Subject: Re: Bill Howell 46755
From: "Bill Howell. Hussar. Alberta. Canada" <>
Date: Fri, 9 Nov 2018 09:28:37 -0700
To: "Chase Holt. Care Representative. CCI Wireless. Calgary. Alberta"
Cc:

Thanks for the "unlimited data" clarification, Chase. 

Right now, my purpose is to learn more about current MOOC systems by doing something [interesting, simple, short time commitment].   Course content isn't important, but the [function, mathematics, programming of
humans] behind MOOC is.   Not to build a system or to use it, just to get a feeling of its status and how radically it may change very soon.

Having said that, in a weird sense of timing, I have been "keeping part of an eye" on a Chinese system, KEEP, involving a friend, Irwin King, who is now Director or something of the Engineering faculty of the Chinese University of Hong Kong.  Irwin's been hitting me over the head for several years about the Chinese government's interest in MOOC, but it's always hard to believe much of what a government or academic scientist says.   Irwin's one of the good scientists - open minded, very energetic, enthusiastic, and fun!  (Sings karaoke better than me, but that's not saying much).

05/10/18 04:27 AM  I saw mention of a Dinosaur MOOC in the KEEP <>  newsletter of "Award-nominated Dinosaur Course Rerunning This Month" (see https://keep.edu.hk/articles/596), instructed by well-known and I think retired Phil Currie of Alberta.  I am a public member of the Tyrell Museum, so I looked at their programs (Tyrell has expanded to do more educational programs, and their "Tyrell Talks" by scientists 11:00 on Thursdays in the winter are excellent!), and emailed the Education manager (or something), but I got no response from him.

Mon, 15 Oct 2018 17:03:24 -0400 (EDT)   I got a "Promoting KEEP' email from the International Neural Network Society (INNS) <> (I'm a longtime member, as well of IEEE-CIS), BUT not written by INNS President Irwin King (yeah, same guy), but by my boss for IJCNN2019, Chrisina Jayne (General Chair, awesome [worker, leader, scientist]!) :
Dear INNS Member,
 
KEEP is a one-stop platform which enables access to educational resources, data, analytics, courseware, and tools.
 
KEEP now contains a specially curated set of courses for the INNS members which provides links to over 60 courses in

•          Machine Learning
•          Big Data
•          Neural Network
•          Neural Physiology
•          Neural Anatomy
•          Cognitive Science
•          Neuroscience
 
You can find information about these courses on https://course.keep.edu.hk/curated/inns. These select courses offer an abundance of high-quality learning resources and interactive content.
 
Kind regards,
 
Chrisina Jayne

This is more the type of course I should be looking at, and I may.   Take a close look at the list of topics - it's really weird that the current "hot topic, fashion-of-the-day" Deep Learning Neural Networks, isn't in the list!!   Our INNS Society has top scientists in that area, but we missed the current hype cycle whereas competing societies and the rest of the world capitalized very well on it.  But my research projects don't look at "old" stuff, I'm more interested in what doesn't exist, and what is wrong with essentially all the great science of the mainstream (science fashions -> cults -> religions).

While its good to raise general awareness of advances, I dislike almost of the current hype, and I'm disgusted with smart men who make themselves look like asses (eg [Elon Musk, Bill Gates, Stephen Hawking, Mori-something (quantum expert)] with their yapping that misleads everyone.  I'm also disgusted but not surprised by the "this is evil and we must stop it" automatic reaction by the media and scientists.  Not that it matters -> 50 to 75% of the papers in the [INNS Neural Networks, IEEE-CIS TNNLS] journals, and especially papers in [very tough, complex leading edge mathematics], are Communist Chinese (including expats).  With Western attitudes, we may not have much influence on the future.   I frequently ask Canadian high school kids what their [interests, aspirations, mathematics backgrounds] are.  I wonder if we'll have much of a role in the economies of the future, other than as "hewers of wood, and drawers of water".

