Chapter 1

Natural numbers

File:

arithmetic/sections/01_natural-numbers.ftl.tex

[readtex foundations/sections/10_sets.ftl.tex]

1.1 The language of Peano Arithmetic

ARITHMETIC_01_3074681254969344

Signature 1.1. A natural number is an object.

ARITHMETIC_01_7367148418629632

Definition 1.2. \mathbb{N} is the class of natural numbers.

ARITHMETIC_01_7633304715001856

Signature 1.3. 0 is a natural number.

Let zero stand for 0. Let n is nonzero stand for $n \neq 0$.

ARITHMETIC_01_1567933815848960

Signature 1.4. Let n be a natural number. succ(n) is a natural number.

Let the direct successor of n stand for $\operatorname{succ}(n)$.

1.2 The Peano Axioms

Axiom 1.5. Let n, m be natural numbers. If succ(n) = succ(m) then n = m.

ARITHMETIC_01_4454289938317312

ARITHMETIC_01_3604163883696128

Axiom 1.6. There exists no natural number n such that succ(n) = 0.

ARITHMETIC_01_4764664342773760

Axiom 1.7. Let Φ be a class. Assume $0 \in \Phi$ and for all natural numbers n if $n \in \Phi$ then succ $(n) \in \Phi$. Then Φ contains every natural number.

1.3 Immediate consequences

ARITHMETIC_01_4966080109871104

Proposition 1.8. Let *n* be a natural number. Then n = 0 or n = succ(m) for some natural number *m*.

Proof. Define $\Phi = \{n' \in \mathbb{N} \mid n' = 0 \text{ or } n' = \operatorname{succ}(m') \text{ for some natural number } m'\}$. $0 \in \Phi$ and for all $n' \in \Phi$ we have $\operatorname{succ}(n') \in \Phi$. Hence every natural number is contained in Φ . Thus n = 0 or $n = \operatorname{succ}(m)$ for some natural number m.

ARITHMETIC_01_5996049267163136

Proposition 1.9. Let *n* be a natural number. Then $n \neq \text{succ}(n)$.

Proof. Define $\Phi = \{n' \in \mathbb{N} \mid n' \neq \operatorname{succ}(n')\}.$

(1) 0 belongs to Φ .

(2) For all $n' \in \Phi$ we have $\operatorname{succ}(n') \in \Phi$. Proof. Let $n' \in \Phi$. Then $n' \neq \operatorname{succ}(n')$. If $\operatorname{succ}(n') = \operatorname{succ}(\operatorname{succ}(n'))$ then $n' = \operatorname{succ}(n')$. Thus it is wrong that $\operatorname{succ}(n') = \operatorname{succ}(\operatorname{succ}(n'))$. Hence $\operatorname{succ}(n') \in \Phi$. Qed.

Therefore every natural number is an element of Φ . Consequently $n \neq \text{succ}(n)$. \Box

Proposition 1.10. \mathbb{N} is a set.

Proof. Define $f(n) = \operatorname{succ}(n)$ for $n \in \mathbb{N}$. Then f is a map from \mathbb{N} to \mathbb{N} . Hence we can take a subset X of \mathbb{N} that is inductive regarding 0 and f. Then $0 \in X$ and for all $n \in X$ we have $\operatorname{succ}(n) \in X$. Hence X contains every natural number. Thus we have $\mathbb{N} \subseteq X$ and $X \subseteq \mathbb{N}$. Therefore $\mathbb{N} = X$. Consequently \mathbb{N} is a set. \Box

1.4 Additional constants

ARITHMETIC_01_7540560137027584

ARITHMETIC_01_6115694068367360

Definition 1.11. 1 = succ(0).

Let one stand for 1.

ARITHMETIC_01_4584236572999680

Definition 1.12. 2 = succ(1).

Let two stand for 2.

ARITHMETIC_01_3836725109456896

Definition 1.13. 3 = succ(2).

Let three stand for 3.

ARITHMETIC_01_1709884968009728

Definition 1.14. 4 = succ(3).

Let four stand for 4.

ARITHMETIC_01_6734726333202432

Definition 1.15. 5 = succ(4).

Let five stand for 5.

ARITHMETIC_01_949139189792768

Definition 1.16. 6 = succ(5).

Let six stand for 6.

ARITHMETIC_01_7245471749767168

Definition 1.17. 7 = succ(6).

Definition 1.18. 8 = succ(7).

Let seven stand for 7.

ARITHMETIC_01_5658172888973312

Let eight stand for 8.

ARITHMETIC_01_7371844250238976

Definition 1.19. 9 = succ(8).

Let nine stand for 9.