Chapter 1

Recursion

File:
[readtex arithmetic/sections/01_natural-numbers.ftl.tex]

Definition 1.1. Let a be an object and f be a map. Let φ be a map from \mathbb{N} to $\operatorname{dom}(f) . \varphi$ is recursively defined by a and f iff $\varphi(0)=a$ and $\varphi(\operatorname{succ}(n))=$ $f(\varphi(n))$ for every $n \in \mathbb{N}$.

Theorem 1.2 (Dedekind). Let A be a set and $a \in A$ and $f: A \rightarrow A$. Then there exists a $\varphi: \mathbb{N} \rightarrow A$ that is recursively defined by a and f.

Proof. Define
$\Phi=\left\{\begin{array}{l|l}H \in \mathcal{P}(\mathbb{N} \times A) & \begin{array}{l}(0, a) \in H \text { and for all } n \in \mathbb{N} \text { and all } x \in A \text { if }(n, x) \in H \text { then } \\ (\operatorname{succ}(n), f(x)) \in H\end{array}\end{array}\right.$.
Let us show that $\bigcap \Phi \in \Phi$.
Proof.
(1) $\bigcap \Phi \in \mathcal{P}(\mathbb{N} \times A)$.

Proof. We have $\mathbb{N} \times A \in \Phi$. Hence Φ is nonempty. Any element of $\bigcap \Phi$ is contained
in every element of Φ. Hence any element of $\bigcap \Phi$ is contained in $\mathbb{N} \times A$. Thus $\bigcap \Phi \subseteq \mathbb{N} \times A . \bigcap \Phi$ is a set. Hence $\bigcap \Phi$ is a subset of $\mathbb{N} \times A$. Qed.
(2) $(0, a) \in \bigcap \Phi$.

Indeed $(0, a) \in \mathbb{N} \times A \in \Phi$.
(3) For all $n \in \mathbb{N}$ and all $x \in A$ if $(n, x) \in \bigcap \Phi$ then $(\operatorname{succ}(n), f(x)) \in \bigcap \Phi$.

Proof. Let $n \in \mathbb{N}$ and $x \in A$. Assume $(n, x) \in \bigcap \Phi$. Then (n, x) is contained in every element of Φ. Hence $(\operatorname{succ}(n), f(x))$ is contained in every element of Φ. Thus $(\operatorname{succ}(n), f(x)) \in \bigcap \Phi$. Qed. Qed.
Let us show that for any $n \in \mathbb{N}$ there exists an $x \in A$ such that $(n, x) \in \bigcap \Phi$. Proof. Define $\Psi=\{n \in \mathbb{N} \mid$ there exists an $x \in A$ such that $(n, x) \in \bigcap \Phi\}$.
(1) 0 is contained in Ψ. Indeed $(0, a) \in \bigcap \Phi$.
(2) For all $n \in \Psi$ we have $\operatorname{succ}(n) \in \Psi$.

Proof. Let $n \in \Psi$. Take an $x \in A$ such that $(n, x) \in \bigcap \Phi$. Then $(\operatorname{succ}(n), f(x)) \in \bigcap \Phi$. Hence $\operatorname{succ}(n) \in \Psi$. Indeed $f(x) \in A$. Qed. Qed.

Let us show that for all $n \in \mathbb{N}$ and all $x, y \in A$ if $(n, x),(n, y) \in \bigcap \Phi$ then $x=y$.
Proof. (a) Define $\Theta=\{n \in \mathbb{N} \mid$ for all $x, y \in A$ if $(n, x),(n, y) \in \bigcap \Phi$ then $x=y\}$.
(1) Θ contains 0 .

Proof. Let us show that for all $x, y \in A$ if $(0, x),(0, y) \in \bigcap \Phi$ then $x=y$. Let $x, y \in A$. Assume $(0, x),(0, y) \in \bigcap \Phi$.
Let us show that $x, y=a$. Assume $x \neq a$ or $y \neq a$.
Case $x \neq a$. $(0, x),(0, a)$ are contained in every element of Φ. Then $(0, x),(0, a) \in \bigcap \Phi$. Take $H=(\bigcap \Phi) \backslash\{(0, x)\}$.

Let us show that $H \in \Phi$. (1) $H \in \mathcal{P}(\mathbb{N} \times A)$.
(2) $(0, a) \in H$.
(3) For all $n \in \mathbb{N}$ and all $b \in A$ if $(n, b) \in H$ then $(\operatorname{succ}(n), f(b)) \in H$.

Proof. Let $n \in \mathbb{N}$ and $b \in A$. Assume $(n, b) \in H$. Then $(\operatorname{succ}(n), f(b)) \in \bigcap \Phi$. We have $(\operatorname{succ}(n), f(b)) \neq(0, x)$. Hence $(\operatorname{succ}(n), f(b)) \in H$. Qed. End.
Then $(0, x)$ is not contained in every member of Φ. Contradiction. End.
Case $y \neq a$. $(0, y),(0, a)$ are contained in every element of Φ. Then $(0, y),(0, a) \in \bigcap \Phi$. Take $H=(\bigcap \Phi) \backslash\{(0, y)\}$.

Let us show that $H \in \Phi$. (1) $H \in \mathcal{P}(\mathbb{N} \times A)$.
(2) $(0, a) \in H$.
(3) For all $n \in \mathbb{N}$ and all $b \in A$ if $(n, b) \in H$ then $(\operatorname{succ}(n), f(b)) \in H$.