What really bugs me, is that after the "neural network winter" (~1967 Minsky&Pappert paper to ~1986 NN renaissance), where the AI guys shit all over Computational Intelligence (CI ~ [Evolutionary Computation, Neural Networks, Fuzzy Systems]), everything is now called "AI", even by our experts.  Perhaps it's just easier to use a well-known term, but it does lead to massive funding mis-allocations on pretenders.  The public also thereby misses one of my [points, perspectives] on the different approaches to imputing intelligence to machines :
  • Artificial Intelligence (AI, an old god was Marvin Minsky, also tech advisor to Stanley Kubrick's 2001 Space Odyssey) - tried [rational, logical, scientific] reasoning as a basis of intelligence.  Expert Systems, Case-based reasoning, and Kasparov-vs-IBM_Deep_Blue  were the pinnacle.  But frankly, this approach has proven to be exceptionally limited and costly.  Hybridization with CI techniques may change that soon.
  • Computational Intelligence (CI - lesser-known gods) - uses what I describe as non-[rational, logical, scientific] reasoning as a basis of intelligence.   Biologically-inspired algorithms, complexity, and Google_Deep_Mind_Alpha_Go-vs-?Korean 9th Dan world's best Go player? are current status, with a long way to go with CI (many generations of researchers).  By the way, Alpha Go confirmed what NN friends had told me : "Go is to Chess, as Chess is to Tic-Tac-Toe".  Chess is a dummies game (I'm lousy at chess and have never really played it, so not much hope for me).  Biology is where the big ideas come from, and a niche interest of mine, neuro-evolution (Risto Mikkalainenn ?spelling?) is starting to redefine our understanding of what evolution might really man, and clarifying how it might actually work, at least to the next level.

Of course, classical Boolean logic, math, algorithms] are the main work in real systems at least at present, with [AI, CI, other] built on top and providing what can't be done conventionally.  

In reality -  I'm too busy in retirement to do much work on my own projects!! 


Mr. Bill Howell
1-587-707-2027     www.BillHowell.ca
P.O. Box 299, Hussar, Alberta, T0J1S0
member - International Neural Network Society (INNS), IEEE Computational Intelligence Society (IEEE-CIS),
            Association of Professional Engineers and Geo-scientists of Alberta (APEGA)
IJCNN2019 Budapest, Publications and Sponsors & Exhibits Chair, https://www.ijcnn.org/organizing-committee
WCCI2018 Rio de Janeiro : Publicity committee, mass emails http://www.ecomp.poli.br/~wcci2018/committees/
Retired: Science Research Manager (SE-REM-01) at Natural Resources Canada, CanmetMINING, Ottawa


-------- Forwarded Message --------
Subject: RE: Bill Howell 46755
Date: Fri, 9 Nov 2018 15:04:04 +0000
From: Chase Holt <>
To: Bill Howell. Hussar. Alberta. Canada <>


Morning Bill

 

How was the Expo?  The usage is unlimited, meaning you can stream and utilize any and ALL MOOC’s all day everyday.  What are you taking?

 

Thank you

 

 

cid:

 

 

 

Chase Holt

Care Representative

CCI Wireless - Corridor Communications Inc.

137-465 Aviation Rd, Calgary, AB

 

1-888-240-2224  ext. 11747

cciwireless.ca

cid:cid:cid:cid:

People high-five

Refer a Family member or Friend – Get 1 month FREE!

Ask me how you can get free service

 

 

