Chapter 1 Ordering

arithmetic/sections/04_ordering.ftl.tex

 $[{\rm readtex\ foundations/sections/11_binary-relations.ftl.tex}]$

[readtex arithmetic/sections/03_addition.ftl.tex]

1.1 Definitions and immediate consequences

ARITHMETIC_04_1926295512416256

Definition 1.1. Let n, m be natural numbers. n < m iff there exists a nonzero natural number k such that m = n + k.

Let n is less than m stand for n < m. Let n > m stand for m < n. Let n is greater than m stand for n > m. Let $n \not< m$ stand for n is not less than m. Let $n \not> m$ stand for n is not greater than m.

 $\label{eq:arithmetic_04_3668680374222848}$ Definition 1.2. Let n be a natural number. $\mathbb{N}_{< n} = \{k \in \mathbb{N} \mid k < n\}.$

File:

Definition 1.3. Let *n* be a natural number. $\mathbb{N}_{>n} = \{k \in \mathbb{N} \mid k > n\}.$

ARITHMETIC_04_7916616566177792

Definition 1.4. Let n be a natural number. n is positive iff n > 0.

ARITHMETIC_04_4593841531256832

Definition 1.5. Let n, m be natural numbers. $n \leq m$ iff there exists a natural number k such that m = n + k.

Let n is less than or equal to m stand for $n \leq m$. Let $n \geq m$ stand for $m \leq n$. Let n is greater than or equal to m stand for $n \geq m$. Let $n \nleq m$ stand for n is not less than or equal to m. Let $n \ngeq m$ stand for n is not greater than or equal to m.

 $\label{eq:arithmetic_04_72501526790144}$ Definition 1.6. Let n be a natural number. $\mathbb{N}_{\leq n} = \{k \in \mathbb{N} \mid k \leq n\}.$

ARITHMETIC_04_1706933421604864 Definition 1.7. Let n be a natural number. $\mathbb{N}_{\geq n} = \{k \in \mathbb{N} \mid k \geq n\}.$

ARITHMETIC_04_5385415374667776

Proposition 1.8. Let n, m be natural numbers. $n \le m$ iff n < m or n = m.

Proof. Case $n \le m$. Take a natural number k such that m = n + k. If k = 0 then n = m. If $k \ne 0$ then n < m. End.

Case n < m or n = m. If n < m then there is a positive natural number k such that m = n + k. If n = m then m = n + 0. Thus if n < m then there is a natural number k such that m = n + k. End.

Definition 1.9. Let n be a natural number. A predecessor of n is a natural number that is less than n.

ARITHMETIC_04_8147686326796288

Definition 1.10. Let n be a natural number. A successor of n is a natural number that is greater than n.

ARITHMETIC_04_4826285599621120

Proposition 1.11. Let n be a natural number. Then n is positive iff n is nonzero.

Proof. Case n is positive. Take a positive natural number k such that n = 0 + k = k. Then we have $n \neq 0$. End.

Case n is nonzero. Take a natural number k such that n = k+1. Then n = 0+(k+1). k+1 is positive. Hence 0 < n. End.

1.2 Basic properties

ARITHMETIC_04_1037693395927040

Proposition 1.12. Let n be a natural number. Then

 $n \not< n.$

Proof. Assume the contrary. Then we can take a positive natural number k such that n = n + k. Then we have 0 = k. Contradiction.

ARITHMETIC_04_8266284905005056

Proposition 1.13. Let n, m be natural numbers. Then

n < m implies $n \neq m$.

Proof. Assume n < m. Take a positive natural number k such that m = n + k. If n = m then k = 0. Hence $n \neq m$.

Proposition 1.14. Let n, m be natural numbers. Then

 $(n \le m \text{ and } m \le n) \text{ implies } n = m.$

Proof. Assume $n \leq m$ and $m \leq n$. Take natural numbers k, l such that m = n + k and n = m + l. Then m = (m+l) + k = m + (l+k). Hence l + k = 0. Thus l = 0 = k. Indeed if $l \neq 0$ or $k \neq 0$ then l + k is the direct successor of some natural number. Therefore m = n.

ARITHMETIC_04_6413905244979200

Proposition 1.15. Let n, m, k be natural numbers. Then

n < m < k implies n < k.

Proof. Assume n < m < k. Take a positive natural number a such that m = n + a. Take a positive natural number b such that k = m + b. Then k = (n+a)+b = n+(a+b). a + b is positive. Hence n < k.

ARITHMETIC_04_5480385953660928

Proposition 1.16. Let n, m, k be natural numbers. Then

 $n \le m \le k$ implies $n \le k$.

Proof. Assume $n \le m \le k$. Case n = m = k. Obvious. Case n = m < k. Obvious. Case n < m < k. Obvious. Case n < m < k. Obvious.