Proof. Let $n \in \mathbb{N}$ and $b \in A$. Assume $(n, b) \in H$. Then $(\operatorname{succ}(n), f(b)) \in \bigcap \Phi$. We have $(\operatorname{succ}(n), f(b)) \neq(0, y)$. Hence $(\operatorname{succ}(n), f(b)) \in H$. Qed. End.
Then $(0, y)$ is not contained in every member of Φ. Contradiction. End. End. End.

Qed.

(2) For all $n \in \Theta$ we have $\operatorname{succ}(n) \in \Theta$.

Proof. Let $n \in \Theta$. Then for all $x, y \in A$ if $(n, x),(n, y) \in \bigcap \Phi$ then $x=y$. Consider a $b \in A$ such that $(n, b) \in \bigcap \Phi$. Then $(\operatorname{succ}(n), f(b)) \in \bigcap \Phi$.

Let us show that for all $x, y \in A$ if $(\operatorname{succ}(n), x),(\operatorname{succ}(n), y) \in \bigcap \Phi$ then $x=f(b)=y$. Let $x, y \in A$. Assume $(\operatorname{succ}(n), x),(\operatorname{succ}(n), y) \in \bigcap \Phi$. Suppose $x \neq f(b)$ or $y \neq f(b)$.
Case $x \neq f(b)$. Take $H=(\bigcap \Phi) \backslash\{(\operatorname{succ}(n), x)\}$.
(a) $H \in \mathcal{P}(\mathbb{N} \times A)$.
(b) $(0, a) \in H$. Indeed $(0, a) \in \bigcap \Phi$ and $(0, a) \notin\{(\operatorname{succ}(n), x)\}$.
(c) For all $m \in \mathbb{N}$ and all $z \in A$ if $(m, z) \in H$ then $(\operatorname{succ}(m), f(z)) \in H$.

Proof. Let $m \in \mathbb{N}$ and $z \in A$. Assume $(m, z) \in H$. Then $(m, z) \in \cap \Phi$. Hence $(\operatorname{succ}(m), f(z)) \in \bigcap \Phi$. $(\operatorname{succ}(m), f(z)) \neq(\operatorname{succ}(n), x)$. Therefore $(\operatorname{succ}(m), f(z)) \in$ H. Qed.

Thus $H \in \Phi$. Therefore every element of $\bigcap \Phi$ is contained in H. Consequently $(\operatorname{succ}(n), x) \in H$. Contradiction. End.
Case $y \neq f(b)$. Take a class H such that $H=(\bigcap \Phi) \backslash\{(\operatorname{succ}(n), y)\}$.
(a) $H \in \mathcal{P}(\mathbb{N} \times A)$.
(b) $(0, a) \in H$. Indeed $(0, a) \in \bigcap \Phi$ and $(0, a) \notin\{(\operatorname{succ}(n), y)\}$.
(c) For all $m \in \mathbb{N}$ and all $z \in A$ if $(m, z) \in H$ then $(\operatorname{succ}(m), f(z)) \in H$.

Proof. Let $m \in \mathbb{N}$ and $z \in A$. Assume $(m, z) \in H$. Then $(m, z) \in \bigcap \Phi$. Hence $(\operatorname{succ}(m), f(z)) \in \bigcap \Phi$. $(\operatorname{succ}(m), f(z)) \neq(\operatorname{succ}(n), y)$. Therefore $(\operatorname{succ}(m), f(z)) \in$ H. Qed.

Thus $H \in \Phi$. Therefore every element of $\bigcap \Phi$ is contained in H. Consequently $(\operatorname{succ}(n), y) \in H$. Contradiction. End.
Hence it is wrong that $x \neq f(b)$ or $y \neq f(b)$. Consequently $x=f(b)=y$. End.
Therefore $\operatorname{succ}(n) \in \Theta$ (by a). Qed. Qed.
Define $\varphi(n)=$ "choose $x \in A$ such that $(n, x) \in \bigcap \Phi$ in x " for $n \in \mathbb{N}$.
(1) Then φ is a map from \mathbb{N} to A and we have $\varphi(0)=a$.
(2) For all $n \in \mathbb{N}$ we have $\varphi(\operatorname{succ}(n))=f(\varphi(n))$.

Proof. Let $n \in \mathbb{N}$. Take $x \in A$ such that $\varphi(n)=x$. Then $(n, x) \in \bigcap \Phi$. Hence $(\operatorname{succ}(n), f(\varphi(n)))=(\operatorname{succ}(n), f(x)) \in \bigcap \Phi$. Thus $\varphi(\operatorname{succ}(n))=f(\varphi(n))$. Qed.

Proposition 1.3. Let A be a set and $a \in A$ and $f: A \rightarrow A$. Let $\varphi, \varphi^{\prime}: \mathbb{N} \rightarrow A$. Assume that φ and φ^{\prime} are recursively defined by a and f. Then $\varphi=\varphi^{\prime}$.

Proof. Define $\Phi=\left\{n \in \mathbb{N} \mid \varphi(n)=\varphi^{\prime}(n)\right\}$.
(1) Φ contains 0 . Indeed $\varphi(0)=a=\varphi^{\prime}(0)$.
(2) For all $n \in \Phi$ we have $\operatorname{succ}(n) \in \Phi$.

Proof. Let $n \in \Phi$. Then $\varphi(n)=\varphi^{\prime}(n)$. Hence $\varphi(\operatorname{succ}(n))=f(\varphi(n))=f\left(\varphi^{\prime}(n)\right)=$ $\varphi^{\prime}(\operatorname{succ}(n))$. Qed.
Thus Φ contains every natural number. Consequently $\varphi(n)=\varphi^{\prime}(n)$ for each $n \in \mathbb{N}$.