--------------BB95CEE748B6BB4617DD0D31 Content-Type: image/png; name="image001.png" Content-Transfer-Encoding: base64 Content-ID: <> Content-Disposition: inline; filename="image001.png" iVBORw0KGgoAAAANSUhEUgAAAK8AAACZCAYAAABZsWrFAAAAGXRFWHRTb2Z0d2FyZQBBZG9i ZSBJbWFnZVJlYWR5ccllPAAAOU5JREFUeNrsXQV4FFfXnnWXZDcbdyMkRJAgQUJwKxWKlwJF Sgt1KNB+lLYUChWghVJD2iKF4hZcQ/CEEIi7y242677zn7uRJpAES/oHmPN0S2Z35up7z3nP uTIkHMex50HKqnTC/fG5nQZ1dkv2deFXY4Q89UJ9Hip5Mbks8sLt0o4TYvwO+zjzCOAS4G3/ otGbad/+k/RhtdqILZvWdTWHSTMQXf7sCPlZrVh2qdJ13LLT+xg0inn1nJ5fE8AlwPtUyImb RX1HfXr8SkyEy6GF48O/JbqZAO9TIRsOpUyd9s3503NGdVzywSudfiG6mOC87V6MZiu2bFvC 4o1H07/6ZFLEtLde6LiF6F4CvO1ezBYr9vFvV1dtOZ4+//PXu75HAJcA71MhJgDu/F+vrtt+ OuvtN4Z1WPn26OC1RLc+H0J6micpEHAX/Hr12+1nsj4cEOG6Z8uC6DF0KpnoVcJha/+yeOP1 JbvOZ3/YwUOY8u3sHrMI4BLgfSpk/cGUWXvjcj/nsuj6pa91meYiYlcR3UmAt93Lgfj8wat3 315vBcozdXDAov7hLteIriTA2+4lObfKZ+mfNzcBU6d29hPHvv9KpzVENxLgbfei0Bhpizdd 36jWmVw5TFr14okRHzLpFKIXn1N5qkJlK3feWpqSJ48mkTDs1b7ey7v4i1OJLiTA2+5l/6W8 mD0Xcj9mgKZ1tGMlvPVC8A9E9xG0od2LTKnn/rDvzmoKhUQxmCzYW6M6fibiM4hVYgR42798 tzt5QX6FOhTNp4R62x99oZfnYaLrCGn34L2cUh5yID7vAw6zhuG8+3LI1wwa4aQR8hSAd8Oh 1M9MZivHaLJiYb6ig9FhLhf/y/y1BjPZ+pzs8yPA24qy52Ju//i7ZWPYDKpt5dgrfbz/UycN tL5fXHKZKxmFNwghwPuwghyzP05kLKRRyZjRbMGCPO0uvtDT8/R/kbdGb2Ks2Zs8oVyukwzs 7FpIwIQA7yPJ4SsFA1MK5IMRvzUAZRjR3eP3/4Lr5pWpHGd8f2GFsz276MUor3gymdC6BHgf UXaey55LJZMxixXHnOxY+S/39jrQ1nkm51YFvPHd+T9eivLeNy7a9yIBDwK8jywXkkvDAUgj 0NSv3mjBIjtI9kqELEVb5nkuqbTD5BVnD8x9MWTN2H4+BHAJ8D6e7L+U9zo4aLbYGAVKOLqX 1z9tmd/dPLnPzO8vnJ7zQtDql6K8jhGwIMD7WFJYqRFeulP2CpNOte2UcHfgJnUNcGizJY8F FWrhrNUXjw2IcDn85siOvxKQIMD72HLyZtHgSoXBnUohYUaTBevZ0fEol0W1tEVeOqAkH/1y ZasJ1Pyy6d3eI+DwdEm7W5hz9lbJGBQeq5kXICHwtpkZ/2Zn0vyzSSUjtsyPjhbzmToCDoTm fWzJKlFK7ubLoxm0miiDg5CZ29lffLNNnMLbpREbY9NWvRTlvWlEd4/zBBQI8D6RJGXLeis1 Rgc0o4UOEfFz4V91tGNpWjsfFMFYtSvpeyqVbJo9Mmg5AQMCvE8sF5PLBpJqp2LRdHC4r7hN QlY7zmRNuJkhjR7azf2nLv7ibAIGBHifSNACmNQCeRSdVlMkxHu7Boqvt3Y+UoWevvFY2mI+ h45NHxJInGVGgPfJJbtY6V0i0wZQKWQMreIScuglAa6CjNbOZ9+lvJdzSlUh3Ts47OsSQGwj IsDbCpJaWB0G2peJSAOK77qIOJkSu9adVUNU5MjVglkUMgkb2cNzK9H9BHhbRdIKqrvUrTw0 