Chapter 1

Ordering

File:
[readtex foundations/sections/11_binary-relations.ftl.tex]
[readtex arithmetic/sections/03_addition.ftl.tex]

1.1 Definitions and immediate consequences

ARITHMETIC_04_1926295512416256

Definition 1.1. Let n, m be natural numbers. $n<m$ iff there exists a nonzero natural number k such that $m=n+k$.

Let n is less than m stand for $n<m$. Let $n>m$ stand for $m<n$. Let n is greater than m stand for $n>m$. Let $n \nless m$ stand for n is not less than m. Let $n \ngtr m$ stand for n is not greater than m.

> ARITHMETIC_04_3668680374222848

Definition 1.2. Let n be a natural number. $\mathbb{N}_{<n}=\{k \in \mathbb{N} \mid k<n\}$.

> ARITHMETIC_04_3670333934534656

Definition 1.3. Let n be a natural number. $\mathbb{N}_{>n}=\{k \in \mathbb{N} \mid k>n\}$.

Definition 1.4. Let n be a natural number. n is positive iff $n>0$.

ARITHMETIC_04_4593841531256832
Definition 1.5. Let n, m be natural numbers. $n \leq m$ iff there exists a natural number k such that $m=n+k$.

Let n is less than or equal to m stand for $n \leq m$. Let $n \geq m$ stand for $m \leq n$. Let n is greater than or equal to m stand for $n \geq m$. Let $n \not \leq m$ stand for n is not less than or equal to m. Let $n \nsupseteq m$ stand for n is not greater than or equal to m.

> ARITHMETIC_04_72501526790144

Definition 1.6. Let n be a natural number. $\mathbb{N}_{\leq n}=\{k \in \mathbb{N} \mid k \leq n\}$.

> ARITHMETIC_04_1706933421604864

Definition 1.7. Let n be a natural number. $\mathbb{N}_{\geq n}=\{k \in \mathbb{N} \mid k \geq n\}$.

> ARITHMETIC_04_5385415374667776

Proposition 1.8. Let n, m be natural numbers. $n \leq m$ iff $n<m$ or $n=m$.

Proof. Case $n \leq m$. Take a natural number k such that $m=n+k$. If $k=0$ then $n=m$. If $k \neq 0$ then $n<m$. End.
Case $n<m$ or $n=m$. If $n<m$ then there is a positive natural number k such that $m=n+k$. If $n=m$ then $m=n+0$. Thus if $n<m$ then there is a natural number k such that $m=n+k$. End.

Definition 1.9. Let n be a natural number. A predecessor of n is a natural number that is less than n.

ARITHMETIC_04_8147686326796288
Definition 1.10. Let n be a natural number. A successor of n is a natural number that is greater than n.

ARITHMETIC_04_4826285599621120
Proposition 1.11. Let n be a natural number. Then n is positive iff n is nonzero.

Proof. Case n is positive. Take a positive natural number k such that $n=0+k=k$. Then we have $n \neq 0$. End.

Case n is nonzero. Take a natural number k such that $n=k+1$. Then $n=0+(k+1)$. $k+1$ is positive. Hence $0<n$. End.

1.2 Basic properties

Proposition 1.12. Let n be a natural number. Then

$$
n \nless n .
$$

Proof. Assume the contrary. Then we can take a positive natural number k such that $n=n+k$. Then we have $0=k$. Contradiction.

> ARITHMETIC_04_8266284905005056

Proposition 1.13. Let n, m be natural numbers. Then

$$
n<m \quad \text { implies } \quad n \neq m
$$

Proof. Assume $n<m$. Take a positive natural number k such that $m=n+k$. If $n=m$ then $k=0$. Hence $n \neq m$.

