m = (k \cdot q') + r'$. Then

$$(k \cdot q) + r$$

$$= n$$

$$= (k \cdot x) + m$$

$$= (k \cdot x) + ((k \cdot q') + r')$$

$$= ((k \cdot x) + (k \cdot q')) + r'$$

$$= (k \cdot (x + q')) + r'.$$

Hence r = r'. Thus $n \mod k = m \mod k$. Therefore $n \equiv m \pmod k$. End.

ARITHMETIC_08_2988318228742144

Proposition 1.10. Let n, m, k, k' be natural numbers such that $k, k' \neq 0$. Then

 $n \equiv m \pmod{k \cdot k'}$ implies $n \equiv m \pmod{k}$.

Proof. Assume $n \equiv m \pmod{k \cdot k'}$.

Case $n \ge m$. We can take a natural number x such that $n = ((k \cdot k') \cdot x) + m$. Then $n = (k \cdot (k' \cdot x)) + m$. Hence $n \equiv m \pmod{k}$. End.

Case $m \ge n$. We have $m \equiv n \pmod{k \cdot k'}$. Hence we can take a natural number x such that $m = ((k \cdot k') \cdot x) + n$. Then $m = (k \cdot (k' \cdot x)) + n$. Thus $m \equiv n \pmod{k}$. Therefore $n \equiv m \pmod{k}$. End.

ARITHMETIC_08_5895145169879040

Corollary 1.11. Let n, m, k, k' be natural numbers such that $k, k' \neq 0$. Then

 $n \equiv m \pmod{k \cdot k'}$ implies $n \equiv m \pmod{k'}$.

Proof. Assume $n \equiv m \pmod{k \cdot k'}$. Then $n \equiv m \pmod{k' \cdot k}$. Hence $n \equiv m \pmod{k'}$.

ARITHMETIC_08_5984712287846400

Proposition 1.12. Let n, k be natural numbers such that $k \neq 0$. Then

$$n + k \equiv n \pmod{k}$$
.

Proof. Take $r = n \mod k$ and $r' = (n + k) \mod k$. Consider a $q \in \mathbb{N}$ such that

```
n=(k\cdot q)+r and r< k. Consider a q'\in \mathbb{N} such that n+k=(k\cdot q')+r' and r'< k. Then (k\cdot q')+r'=n+k=((k\cdot q)+r)+k=(k+(k\cdot q))+r=(k\cdot (q+1))+r. Hence r=r'. Consequently n \bmod k=(n+k)\bmod k. Thus n+k\equiv n \pmod k. \square
```