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1.1 Definition of addition
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Lemma 1.1. There exists a φ : N × N → N such that for all n ∈ N we have
φ(n, 0) = n and φ(n, succ(m)) = succ(φ(n,m)) for all m ∈ N.

Proof. Take A = [N → N]. Define a(n) = n for n ∈ N. Then A is a set and a ∈ A.

[skipfail on] Define f(g) = λn ∈ N. succ(g(n)) for g ∈ A. [skipfail off]

Then f : A → A. Indeed f(g) is a map from N to N for any g ∈ A. Consider a
ψ : N → A such that ψ is recursively defined by a and f (by ??). Define φ(n,m) =
ψ(m)(n) for (n,m) ∈ N× N. Then φ is a map from N× N to N.

(1) For all n ∈ N we have φ(n, 0) = n.
Proof. Let n ∈ N. Then φ(n, 0) = ψ(0)(n) = a(n) = n. Qed.

(2) For all n,m ∈ N we have φ(n, succ(m)) = succ(φ(n,m)).
Proof. Let n,m ∈ N. Then φ(n, succ(m)) = ψ(succ(m))(n) = f(ψ(m))(n) =
succ(ψ(m)(n)) = succ(φ(n,m)). Qed.
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Lemma 1.2. Let φ,φ′ : N × N → N. Assume that for all n ∈ N we have
φ(n, 0) = n and φ(n, succ(m)) = succ(φ(n,m)) for all m ∈ N. Assume that
for all n ∈ N we have φ′(n, 0) = n and φ′(n, succ(m)) = succ(φ′(n,m)) for all
m ∈ N. Then φ = φ′.

Proof. Define Φ = {m ∈ N | φ(n,m) = φ′(n,m) for all n ∈ N}.

(1) 0 ∈ Φ. Indeed φ(n, 0) = n = φ′(n, 0) for all n ∈ N.

(2) For all m ∈ Φ we have succ(m) ∈ Φ.
Proof. Let m ∈ Φ. Then φ(n,m) = φ′(n,m) for all n ∈ N. Hence φ(n, succ(m)) =
succ(φ(n,m)) = succ(φ′(n,m)) = φ(n, succ(m)) for all n ∈ N. Qed.

Thus Φ contains every natural number. Therefore φ(n,m) = φ′(n,m) for all n,m ∈ N.
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Definition 1.3. add is the map from N×N to N such that for all n ∈ N we have
add(n, 0) = n and add(n, succ(m)) = succ(add(n,m)) for all m ∈ N.

Let n+m stand for add(n,m). Let the sum of n and m stand for n+m.
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Lemma 1.4. Let n,m be natural numbers. Then (n,m) ∈ dom(add).
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Lemma 1.5. Let n,m be natural numbers. Then n+m is a natural number.
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Lemma 1.6. Let n be a natural number. Then succ(n) = n+ 1.
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Lemma 1.7. Let n be a natural number. Then n+ 0 = n.
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Lemma 1.8. Let n,m be natural numbers. Then n+ (m+ 1) = (n+m) + 1.

1.2 The Peano axioms and recursion, revis-

ited
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Proposition 1.9. Let n,m be natural numbers. If n+ 1 = m+ 1 then n = m.
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Proposition 1.10. Let n be a natural number. Then n+ 1 ̸= 0.
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Proposition 1.11 (Induction). Let A be a class. Assume 0 ∈ A. Assume that
for all n ∈ N if n ∈ A then n+ 1 ∈ A. Then A contains every natural number.

Proposition 1.12. Let a be an object and f be a map. Let φ be a map from N to
dom(f). φ is recursively defined by a and f iff φ(0) = a and φ(n+1) = f(φ(n))
for every n ∈ N.
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1.3 Computation laws

Associativity
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Proposition 1.13. Let n,m, k be natural numbers. Then

n+ (m+ k) = (n+m) + k.

Proof. Define Φ = {k′ ∈ N | n+ (m+ k′) = (n+m) + k′}.