Proposition 1.14. Let n, m be natural numbers. Then

$$
(n \leq m \text { and } m \leq n) \quad \text { implies } \quad n=m .
$$

Proof. Assume $n \leq m$ and $m \leq n$. Take natural numbers k, l such that $m=n+k$ and $n=m+l$. Then $m=(m+l)+k=m+(l+k)$. Hence $l+k=0$. Thus $l=0=k$. Indeed if $l \neq 0$ or $k \neq 0$ then $l+k$ is the direct successor of some natural number. Therefore $m=n$.

> ARITHMETIC_04_6413905244979200

Proposition 1.15. Let n, m, k be natural numbers. Then

$$
n<m<k \quad \text { implies } \quad n<k
$$

Proof. Assume $n<m<k$. Take a positive natural number a such that $m=n+a$. Take a positive natural number b such that $k=m+b$. Then $k=(n+a)+b=n+(a+b)$. $a+b$ is positive. Hence $n<k$.

Proposition 1.16. Let n, m, k be natural numbers. Then

$$
n \leq m \leq k \quad \text { implies } \quad n \leq k
$$

Proof. Assume $n \leq m \leq k$. Case $n=m=k$. Obvious. Case $n=m<k$. Obvious. Case $n<m=k$. Obvious. Case $n<m<k$. Obvious.
ARITHMETIC_04_5098403656630272

Proposition 1.17. Let n, m, k be natural numbers. Then

$$
n \leq m<k \quad \text { implies } \quad n<k
$$

Proof. Assume $n \leq m<k$. If $n=m$ then $n<k$. If $n<m$ then $n<k$.
ARITHMETIC_04_4809599527944192

Proposition 1.18. Let n, m, k be natural numbers. Then

$$
n<m \leq k \quad \text { implies } \quad n<k
$$

Proof. Assume $n<m \leq k$. If $m=k$ then $n<k$. If $m<k$ then $n<k$.

ARITHMETIC_04_8584998051381248
Proposition 1.19. Let n, m be natural numbers. Then

$$
n<m \text { implies } n+1 \leq m .
$$

Proof. Assume $n<m$. Take a positive natural number k such that $m=n+k$.
Case $k=1$. Then $m=n+1$. Hence $n+1 \leq m$. End.
Case $k \neq 1$. Then we can take a natural number l such that $k=l+1$. Then $m=n+(l+1)=(n+l)+1=(n+1)+l . l$ is positive. Thus $n+1<m$. End.

ARITHMETIC_04_8201937860165632

Proposition 1.20. Let n, m be natural numbers. Then $n<m$ or $n=m$ or $n>m$.

Proof. Define $\Phi=\left\{m^{\prime} \in \mathbb{N} \mid n<m^{\prime}\right.$ or $n=m^{\prime}$ or $\left.n>m^{\prime}\right\}$.
(1) Φ contains 0 .
(2) For all $m^{\prime} \in \Phi$ we have $m^{\prime}+1 \in \Phi$.

Proof. Let $m^{\prime} \in \Phi$.
Case $n<m^{\prime}$. Obvious.
Case $n=m^{\prime}$. Obvious.
Case $n>m^{\prime}$. Take a positive natural number k such that $n=m^{\prime}+k$.
Case $k=1$. Obvious.
Case $k \neq 1$. Take a natural number l such that $n=\left(m^{\prime}+1\right)+l$. Hence $n>m^{\prime}+1$. Indeed l is positive. End. Qed. Qed.

Thus every natural number is contained in Φ. Therefore $n<m$ or $n=m$ or $n>m$.

> ARITHMETIC_04_6991525988794368

Proposition 1.21. Let n, m be natural numbers. Then

$$
n \nless m \quad \text { iff } \quad n \geq m .
$$

Proof. Case $n \nless m$. Then $n=m$ or $n>m$. Hence $n \geq m$. End.

Case $n \geq m$. Assume $n<m$. Then $n \leq m$. Hence $n=m$. Contradiction. End.

