Chapter 1

Addition

File:

arithmetic/sections/03_addition.ftl.tex

[readtex arithmetic/sections/02_recursion.ftl.tex]

1.1 Definition of addition

ARITHMETIC_03_722195546374144

Lemma 1.1. There exists a $\varphi : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ such that for all $n \in \mathbb{N}$ we have $\varphi(n, 0) = n$ and $\varphi(n, \operatorname{succ}(m)) = \operatorname{succ}(\varphi(n, m))$ for all $m \in \mathbb{N}$.

Proof. Take $A = [\mathbb{N} \to \mathbb{N}]$. Define a(n) = n for $n \in \mathbb{N}$. Then A is a set and $a \in A$.

[skipfail on] Define $f(g) = \lambda n \in \mathbb{N}$. succ(g(n)) for $g \in A$. [skipfail off]

Then $f : A \to A$. Indeed f(g) is a map from \mathbb{N} to \mathbb{N} for any $g \in A$. Consider a $\psi : \mathbb{N} \to A$ such that ψ is recursively defined by a and f (by ??). Define $\varphi(n,m) = \psi(m)(n)$ for $(n,m) \in \mathbb{N} \times \mathbb{N}$. Then φ is a map from $\mathbb{N} \times \mathbb{N}$ to \mathbb{N} .

(1) For all $n \in \mathbb{N}$ we have $\varphi(n, 0) = n$. Proof. Let $n \in \mathbb{N}$. Then $\varphi(n, 0) = \psi(0)(n) = a(n) = n$. Qed.

(2) For all $n, m \in \mathbb{N}$ we have $\varphi(n, \operatorname{succ}(m)) = \operatorname{succ}(\varphi(n, m))$. Proof. Let $n, m \in \mathbb{N}$. Then $\varphi(n, \operatorname{succ}(m)) = \psi(\operatorname{succ}(m))(n) = f(\psi(m))(n) = \operatorname{succ}(\psi(m)(n)) = \operatorname{succ}(\varphi(n, m))$. Qed. \Box

ARITHMETIC_04_2637025605844992

Lemma 1.2. Let $\varphi, \varphi' : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$. Assume that for all $n \in \mathbb{N}$ we have $\varphi(n,0) = n$ and $\varphi(n, \operatorname{succ}(m)) = \operatorname{succ}(\varphi(n,m))$ for all $m \in \mathbb{N}$. Assume that for all $n \in \mathbb{N}$ we have $\varphi'(n,0) = n$ and $\varphi'(n, \operatorname{succ}(m)) = \operatorname{succ}(\varphi'(n,m))$ for all $m \in \mathbb{N}$. Then $\varphi = \varphi'$.

Proof. Define $\Phi = \{m \in \mathbb{N} \mid \varphi(n,m) = \varphi'(n,m) \text{ for all } n \in \mathbb{N}\}.$

(1) $0 \in \Phi$. Indeed $\varphi(n,0) = n = \varphi'(n,0)$ for all $n \in \mathbb{N}$.

(2) For all $m \in \Phi$ we have $\operatorname{succ}(m) \in \Phi$. Proof. Let $m \in \Phi$. Then $\varphi(n,m) = \varphi'(n,m)$ for all $n \in \mathbb{N}$. Hence $\varphi(n,\operatorname{succ}(m)) = \operatorname{succ}(\varphi(n,m)) = \operatorname{succ}(\varphi'(n,m)) = \varphi(n,\operatorname{succ}(m))$ for all $n \in \mathbb{N}$. Qed.

Thus Φ contains every natural number. Therefore $\varphi(n,m) = \varphi'(n,m)$ for all $n,m \in \mathbb{N}$.

ARITHMETIC_03_4372222701469696

Definition 1.3. add is the map from $\mathbb{N} \times \mathbb{N}$ to \mathbb{N} such that for all $n \in \mathbb{N}$ we have $\operatorname{add}(n, 0) = n$ and $\operatorname{add}(n, \operatorname{succ}(m)) = \operatorname{succ}(\operatorname{add}(n, m))$ for all $m \in \mathbb{N}$.

Let n + m stand for add(n, m). Let the sum of n and m stand for n + m.

ARITHMETIC_03_3886414804549632

Lemma 1.4. Let n, m be natural numbers. Then $(n, m) \in \text{dom}(\text{add})$.

ARITHMETIC_03_5964925614686208

Lemma 1.5. Let n, m be natural numbers. Then n + m is a natural number.

ARITHMETIC_03_777009668030464

Lemma 1.6. Let *n* be a natural number. Then succ(n) = n + 1.

ARITHMETIC_03_4827955356237824

Lemma 1.7. Let *n* be a natural number. Then n + 0 = n.

ARITHMETIC_03_1031280145727488

Lemma 1.8. Let n, m be natural numbers. Then n + (m + 1) = (n + m) + 1.

1.2 The Peano axioms and recursion, revisited

ARITHMETIC_03_3170769680990208

Proposition 1.9. Let n, m be natural numbers. If n + 1 = m + 1 then n = m.

