Chapter 1

Addition

File:
[readtex arithmetic/sections/02_recursion.ftl.tex]

1.1 Definition of addition

ARITHMETIC_03_722195546374144
Lemma 1.1. There exists a $\varphi: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ such that for all $n \in \mathbb{N}$ we have $\varphi(n, 0)=n$ and $\varphi(n, \operatorname{succ}(m))=\operatorname{succ}(\varphi(n, m))$ for all $m \in \mathbb{N}$.

Proof. Take $A=[\mathbb{N} \rightarrow \mathbb{N}]$. Define $a(n)=n$ for $n \in \mathbb{N}$. Then A is a set and $a \in A$.
[skipfail on] Define $f(g)=\lambda n \in \mathbb{N}$. $\operatorname{succ}(g(n))$ for $g \in A$. [skipfail off]
Then $f: A \rightarrow A$. Indeed $f(g)$ is a map from \mathbb{N} to \mathbb{N} for any $g \in A$. Consider a $\psi: \mathbb{N} \rightarrow A$ such that ψ is recursively defined by a and f (by ??). Define $\varphi(n, m)=$ $\psi(m)(n)$ for $(n, m) \in \mathbb{N} \times \mathbb{N}$. Then φ is a map from $\mathbb{N} \times \mathbb{N}$ to \mathbb{N}.
(1) For all $n \in \mathbb{N}$ we have $\varphi(n, 0)=n$.

Proof. Let $n \in \mathbb{N}$. Then $\varphi(n, 0)=\psi(0)(n)=a(n)=n$. Qed.
(2) For all $n, m \in \mathbb{N}$ we have $\varphi(n, \operatorname{succ}(m))=\operatorname{succ}(\varphi(n, m))$.

Proof. Let $n, m \in \mathbb{N}$. Then $\varphi(n, \operatorname{succ}(m))=\psi(\operatorname{succ}(m))(n)=f(\psi(m))(n)=$ $\operatorname{succ}(\psi(m)(n))=\operatorname{succ}(\varphi(n, m))$. Qed.

Lemma 1.2. Let $\varphi, \varphi^{\prime}: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$. Assume that for all $n \in \mathbb{N}$ we have $\varphi(n, 0)=n$ and $\varphi(n, \operatorname{succ}(m))=\operatorname{succ}(\varphi(n, m))$ for all $m \in \mathbb{N}$. Assume that for all $n \in \mathbb{N}$ we have $\varphi^{\prime}(n, 0)=n$ and $\varphi^{\prime}(n, \operatorname{succ}(m))=\operatorname{succ}\left(\varphi^{\prime}(n, m)\right)$ for all $m \in \mathbb{N}$. Then $\varphi=\varphi^{\prime}$.

Proof. Define $\Phi=\left\{m \in \mathbb{N} \mid \varphi(n, m)=\varphi^{\prime}(n, m)\right.$ for all $\left.n \in \mathbb{N}\right\}$.
(1) $0 \in \Phi$. Indeed $\varphi(n, 0)=n=\varphi^{\prime}(n, 0)$ for all $n \in \mathbb{N}$.
(2) For all $m \in \Phi$ we have $\operatorname{succ}(m) \in \Phi$.

Proof. Let $m \in \Phi$. Then $\varphi(n, m)=\varphi^{\prime}(n, m)$ for all $n \in \mathbb{N}$. Hence $\varphi(n, \operatorname{succ}(m))=$ $\operatorname{succ}(\varphi(n, m))=\operatorname{succ}\left(\varphi^{\prime}(n, m)\right)=\varphi(n, \operatorname{succ}(m))$ for all $n \in \mathbb{N}$. Qed.
Thus Φ contains every natural number. Therefore $\varphi(n, m)=\varphi^{\prime}(n, m)$ for all $n, m \in \mathbb{N}$.