m3HMx5mX2tpLEePvloffzZP3h4FRHhXseI7ofgK8rSIZxYoQtBAHCTo/zceZn9baeZxKLB6t NZiwjp52513FHOKEHQK8Ty5qnYlSVqX1o1BqNC2anxALmK0aBUCht8Qs2RCkzSP8RGeJrifA 2yqi0BrtlVqjE6V27SyTRsG8nXhFrZlHZpHCPa9MFcpmUrHO/mLieCgCvK0jhRUaiUprEiCt iLQuiUxSsRlUaSvTkjDQ8Bw7LqPU15lPxHYJ8LaOWHFcAjTXtk3CYsExex5D5WzPbtX3paUW VIebIW2JkJXb2lEMQp5j8GYVK0QojFXDd3GMTiUrmAyKvpXzCECpeznx8ij/wdYetDZDZ7AQ CGtDaReryrQGi8i2ioxk+w+zWnE1XJtbMw+T2eqB/qVRSMVtXZ/Ya4WDt53OmlderXUM9rC/ 9vaLHVf6uwqIjZzPInhBEXLqgQuoteMxtK15+iM4g6TCSrUdhUzGPB150rasy69H0sav2JG4 A53SToVPVrGyW2KOdPDGD/v19XPhlxGQe8ZoAwjHRhlwNAtmWwppbE3TDunS4cNClAQGhrqt KiFXG6h/nEhfjM6ZQB+0PkPIpWP55Sr/zcfS5xBwezbBa5O6CbU2YKQ0+DBr/za2VflLpFrH arXRE2ncukqgAcmgUrDyal1HAm7PMHjrTlVqg9OVEH+uO1WyzQ5/cBGxZQIuvdwCzqetDrX1 MIE1AQ2cS8Dt2QSv6V/tS0Kn5bSq8gUMmQBMehKoQ63BzGurSgAl0b8Y5bWuWmO0zeihBUYa vRnjsWnSKQMDfiPg9gw6bCCaOtpAo5CwggoNWwudzma2TvGEHLoFtKIit1yFZtrs2rIi773c 6QcmjaI5eq1wnsVqFUuErKR3Xgr5NNTHPpOA2zMIXosVVyD1iEwtXgNiVmvnwaBTilAGkL5r W9YFRRkArBvnjOq4GbKjUSgkA4U4MurZBa+LiCOrW5RT280C+AM5WK02UeHpyM1ElCS3VOmB wnFtffIjjUq2NuDZhDyrnFcsYErrsIQOtlNqjHypQs9uzTyCPOySEWArqvW+MqWBTXQ9Ad5W ER6LVk6nUvR4rcOGnCql1iRqzTwC3AS32EyKWabUo9VlnkTXE+BtFXGyZ0k5TGql1YpjtduA GKVVWklr5hHoJsh0E3PvgvdPSsySdiW6ngBvq4g9j6EGr7wQLWZB6EWzbOVVWq/WzIPLouFh vqJTZqttUXo00fUEeFvHa6SQUYA/FQX3UTgA8d/MYqV/a+cTHeZ8AB1QfTdf3h94L4vofgK8 rWPW3YW3zdaaKSm0ly2vXNWx9cHrEufnzL9ZUK7yvppW0YvofgK8rRQNECbUha9Q2KysShuE DiJpzTyAV+Mv9vbaiF4TcPhK/kSi+wnwtooEe9mlCDj0ChSDpZJJaCGLd7FU49ba+YyI9Nju ZM8uuHS3bGxWscKVgAAB3icWNwdulbcTL8FkttrCZWi/WXJuVafWzsfLiacY39/n27IqHfeP k5mvExAgwPvEgghDj46SU2hBS931zQxpm/DSWSOCfg90E6Tui8t7L7NYIWrt9C/dLe879Ztz O95cE/cHfH4orNTwCKg9w+BF0iPI8TSdSrYFe2kUMpacV9UHhc1aW+y4DN07L4W8V6nQOWw+ nvF+a6dfItUEHL9RNP50YvGUUwlFE1U6I5OA2jMO3s7+4tuejrwk9KpWtKC7oEIdkVWi8GiL vMb09Tkxvr/vur9OZiy6mlYR1JppU2DgcWp3U6CVceCIEu9/fdbBy6JTrL2CHQ+hd1FQgPeq tCbuuaTSPm2V39LXusz3deEnf/FXwo/owGlCCPA+kQyMcN1LpZBtZAFFHW5mVI5qq7zQ4vHv 3+w5JrtEEfHtrqQFrcnfW7om5BkFb9dAh1uB7oIL6N3DDDoFS8qRxYDDI2mr/ICqZP30Tu/R vx5NW3T4Sv6A1kgTf8A1Ic8oeNFi7uGRHlsQ70XLI2VKg0PstYIhbZlnTIRr3BdTu078dMuN