ARITHMETIC_03_1101538491629568

Proposition 1.10. Let *n* be a natural number. Then $n + 1 \neq 0$.

ARITHMETIC_03_647949900054528

Proposition 1.11 (Induction). Let *A* be a class. Assume $0 \in A$. Assume that for all $n \in \mathbb{N}$ if $n \in A$ then $n + 1 \in A$. Then *A* contains every natural number.

Proposition 1.12. Let *a* be an object and *f* be a map. Let φ be a map from \mathbb{N} to dom(*f*). φ is recursively defined by *a* and *f* iff $\varphi(0) = a$ and $\varphi(n+1) = f(\varphi(n))$ for every $n \in \mathbb{N}$.

1.3 Computation laws

Associativity

Proposition 1.13. Let n, m, k be natural numbers. Then

n + (m + k) = (n + m) + k.

Proof. Define $\Phi = \{k' \in \mathbb{N} \mid n + (m + k') = (n + m) + k'\}.$

(1) 0 is contained in Φ . Indeed n + (m + 0) = n + m = (n + m) + 0.

(2) For all $k' \in \Phi$ we have $k' + 1 \in \Phi$. Proof. Let $k' \in \Phi$. Then n + (m + k') = (n + m) + k'. Hence

$$n + (m + (k' + 1))$$

= $n + ((m + k') + 1)$
= $(n + (m + k')) + 1$
= $((n + m) + k') + 1$
= $(n + m) + (k' + 1).$

Thus $k' + 1 \in \Phi$. Qed.

Thus every natural number is an element of Φ . Therefore n + (m + k) = (n + m) + k.

Commutativity

ARITHMETIC_03_4029553232052224

ARITHMETIC_03_3235893452210176

Proposition 1.14. Let n, m be natural numbers. Then

n+m=m+n.

Proof. Define $\Phi = \{m' \in \mathbb{N} \mid n + m' = m' + n\}.$

(1) 0 is an element of Φ . Proof. Define $\Psi = \{n' \in \mathbb{N} \mid n' + 0 = 0 + n'\}.$

- (1a) 0 belongs to Ψ .
- (1b) For all $n' \in \Psi$ we have $n' + 1 \in \Psi$.

Proof. Let $n' \in \Psi$. Then n' + 0 = 0 + n'. Hence

$$(n' + 1) + 0$$

= n' + 1
= (n' + 0) + 1
= (0 + n') + 1
= 0 + (n' + 1).

Qed.

Hence every natural number belongs to Ψ . Thus n + 0 = 0 + n. Therefore 0 is an element of Φ . Qed.

Let us show that (2) n + 1 = 1 + n. Proof. Define $\Theta = \{n' \in \mathbb{N} \mid n' + 1 = 1 + n'\}.$

(2a) 0 is an element of Θ .

(2b) For all $n' \in \Theta$ we have $n' + 1 \in \Theta$. Proof. Let $n' \in \Theta$. Then n' + 1 = 1 + n'. Hence

$$(n'+1) + 1$$

= $(1 + n') + 1$
= $1 + (n'+1)$

Thus $n' + 1 \in \Theta$. Qed.

Thus every natural number belongs to Θ . Therefore n + 1 = 1 + n. Qed.

(3) For all $m' \in \Phi$ we have $m' + 1 \in \Phi$. Proof. Let $m' \in \Phi$. Then n + m' = m' + n. Hence

```
n + (m' + 1)
= (n + m') + 1
= (m' + n) + 1
= m' + (n + 1)
= m' + (1 + n)
= (m' + 1) + n.
```

Thus $m' + 1 \in \Phi$. Qed.

Thus every natural number is an element of Φ . Therefore n + m = m + n.

Cancellation

ARITHMETIC_03_3137702874578944 **Proposition 1.15.** Let n, m, k be natural numbers. Then n + k = m + k implies n = m. *Proof.* Define $\Phi = \{k' \in \mathbb{N} \mid \text{if } n + k' = m + k' \text{ then } n = m\}.$ (1) 0 is an element of Φ .

(2) For all $k' \in \Phi$ we have $k' + 1 \in \Phi$. Proof. Let $k' \in \Phi$. Suppose n + (k'+1) = m + (k'+1). Then (n+k')+1 = (m+k')+1. Hence n + k' = m + k'. Thus n = m. Qed.

Therefore every natural number is an element of Φ . Consequently if n + k = m + k then n = m.

ARITHMETIC_03_8445946379632640

Corollary 1.16. Let n, m, k be natural numbers. Then

k + n = k + m implies n = m.

Proof. Assume k + n = k + m. We have k + n = n + k and k + m = m + k. Hence n + k = m + k. Thus n = m.

Zero sums

ARITHMETIC_03_3520602170195968

Proposition 1.17. Let n, m be natural numbers. If n + m = 0 then n = 0 and m = 0.

Proof. Assume n + m = 0. Suppose $n \neq 0$ or $m \neq 0$. Then we can take a $k \in \mathbb{N}$ such that n = k + 1 or m = k + 1. Hence there exists a natural number l such that $n + m = l + (k + 1) = (l + k) + 1 \neq 0$. Contradiction.