(1) 0 is contained in Φ. Indeed n+ (m+ 0) = n+m = (n+m) + 0.

(2) For all k′ ∈ Φ we have k′ + 1 ∈ Φ.
Proof. Let k′ ∈ Φ. Then n+ (m+ k′) = (n+m) + k′. Hence

n+ (m+ (k′ + 1))

= n+ ((m+ k′) + 1)

= (n+ (m+ k′)) + 1

= ((n+m) + k′) + 1

= (n+m) + (k′ + 1).

Thus k′ + 1 ∈ Φ. Qed.

Thus every natural number is an element of Φ. Therefore n+(m+ k) = (n+m)+ k.

Commutativity
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Proposition 1.14. Let n,m be natural numbers. Then

n+m = m+ n.

Proof. Define Φ = {m′ ∈ N | n+m′ = m′ + n}.

(1) 0 is an element of Φ.
Proof. Define Ψ = {n′ ∈ N | n′ + 0 = 0 + n′}.

(1a) 0 belongs to Ψ.

(1b) For all n′ ∈ Ψ we have n′ + 1 ∈ Ψ.
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Proof. Let n′ ∈ Ψ. Then n′ + 0 = 0 + n′. Hence

(n′ + 1) + 0

= n′ + 1

= (n′ + 0) + 1

= (0 + n′) + 1

= 0 + (n′ + 1).

Qed.

Hence every natural number belongs to Ψ. Thus n + 0 = 0 + n. Therefore 0 is an
element of Φ. Qed.

Let us show that (2) n+ 1 = 1 + n.
Proof. Define Θ = {n′ ∈ N | n′ + 1 = 1 + n′}.

(2a) 0 is an element of Θ.

(2b) For all n′ ∈ Θ we have n′ + 1 ∈ Θ.
Proof. Let n′ ∈ Θ. Then n′ + 1 = 1 + n′. Hence

(n′ + 1) + 1

= (1 + n′) + 1

= 1 + (n′ + 1).

Thus n′ + 1 ∈ Θ. Qed.

Thus every natural number belongs to Θ. Therefore n+ 1 = 1 + n. Qed.

(3) For all m′ ∈ Φ we have m′ + 1 ∈ Φ.
Proof. Let m′ ∈ Φ. Then n+m′ = m′ + n. Hence

n+ (m′ + 1)

= (n+m′) + 1

= (m′ + n) + 1

= m′ + (n+ 1)

= m′ + (1 + n)

= (m′ + 1) + n.

Thus m′ + 1 ∈ Φ. Qed.

Thus every natural number is an element of Φ. Therefore n+m = m+ n.
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Cancellation
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Proposition 1.15. Let n,m, k be natural numbers. Then

n+ k = m+ k implies n = m.

Proof. Define Φ = {k′ ∈ N | if n+ k′ = m+ k′ then n = m}.

(1) 0 is an element of Φ.

(2) For all k′ ∈ Φ we have k′ + 1 ∈ Φ.
Proof. Let k′ ∈ Φ. Suppose n+(k′+1) = m+(k′+1). Then (n+k′)+1 = (m+k′)+1.
Hence n+ k′ = m+ k′. Thus n = m. Qed.

Therefore every natural number is an element of Φ. Consequently if n + k = m + k
then n = m.
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Corollary 1.16. Let n,m, k be natural numbers. Then

k + n = k +m implies n = m.

Proof. Assume k + n = k +m. We have k + n = n + k and k +m = m + k. Hence
n+ k = m+ k. Thus n = m.

Zero sums
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Proposition 1.17. Let n,m be natural numbers. If n+m = 0 then n = 0 and
m = 0.

Proof. Assume n + m = 0. Suppose n ̸= 0 or m ̸= 0. Then we can take a k ∈ N
such that n = k + 1 or m = k + 1. Hence there exists a natural number l such that
n+m = l + (k + 1) = (l + k) + 1 ̸= 0. Contradiction.
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