ARITHMETIC_04_5098403656630272

Proposition 1.17. Let n, m, k be natural numbers. Then

 $n \le m < k$ implies n < k.

Proof. Assume $n \le m < k$. If n = m then n < k. If n < m then n < k.

ARITHMETIC_04_4809599527944192

Proposition 1.18. Let n, m, k be natural numbers. Then

 $n < m \le k$ implies n < k.

Proof. Assume $n < m \le k$. If m = k then n < k. If m < k then n < k.

ARITHMETIC_04_8584998051381248

Proposition 1.19. Let n, m be natural numbers. Then

n < m implies $n + 1 \le m$.

Proof. Assume n < m. Take a positive natural number k such that m = n + k.

Case k = 1. Then m = n + 1. Hence $n + 1 \le m$. End.

Case $k \neq 1$. Then we can take a natural number l such that k = l + 1. Then m = n + (l + 1) = (n + l) + 1 = (n + 1) + l. l is positive. Thus n + 1 < m. End. \Box

ARITHMETIC_04_8201937860165632

Proposition 1.20. Let n, m be natural numbers. Then n < m or n = m or n > m.

Proof. Define $\Phi = \{m' \in \mathbb{N} \mid n < m' \text{ or } n = m' \text{ or } n > m'\}.$

(1) Φ contains 0.

(2) For all $m' \in \Phi$ we have $m' + 1 \in \Phi$. Proof. Let $m' \in \Phi$.

Case n < m'. Obvious.

Case n = m'. Obvious.

Case n > m'. Take a positive natural number k such that n = m' + k.

Case k = 1. Obvious.

Case $k \neq 1$. Take a natural number l such that n = (m'+1) + l. Hence n > m'+1. Indeed l is positive. End. Qed. Qed.

Thus every natural number is contained in Φ . Therefore n < m or n = m or n > m.

ARITHMETIC_04_6991525988794368

Proposition 1.21. Let n, m be natural numbers. Then

 $n \not < m \quad \text{iff} \quad n \geq m.$

Proof. Case $n \not\leq m$. Then n = m or n > m. Hence $n \geq m$. End.

Case $n \ge m$. Assume n < m. Then $n \le m$. Hence n = m. Contradiction. End.

1.3 Ordering and successors

ARITHMETIC_04_7006203091615744

Proposition 1.22. Let n, m be natural numbers. Then

 $n < m \le n+1$ implies m = n+1.

Proof. Assume $n < m \le n+1$. Take a positive natural number k such that m = n+k. Take a natural number l such that n+1 = m+l. Then n+1 = m+l = (n+k)+l = n + (k+l). Hence k+l = 1.

We have l = 0. Proof. Assume the contrary. Then k, l > 0.

Case k, l = 1. Then $k + l = 2 \neq 1$. Contradiction. End.

Case k = 1 and $l \neq 1$. Then l > 1. Hence k + l > 1 + l > 1. Contradiction. End.

Case $k \neq 1$ and l = 1. Then k > 1. Hence k + l > k + 1 > 1. Contradiction. End.

Case $k, l \neq 1$. Take natural numbers a, b such that k = a + 1 and l = b + 1. Indeed $k, l \neq 0$. Hence k = a + 1 and l = b + 1. Thus k, l > 1. Indeed a, b are positive. End. Qed.

Then we have n + 1 = m + l = m + 0 = m.

ARITHMETIC_04_8792330561650688

Proposition 1.23. Let n, m be natural numbers. Then

 $n \le m < n+1$ implies n = m.

Proof. Assume $n \leq m < n + 1$.

Case n = m. Obvious.

Case n < m. Then $n < m \le n + 1$. Hence n = m. End.

ARITHMETIC_04_1802826644717568

Corollary 1.24. Let *n* be a natural number. There is no natural number *m* such that n < m < n + 1.

Proof. Assume the contrary. Take a natural number m such that n < m < n + 1. Then $n < m \le n + 1$ and $n \le m < n + 1$. Hence m = n + 1 and m = n. Hence n = n + 1. Contradiction.

ARITHMETIC_04_990407185924096

Proposition 1.25. Let n be a natural number. Then

 $n+1 \ge 1$.

Proof. Case n = 0. Obvious.

Case $n \neq 0$. Then n > 0. Hence n + 1 > 0 + 1 = 1. End.

1.4 Ordering and addition

ARITHMETIC_04_7354062662008832

Proposition 1.26. Let n, m, k be natural numbers. Then

 $n < m \quad \text{iff} \quad n+k < m+k.$

Proof. Case n < m. Take a positive natural number l such that m = n + l. Then m + k = (n + l) + k = (n + k) + l. Hence n + k < m + k. End.

Case n + k < m + k. Take a positive natural number l such that m + k = (n + k) + l. (n + k) + l = n + (k + l) = n + (l + k) = (n + l) + k. Hence m + k = (n + l) + k. Thus m = n + l. Therefore n < m. End.