DQmZ0iACFgR4H1uGRbrvt+czctDRTyjqcDqxZCLexupr6uCA2G9m9pjz3obLa8CB83li2kAi aMNzCV4PCVc5upfnRrSPDR0+kpwrG3Ajo7JTW+c7qIvr6W9nd1+wcmfS/Et3yvxalTsQ8nyA F8lrAwM2g/YtR9PFJjNO23E2a8p/kW9koCRpzZyenx25VjggPqW8VSgEgePnDLyejtxS0L4/ a2q178XkskkFFWqH/0jzVwAH3lRZrWcAhXBstbADIc8HeGu17zo7LqMA/V2lMjj/deq/W4tA JZNMMHhuhfmIZITKJcD7ONpX+vrggJVagxktZ8QOxOfNyS9X8//LMoDWNz82ZgnN+/yCF8mU Qf6/ejvxLqM1DjKlwWfrqcyZT03rEpr3+QavgEM3f/Rq6EKLxWphMSjYgct57wL3lbT7liW0 LgFeJEO7uV8Y0s19LVp/IFcZ3dftv/tBu8ct/i+ACRw/x+BFsuS1zp95SLi30Bahw1cL5l1I Lg19WtgCwR6ec/CK+Uz1grFhc3Ac05ktVvYPe++sQOsfCCHA+1QI0Icr0wYHLEDOW2KWbPiG gynt0nkjESqXAG9TsmB82LqYcJdNFlDBm46nr0jIlPq128ISZJcAb6MCk0jYypnd54Z621+Q qwyi5TsS14Ej1z5hghMYJsB7j4j4DN2KNyInuEu4afEpFUNW7kxa0p4dNkII8DaSYC+7kl/e 6/OSlyO3eGNs2tLtZ7JeaHdsgUSAmQBvM9LJ2z7t6xmRIxk0svyLvxL+vJpWEdyuNC+BWgK8 LUnfTs631r4dNZBBJ5veXR9/IL1I4fj/XSYSQXQJ8D6sDI90T9i2KKYvOG7smd9fOCxXG7hE 1xLgfWokxMs+deuimEiD0cKZuupcrEJDHPRBgPepArBd0eFlQyOpZLJ68oqzx+Rq4//Luyfw uv8R1IEA76OIg5Cp3rVk4LCOnnbxU1edPVDWyq8HeCTiSzhsBHgfVdB7z1bOjFw8McZv3evf nF97M0Ma+J87bITmbXOhPsuVGxfte6CTt+jWb0dTXyuTa0+M6O5x7T+jDRiheQnN+4TS0VOY v/yNyJXgwLH3XMwNa4tTJ+8V9G4NtHVJZ4QP/IvjOKGD28LC4fjzox7yy9UCez5Dz2PR2vTN lGVVOvfUgurOVAoJHTasj/AXn+cyqUYCbgR4CSHk+aANhBDgJYQQAryEEEKAlxACvEQTEEKA lxBCCPASQsjDCZVogmdfLNoKO6tOKrZpK5aoksJ2rCY0LyFPhaiSNswp3dolo2Rb1wxV4o/T Cc3bhlKlMnB2nst+TarU8yYP8P/T24lX3t4b0mpQsFS3f37Nqq204wS//hdd3KmkPfVz/Uwq jlMJ8LahfLk14etd57LnksgkLDmnKmbHJwOGoWWO7VnkFz7+UnX7lw9JJDKmLzo/yGncxYEk anvZzEHCMTIZI6E1ms/Q2zjbHW1AJ0EmZEp7CHkMTASftMLq0FKZVtCeGxE36zBD8cUoMtMO cUrMrCoJA44pakclrF0b/2ytY2l34EXvn+jsL46vVhsxmcqAdfCwS3CyZyvacyOSqCyM4dz9 Iq6XY1adDKMJvBLIbLGsXQ2wZ3D9VbukDUundFkY4CZI1ujNnIkxftuolPa/HNau3zdLqHaB aVa9VMALnb2dRGlf+z9JpDr9S4C3TUXAoevmjOr4+1NlwpgivSDy403t2kIQtIGQp09INtrw rDGHFjVviUxrH59S3u9mhjRSoze5kEkkFHLReDnx0kN97C91C5Qk8Nm0FncIpOTL3a6lV0aj nQU6g9kB0kDubnWgm+Bu1wDxxU7eorssBgVvnK/GOb9cjd54SXK0Y2X5OPOzH7ZCxorEbrhR ZYdYHk0UnEBmtcA9rWaSsfxmd9yiF5JonEq6Y5ebLe2atGhKHcxV6WFgg/XgnFXSxKHp9b8p C1zNipwQZJ8pXNccqtAvs+GzJtndDuDEeWEkspYuibhMonFNuElD1aRtH64vjhuFm7QiXtic