Definition 1.3. add is the map from $\mathbb{N} \times \mathbb{N}$ to \mathbb{N} such that for all $n \in \mathbb{N}$ we have $\operatorname{add}(n, 0)=n$ and $\operatorname{add}(n, \operatorname{succ}(m))=\operatorname{succ}(\operatorname{add}(n, m))$ for all $m \in \mathbb{N}$.

Let $n+m$ stand for $\operatorname{add}(n, m)$. Let the sum of n and m stand for $n+m$.

Lemma 1.4. Let n, m be natural numbers. Then $(n, m) \in \operatorname{dom}(\operatorname{add})$.

> ARITHMETIC_03_5964925614686208

Lemma 1.5. Let n, m be natural numbers. Then $n+m$ is a natural number.

> ARITHMETIC_03_777009668030464

Lemma 1.6. Let n be a natural number. Then $\operatorname{succ}(n)=n+1$.

Lemma 1.7. Let n be a natural number. Then $n+0=n$.

> ARITHMETIC_03_1031280145727488

Lemma 1.8. Let n, m be natural numbers. Then $n+(m+1)=(n+m)+1$.

1.2 The Peano axioms and recursion, revisited

ARITHMETIC_03_3170769680990208
Proposition 1.9. Let n, m be natural numbers. If $n+1=m+1$ then $n=m$.

ARITHMETIC_03_1101538491629568
Proposition 1.10. Let n be a natural number. Then $n+1 \neq 0$.

ARITHMETIC_03_647949900054528
Proposition 1.11 (Induction). Let A be a class. Assume $0 \in A$. Assume that for all $n \in \mathbb{N}$ if $n \in A$ then $n+1 \in A$. Then A contains every natural number.

Proposition 1.12. Let a be an object and f be a map. Let φ be a map from \mathbb{N} to $\operatorname{dom}(f) . \varphi$ is recursively defined by a and $f \operatorname{iff} \varphi(0)=a$ and $\varphi(n+1)=f(\varphi(n))$ for every $n \in \mathbb{N}$.

1.3 Computation laws

Associativity

Proposition 1.13. Let n, m, k be natural numbers. Then

$$
n+(m+k)=(n+m)+k .
$$

Proof. Define $\Phi=\left\{k^{\prime} \in \mathbb{N} \mid n+\left(m+k^{\prime}\right)=(n+m)+k^{\prime}\right\}$.
(1) 0 is contained in Φ. Indeed $n+(m+0)=n+m=(n+m)+0$.
(2) For all $k^{\prime} \in \Phi$ we have $k^{\prime}+1 \in \Phi$.

Proof. Let $k^{\prime} \in \Phi$. Then $n+\left(m+k^{\prime}\right)=(n+m)+k^{\prime}$. Hence

$$
\begin{aligned}
& n+\left(m+\left(k^{\prime}+1\right)\right) \\
= & n+\left(\left(m+k^{\prime}\right)+1\right) \\
= & \left(n+\left(m+k^{\prime}\right)\right)+1 \\
= & \left((n+m)+k^{\prime}\right)+1 \\
= & (n+m)+\left(k^{\prime}+1\right) .
\end{aligned}
$$

Thus $k^{\prime}+1 \in \Phi$. Qed.
Thus every natural number is an element of Φ. Therefore $n+(m+k)=(n+m)+k$.

Commutativity

Proposition 1.14. Let n, m be natural numbers. Then

$$
n+m=m+n
$$

Proof. Define $\Phi=\left\{m^{\prime} \in \mathbb{N} \mid n+m^{\prime}=m^{\prime}+n\right\}$.
(1) 0 is an element of Φ.

Proof. Define $\Psi=\left\{n^{\prime} \in \mathbb{N} \mid n^{\prime}+0=0+n^{\prime}\right\}$.
(1a) 0 belongs to Ψ.
(1b) For all $n^{\prime} \in \Psi$ we have $n^{\prime}+1 \in \Psi$.