ARITHMETIC_04_1901366129721344

Corollary 1.27. Let n, m, k be natural numbers. Then

n < m iff k + n < k + m.

Proof. We have k + n = n + k and k + m = m + k. Hence k + n < k + m iff n + k < m + k.

Corollary 1.28. Let n, m, k be natural numbers. Then

 $n \le m$ iff $k+n \le k+m$.

ARITHMETIC_04_5512590832697344

Corollary 1.29. Let n, m, k be natural numbers. Then

 $n \le m$ iff $n+k \le m+k$.

1.5 The natural numbers are well-ordered

Definition 1.30.

 $< = \{(n, m) \mid n \text{ and } m \text{ are natural numbers such that } n < m\}.$

ARITHMETIC_04_5933477660721152

ARITHMETIC_04_4059354166722560

Proposition 1.31. Let A be a nonempty subclass of N. Let n, m be least elements of A regarding <. Then n = m.

Proof. Assume $n \neq m$. Then n < m or m < n. If n < m then $n \notin A$. If m < n then $m \notin A$. Hence $n, m \notin A$. Contradiction. Therefore n = m.

ARITHMETIC_04_272317502455808

Proposition 1.32. Let A be a nonempty subclass of \mathbb{N} . Then A has a least element regarding <.

Proof. Assume the contrary.

Let us show that for each $n \in A$ there exists a $m \in A$ such that m < n. Let $n \in A$. A has no least element regarding <. Assume that there exists no $m \in A$ such that m < n. Then $n \leq m$ for all $m \in A$. Hence n is a least element of A regarding <. Contradiction. End.

Define $\Phi = \{n \in \mathbb{N} \mid n \text{ is less than any element of } A\}.$

(1) Φ contains 0.

Proof. $0 \notin A$. Hence 0 is less than every element of A. Thus $0 \in \Phi$. Qed.

(2) For all $n \in \Phi$ we have $n + 1 \in \Phi$.

Proof. Let $n \in \Phi$. Then n is less than any element of A. Assume that Φ does not contain n+1. Then we can take an $m \in A$ such that $n+1 \not\leq m$. Then $n < m \leq n+1$. Hence m = n + 1. Thus n + 1 is a least element of A regarding <. Contradiction. Qed.

Then Φ contains every natural number. Therefore every natural number is less than any element of A. Consequently A is empty. Contradiction.

ARITHMETIC_04_4280275783647232

Corollary 1.33. < is a wellorder on every nonempty subclass of \mathbb{N} .

Proof. Let A be a nonempty subclass of N. For any $n, m \in A$ we have $(n, m) \in <$ iff n < m.

(1) < is irreflexive on A. Indeed for any $n \in A$ we have $n \not\leq n$.

(2) < is transitive on A. Indeed for any $n, m, k \in A$ if n < m and m < k then n < k.

(3) < is connected on A. Indeed for any distinct $n, m \in A$ we have n < m or m < n.

Hence < is a strict linear order on A. < is wellfounded on A. Indeed every nonempty subclass of A has a least element regarding <. Thus < is a wellorder on A.

1.6 Induction revisited

ARITHMETIC_04_3609801697263616

Theorem 1.34. Let A be a class. Assume for all $n \in \mathbb{N}$ if A contains all predecessors of n then A contains n. Then A contains every natural number.

Proof. Assume the contrary. Take a natural number n that is not contained in A. Then n is contained in $\mathbb{N} \setminus A$. Hence we can take a least element m of $\mathbb{N} \setminus A$ regarding <. Then $\mathbb{N} \setminus A$ does not contain any predecessor of m. Therefore A contains all predecessors of m. Consequently A contains m. Contradiction. \Box

Theorem 1.35. Let A be a class. Let k be a natural number such that $k \in A$. Assume that for all $n \in \mathbb{N}_{\geq k}$ if $n \in A$ then $n + 1 \in A$. Then for all $n \in \mathbb{N}_{\geq k}$ we have $n \in A$.

Proof. Define $\Phi = \{n \in \mathbb{N} \mid \text{if } n \ge k \text{ then } n \in A\}.$

(1) Φ contains 0. Indeed if $0 \ge k$ then $0 = k \in A$.

(2) For all $n \in \Phi$ we have $n + 1 \in \Phi$. Proof. Let $n \in \Phi$.

Let us show that if $n+1 \ge k$ then $n+1 \in A$. Assume $n+1 \ge k$.

Case n < k. Then n + 1 = k. Hence $n + 1 \in A$. End.

Case $n \ge k$. Then $n \in A$. Hence $n + 1 \in A$. End. End.

Therefore $n + 1 \in \Phi$. Qed.

Thus Φ contains every natural number. Consequently for all $n \in \mathbb{N}_{\geq k}$ we have $n \in A$.