RUyPmPSm8jYrssW6/FODjWU3euIWgz0U3kJm2ueyvYcfZ7j1uwy8G2/JYXskgXYxlF6O0GYf GmxRlwRiZAoDyq2kO4TdZHkMPEQTh5Q9TDKGkksB2tyjIy3K/GCbY2A1ayl8j1SWe/Qphlvf pOaolbEiwU1fcHqkUXq3M5Sdi0GFKTz3LJZbv9NQ1+uQlKVZ8JbLdYI1e5Pnn7xZPFuuNoit VhyzwAf9S6WSbfwJtUfvEKddfy3sP66pNDKKFO7rD6YsPZNYPB6Az0Yjv2b/GKRBqUkDfTcu 2vfzr2dELm347MHL+UO/3Jq4CUXHJg3wXwG/L37YdldcXT5Hm7VvGo5bMWHPJe8Jey5d2yzQ ZSnuZXuGnMAtRh6F7VDsPPFKCIXj3Ozskyppw7TqK8tW2qhN148+seu7anndb+rUrSPlcZ/8 jCrGD5+72j7mh0bvzai+tGS2Nmv/eyQau9p54jV/MlNorDwyYaeh5PJQjEzFcIMWY3kNWY9h jcELACdXxy99D0C+2KKrFAEAbG2PdsWRyDRMnbxpCV0SFisa9OubMFgLHhB0eCCOjWXX/eRx i9caSq8OR1EUAE7tQxRMQ9mBKWjcahhkS4U9P1uLyt1kNiY1XXZm3kpt5t65uFlPxa2mms6G tkFlVt74DmP7jf7RYeSudxpHbbSY/OLiheq7f3wKf3Mw9Ny/XjGmurlmGdM9+oDD6P0vkmA8 3Zf72VslQZ/9cWNPsUwbRLOBjIS5itkFno68XB6LZiqoUAtKqjQBKHwlsWMVNlX4fZfyhiz9 88Y2jc4sQu+QoFMpVomQlQUauwiu8YJytViq0AWWV+uYge6CnHufp5DJOJNGsQEcgP5IaoPl PeyQLufINBKFhhmK4qLhq2bBayg6H4OAS6bzMatW6qovONODEzTpWHM9ry88Pwjdi+FWnOU1 9GhjAkbFbXFdVGgK7b4y08TBKiz3KEam88gWTYlQdnLWD8byG0NRZ9pAQKNhtnhso87UU2Un Zvyhydg9kUShYxSWg4zhFHkKtH6R1ah0NJRd72/Vy1yNFUnDKg+9esph1O4BNFHHwha9thZE k7ajZ9XZdw/CgBEjsNEdOiVShQHxSPGDIxpmKLsRBd8LFddXroF8JfYDfvrkvlayGDHpsWkb tdkHJ6P2AKVQwnDucZxM48mtxmp30Ka9TbJMZyrfu/jeZ6vOffCVOvn3xdBGyIeQM1y6H4MG K4EB62SU3ulpqsrwgcFfgYB7n+YF8+43b138MStu9UAevruEk/jmyI6fxkS4nhVwaDp0sLPB ZMXyy1WOBy7nT4gMdLh4bwH2xuUOWLzp+j4KmcRC94f5io5DGku7BjjcAPCba2O5pJxSpe/O 89kv9wt1Od0MTXuscw8YLj0vkRjCKsxqtDdVZ3UzKwuEVL5Hk9pUmxs7ikRBTQDahUzGdLmx I5oDr0mW6mySZ3ZBAKDyPBOBYiQ1XehmnAuGoEZlUpgmVdLP88A0DgPqoOEEjl3LDhx7iEzj 6slsh9yGz8hOv/WdNnPfRFsozrXXbvu+374NJruinkoo83jVcZ+uBaBMg3r6y069uc7xlROj 758cIf17mASpObp1y1t+/qPdYKHF8LxaELnoLV7o7L9IAKR/wb29T9XZ93bAAHZV3dm0mO7U PZ4b/PqRRgMg5c8XtVkHJpPpXIxq5x8vHrJ5NAwoaT290pYLVLfWT2L7vdRo8OsLz0VoUrct IDOE0FbCLPHQzcMZrn3qqZdVW8lQJv00kenS6/Z9nFejN5O+2pbws9li9UDXwV72B359r88E sYCpawQOGhkLcBOUz381dE0TVEG8bFvirwi4aLJhfH/fb794vev8e2fHEMcN9rLL+sKr66oW TRzpgcriPqHZB1UwJGFX9CXxw3GklSpvhQN4z90HxqpUCXRYNADDTKYLrlis0t7GyqRBVoOC DkC7j8eDGe2JGxV2tli0W59YuAe/H7YoGEVuBh8knc1xMmsFoOFnAcfWigb+PILt//L5JgdW 5p5obfrOdzAqAzRg2AnJqD3j4ZlGb5Ch8r1UosG/vWHeW+xmrEwcZCi79oI2e/8ATuD40/c1 