1.3 Ordering and successors

ARITHMETIC_04_7006203091615744

Proposition 1.22. Let n, m be natural numbers. Then

$$
n<m \leq n+1 \quad \text { implies } \quad m=n+1 .
$$

Proof. Assume $n<m \leq n+1$. Take a positive natural number k such that $m=n+k$. Take a natural number l such that $n+1=m+l$. Then $n+1=m+l=(n+k)+l=$ $n+(k+l)$. Hence $k+l=1$.
We have $l=0$.
Proof. Assume the contrary. Then $k, l>0$.
Case $k, l=1$. Then $k+l=2 \neq 1$. Contradiction. End.
Case $k=1$ andl $\neq 1$. Then $l>1$. Hence $k+l>1+l>1$. Contradiction. End.
Case $k \neq 1$ andl $=1$. Then $k>1$. Hence $k+l>k+1>1$. Contradiction. End.
Case $k, l \neq 1$. Take natural numbers a, b such that $k=a+1$ and $l=b+1$. Indeed $k, l \neq 0$. Hence $k=a+1$ and $l=b+1$. Thus $k, l>1$. Indeed a, b are positive. End. Qed.
Then we have $n+1=m+l=m+0=m$.

> ARITHMETIC_04_8792330561650688

Proposition 1.23. Let n, m be natural numbers. Then

$$
n \leq m<n+1 \quad \text { implies } \quad n=m .
$$

Proof. Assume $n \leq m<n+1$.
Case $n=m$. Obvious.
Case $n<m$. Then $n<m \leq n+1$. Hence $n=m$. End.

> ARITHMETIC_04_1802826644717568

Corollary 1.24. Let n be a natural number. There is no natural number m such that $n<m<n+1$.

Proof. Assume the contrary. Take a natural number m such that $n<m<n+1$. Then $n<m \leq n+1$ and $n \leq m<n+1$. Hence $m=n+1$ and $m=n$. Hence $n=n+1$. Contradiction.

ARITHMETIC_04_990407185924096
Proposition 1.25. Let n be a natural number. Then

$$
n+1 \geq 1 .
$$

Proof. Case $n=0$. Obvious.
Case $n \neq 0$. Then $n>0$. Hence $n+1>0+1=1$. End.

1.4 Ordering and addition

Proposition 1.26. Let n, m, k be natural numbers. Then

$$
n<m \quad \text { iff } \quad n+k<m+k .
$$

Proof. Case $n<m$. Take a positive natural number l such that $m=n+l$. Then $m+k=(n+l)+k=(n+k)+l$. Hence $n+k<m+k$. End.
Case $n+k<m+k$. Take a positive natural number l such that $m+k=(n+k)+l$. $(n+k)+l=n+(k+l)=n+(l+k)=(n+l)+k$. Hence $m+k=(n+l)+k$. Thus $m=n+l$. Therefore $n<m$. End.
ARITHMETIC_04_1901366129721344

Corollary 1.27. Let n, m, k be natural numbers. Then

$$
n<m \quad \text { iff } \quad k+n<k+m .
$$

Proof. We have $k+n=n+k$ and $k+m=m+k$. Hence $k+n<k+m$ iff $n+k<m+k$.

Corollary 1.28. Let n, m, k be natural numbers. Then

$$
n \leq m \quad \text { iff } \quad k+n \leq k+m .
$$

ARITHMETIC_04_5512590832697344
Corollary 1.29. Let n, m, k be natural numbers. Then

$$
n \leq m \quad \text { iff } \quad n+k \leq m+k .
$$

1.5 The natural numbers are well-ordered

> ARITHMETIC_04_4059354166722560

Definition 1.30.

$$
<=\{(n, m) \mid n \text { and } m \text { are natural numbers such that } n<m\} \text {. }
$$

Proposition 1.31. Let A be a nonempty subclass of \mathbb{N}. Let n, m be least elements of A regarding $<$. Then $n=m$.