Proof. Let $n^{\prime} \in \Psi$. Then $n^{\prime}+0=0+n^{\prime}$. Hence

$$
\begin{aligned}
& \left(n^{\prime}+1\right)+0 \\
& =n^{\prime}+1 \\
= & \left(n^{\prime}+0\right)+1 \\
= & \left(0+n^{\prime}\right)+1 \\
= & 0+\left(n^{\prime}+1\right) .
\end{aligned}
$$

Qed.
Hence every natural number belongs to Ψ. Thus $n+0=0+n$. Therefore 0 is an element of Φ. Qed.

Let us show that (2) $n+1=1+n$.
Proof. Define $\Theta=\left\{n^{\prime} \in \mathbb{N} \mid n^{\prime}+1=1+n^{\prime}\right\}$.
(2a) 0 is an element of Θ.
(2b) For all $n^{\prime} \in \Theta$ we have $n^{\prime}+1 \in \Theta$.
Proof. Let $n^{\prime} \in \Theta$. Then $n^{\prime}+1=1+n^{\prime}$. Hence

$$
\begin{aligned}
& \left(n^{\prime}+1\right)+1 \\
= & \left(1+n^{\prime}\right)+1 \\
= & 1+\left(n^{\prime}+1\right) .
\end{aligned}
$$

Thus $n^{\prime}+1 \in \Theta$. Qed.
Thus every natural number belongs to Θ. Therefore $n+1=1+n$. Qed.
(3) For all $m^{\prime} \in \Phi$ we have $m^{\prime}+1 \in \Phi$.

Proof. Let $m^{\prime} \in \Phi$. Then $n+m^{\prime}=m^{\prime}+n$. Hence

$$
\begin{aligned}
& n+\left(m^{\prime}+1\right) \\
= & \left(n+m^{\prime}\right)+1 \\
= & \left(m^{\prime}+n\right)+1 \\
= & m^{\prime}+(n+1) \\
= & m^{\prime}+(1+n) \\
= & \left(m^{\prime}+1\right)+n .
\end{aligned}
$$

Thus $m^{\prime}+1 \in \Phi$. Qed.
Thus every natural number is an element of Φ. Therefore $n+m=m+n$.

Cancellation

ARITHMETIC_03_3137702874578944

Proposition 1.15. Let n, m, k be natural numbers. Then

$$
n+k=m+k \quad \text { implies } \quad n=m .
$$

Proof. Define $\Phi=\left\{k^{\prime} \in \mathbb{N} \mid\right.$ if $n+k^{\prime}=m+k^{\prime}$ then $\left.n=m\right\}$.
(1) 0 is an element of Φ.
(2) For all $k^{\prime} \in \Phi$ we have $k^{\prime}+1 \in \Phi$.

Proof. Let $k^{\prime} \in \Phi$. Suppose $n+\left(k^{\prime}+1\right)=m+\left(k^{\prime}+1\right)$. Then $\left(n+k^{\prime}\right)+1=\left(m+k^{\prime}\right)+1$. Hence $n+k^{\prime}=m+k^{\prime}$. Thus $n=m$. Qed.
Therefore every natural number is an element of Φ. Consequently if $n+k=m+k$ then $n=m$.

Corollary 1.16. Let n, m, k be natural numbers. Then

$$
k+n=k+m \quad \text { implies } \quad n=m .
$$

Proof. Assume $k+n=k+m$. We have $k+n=n+k$ and $k+m=m+k$. Hence $n+k=m+k$. Thus $n=m$.

Zero sums

> ARITHMETIC_03_3520602170195968

Proposition 1.17. Let n, m be natural numbers. If $n+m=0$ then $n=0$ and $m=0$.

Proof. Assume $n+m=0$. Suppose $n \neq 0$ or $m \neq 0$. Then we can take a $k \in \mathbb{N}$ such that $n=k+1$ or $m=k+1$. Hence there exists a natural number l such that $n+m=l+(k+1)=(l+k)+1 \neq 0$. Contradiction.