Zq3ZbrqtLZj8wvzlVqPCBZVRGLVsBlCDnffexukwESmrybJTb50GvkpWJf7wMSdgzBEo17/l zj74Mho8iCoIus1f2hC4NqvKdlQIe33x071p6/KOj8StZts0tqDb7JUNgWsb/GwHA1CVzU1G G7afyRp/O6dqAOK0IgEjbfWcnlPvBe6D5Jcjqe8rNUYfxI27+IuPLJ4QMf//Y1oXtG9sDc+y Yvr8U/2bugccgn5g+uzBPJXyOs3YhDoNNFmgoTiuc9P3nxps63wSBWP5jDzatEtEaolWmmrN CdVq0TG5IdOXNAfcGn798/soLxKJYhT2WPLxvcBtMEGC88Pf/hb8N7iXiqzHuOYiDs0VTJd3 IgK496tASDGme/89TQH3XwBPOMdwjjyEEjNVpUfpiy5GNPL1jGrklCJCbgYNWvTQjnblLR9E jRBNBYpV+EihshM3it5As1t6gxmbPiRwlaeE+0jL5kpkWt7F26WTWAwqGuT4m6M6foneF/wE 0Z3HFqZ7zGkSmW4G7ok81342J+deMBZfegGBm8r3TGP5DD8MDSeHkQ+df2T4fc63TkYzViT2 RWACbZfKcOl149GLjddrOQrTvpwb8sYfzXdkkjd8BqC/6U5dTzE9B956wGC9QmFLihF3Bl7a G/gwtalSkZrRvFDnV6HLKOCRgyP10qYHdQy079Fa5UA2lF7p3ehXMkVeo+mtVGP5zV4PHfbi AbWr7ScYTH0fGrwonJVeVB2JogBCLqNiYGfXQ48KmBsZlZFVKoMn0rrgmF3r3kFy9Ylxiz/e tCZdEp5KE3jbOKlJkRNqUmQ7NQp5qYqExtIr/ZGGoItDztNEIZU0O/9EpFn1JVeGIq/3Hq0Q YlYXd0CNS3fqchw0irFltkNqtlbIoaGJgq9CftLmQ0zxPUCDcRDQYaAcf1B9wRQryWxJXs1A q3QzK3Idm55ha6IxAYSG8pvRADq0LqOc6dH/ygMtm1PXTJujCYkCh210Gj1QqqPgaIJFYGOK G999p0raMOZhOpHlMeAIDvVF/B5xX8WVZW/boh0PivMWSzUddAYzD4G3g7sw2V3ClT4qYNIK qsNtYLFYsY4ewqtPonXxh3eQmwY/jQsOTtRJozyjC2ZR2hnLbkTS7AIP/uscnI2CRndF3Izl OfikrUOce5wC7z3GrMwPBy4cDKC5W6+ZCk7HgKZBgR50/+GWBhzpATVDGgt4eUZLdwH4QmoI BgszFMcPkZ2Y6QVWgd70CEeotFqs2gp3ZHYhfSZ0Ou++fJvBj0UnE4Az5FMDRgqtOn7pFzCo 0QOk+nzwBn4fiWq2aMpcwLLZGL65OkvYMD1e+NubtJn7x5qq0mJIdK5Afn7+P9qM3Sc4QZO/ 53QYdxpAbW6qHOzAV0+xM3ZvAc48FfwJquLainXarH2TwWlczfYbfZDMdtQ3Cd7cMpUTqpwV /sfn0PLJj4GYao3RDVUOxYMD3YX5TzYf9OTCdOt3XH13y8Ia8J2K4QRNOvhvlOHIKOhvjGYX kAwmN6EmxDbipOr2b8sxs46myzkyqB68QC2ADw4C7glOgyQX0r384GkA/EE107YI3upsZ1v4 DIX7iuOG6/NPDsdJpEaObENc1QCdbRvpSLNjTZ2NRmq6XS3qYjurQc7DALy4SW2vSfnrbaSh SXWx5CbqRoKykShsW1wWN2kbJQs+hEk8YturVafe2qIvvTyKROWAZr8xGNpwsCrpp1u8iLlL uEGTDyEKdm8BRUN+n42dnGXUZe2fRaKw0CDuITv73k7F9ZVZ3E4zv+J3fvePhpMxNvAqtSZb YBIBmM+mP9Y5XuCY0eu8FTKZZHoS4OENTd1jzmky3aNvUjguBaBhPUyVSX2hoUFpsHHQGmxj 2fWBNQCPBk+Za9MEdIfQRArX+bZFWRCqL4kbBjmvQQ1qkmdIQIt0RZMeTJeepyhcF+2D5wFI D4J3i9PyVqOKbqs80BSGS499ZJZDEaCSWn9qdT2Q8X9RafsbJ4PjZiAz7aQPPc+GvDyEJKgf