Proof. Assume $n \neq m$. Then $n<m$ or $m<n$. If $n<m$ then $n \notin A$. If $m<n$ then $m \notin A$. Hence $n, m \notin A$. Contradiction. Therefore $n=m$.
ARITHMETIC_04_272317502455808

Proposition 1.32. Let A be a nonempty subclass of \mathbb{N}. Then A has a least element regarding $<$.

Proof. Assume the contrary.
Let us show that for each $n \in A$ there exists a $m \in A$ such that $m<n$. Let $n \in A$. A has no least element regarding $<$. Assume that there exists no $m \in A$ such that $m<n$. Then $n \leq m$ for all $m \in A$. Hence n is a least element of A regarding $<$. Contradiction. End.
Define $\Phi=\{n \in \mathbb{N} \mid n$ is less than any element of $A\}$.
(1) Φ contains 0 .

Proof. $0 \notin A$. Hence 0 is less than every element of A. Thus $0 \in \Phi$. Qed.
(2) For all $n \in \Phi$ we have $n+1 \in \Phi$.

Proof. Let $n \in \Phi$. Then n is less than any element of A. Assume that Φ does not contain $n+1$. Then we can take an $m \in A$ such that $n+1 \nless m$. Then $n<m \leq n+1$. Hence $m=n+1$. Thus $n+1$ is a least element of A regarding $<$. Contradiction. Qed.
Then Φ contains every natural number. Therefore every natural number is less than any element of A. Consequently A is empty. Contradiction.

ARITHMETIC_04_4280275783647232
Corollary 1.33 . < is a wellorder on every nonempty subclass of \mathbb{N}.
Proof. Let A be a nonempty subclass of \mathbb{N}. For any $n, m \in A$ we have $(n, m) \in<$ iff $n<m$.
(1) < is irreflexive on A. Indeed for any $n \in A$ we have $n \nless n$.
(2) < is transitive on A. Indeed for any $n, m, k \in A$ if $n<m$ and $m<k$ then $n<k$.
(3) < is connected on A. Indeed for any distinct $n, m \in A$ we have $n<m$ or $m<n$.

Hence < is a strict linear order on A. < is wellfounded on A. Indeed every nonempty subclass of A has a least element regarding $<$. Thus $<$ is a wellorder on A.

1.6 Induction revisited

> ARITHMETIC_04_3609801697263616

Theorem 1.34. Let A be a class. Assume for all $n \in \mathbb{N}$ if A contains all predecessors of n then A contains n. Then A contains every natural number.

Proof. Assume the contrary. Take a natural number n that is not contained in A. Then n is contained in $\mathbb{N} \backslash A$. Hence we can take a least element m of $\mathbb{N} \backslash A$ regarding $<$. Then $\mathbb{N} \backslash A$ does not contain any predecessor of m. Therefore A contains all predecessors of m. Consequently A contains m. Contradiction.

Theorem 1.35. Let A be a class. Let k be a natural number such that $k \in A$. Assume that for all $n \in \mathbb{N}_{\geq k}$ if $n \in A$ then $n+1 \in A$. Then for all $n \in \mathbb{N}_{\geq k}$ we have $n \in A$.

Proof. Define $\Phi=\{n \in \mathbb{N} \mid$ if $n \geq k$ then $n \in A\}$.
(1) Φ contains 0 . Indeed if $0 \geq k$ then $0=k \in A$.
(2) For all $n \in \Phi$ we have $n+1 \in \Phi$.

Proof. Let $n \in \Phi$.
Let us show that if $n+1 \geq k$ then $n+1 \in A$. Assume $n+1 \geq k$.
Case $n<k$. Then $n+1=k$. Hence $n+1 \in A$. End.
Case $n \geq k$. Then $n \in A$. Hence $n+1 \in A$. End. End.
Therefore $n+1 \in \Phi$. Qed.
Thus Φ contains every natural number. Consequently for all $n \in \mathbb{N}_{\geq k}$ we have $n \in A$.