tE8x2zdqH0amUBo1PKkpcwgQNxuYdMfOF5qI+FRJXokdrUr8cbL6zpZF4AgHoagJaOlw2YlZ B3U5R38UD/79XRKd17hR6Hyjw4jtszWpO/bDs0sMlbd7IItgNVT7Vccv2WwovjRSPHzr66CZ NfXgFQuYRlItoZcp9Y+1DtViwQ119apWG3mtpXkfVwtDh6uAz17Q5ZdONisLg0xVGb7AhbMA uF0t2gpfRBnYPiMO/Ksx7CxM16jjamVuKHjR3U2yFDfgpkXgdETiRqXIRhm8hx98uKGHP5E9 IdE4RpvXazZg/G4LNrC8hp5sjShMkyXAcTOOyCZuwqhsSZF45M55iH48cV4UJs7vOv8vXtic v7UZewYrb61fZKpKta151mbum1dF42pEQzYuasoNAysZy/Z/6ZguN7a3+s7mj/WF50aQGXbI gr4ijZ1schi1ewKaqLBpADcxpwQBF01MVFbrA4H/PjJmJHbMAtskIqSRWiAPaY3GfojZzAdo 3/6xKISEmzVMQ9m1rrWUYQhuMWA0vncy8NxGUQO2z6gjSBHhRpUAvOgoG+XIPzUAmVFo9FKg Epf+C9JDs/MrRZEPwBVmkiZ7tRlwUX9xnOUUpkBZo/GVrrhR0aovo0FrODjBrx9xmnCpN6/T zE+RE2YDcNa+ecaKxGZfvYusJNv/lYuSlw6PFPZcMh2skBk0LopEjNdlHehTb748HbnpbCZV gWKy+RXqkJuZ0tBHLWQHd7tbiCvTaRTsbp68T365WtiWjf5w4O0XR2LwVMiMG8uu2cI2xvKE QchEMjz6HwGz1ch5ACfvGpXnkYUUkb7wfLQtlim93admqjTsLJXvJX/QcGt+2WHzhOI+R4Tv nUiqcY5soa+2VARkllhBZjrYHEiLptTNUJHUJu+yQ+bfrt+3XzGcux9BysNq1nHAcX6oUBpY n83gtP2MmzQ2hmOU3o6pB6+vM7/E15kXbzJbMbPFStl+Jmv2oxauW6D4uqMdKwe1kFSpd9t2 JnNyazX6Y2swUacC4F/XagLqaRHQWP7gBIQh54bdBAUAZ0MH1OI0ytQkT+9uKIn3M2tKA9Dz LO9hBx9mqDUPT9JD14fpOegSmSGUI/OtLzo3HKiL65OqgGZLBXnAID+OwltoUGvTd0xqs9kj FJp0iDhbs+CGBP+onR72UZbPiFNIiaCQHvShpB684GCh1V2/GUwWjM2gYidvFs/ZeS77pUcp l4jP1Azp6rZJozdhKEz2z/mcz+PulIU9cajsiRqLBE5Wr+Oo0sBzvTXpu8aA2aJThb4oynC9 aeAMPoTWOVjUJb7qu3+MxdCKM6ZIxvIcfP7JhhveIoga0wb/UrpT970IUODNixVXl3/xZNDF W4QwcMy/yXSeEvkB2oy9s3TZB3u3FX5B69bOqwMVo7Aeele4WV1qVxNqtKCJJWkjr/fFKK99 kYGS/RqDGa09wL7YmrB1zd7kGWiNQlNSWqW1K5FpG1GDmSOCfnQVc5KRBjearfbvro8/uv9S 3pDmCpRbppKodCZ2ixNSTxoyc+9/xuaxGpWOwLNm45gVhdEO10UZ7rvfI+YShe1YAsDh63IO z0KhJ/Co46h2/mUPCxWspUmKhyy3IHLhcnBKKpFjAo7KdGnslB8tyvxmX80FTiXdXJ3p2BJl aO4gcaBEOZzAsd9bjSoMrd2VnZ77jzZ95+CWw3lZIqtexrlvgqXoQiiUU9zUM8BxHXW5RyaR YZBAvQxM9+j6d4SAhQkCC+PeZPRFX8XUpG6bVbOazIomeS7URxtsfA+46rLp3WZOWXnWtaJa 1w00MHv9gZTfjl4tfDMqxGlvhK8ohcWgmgsq1JLk3KrIs0nF4ybG+C39eFx4/ZJDJzuWcuXM 7pPn/njpGGhgZyOJ5LLw92tH/z6XfaZXR8fDAW7CHFDypOxSldvNjIrel1MrRn79RuQro3p6 nmyO7JKe0P+hO3VLgpF6x6wpCSGRqZ4IyGzfkc1SACrPvZrh2OUsOAaTQAN74rZwVdTBh9dy WIu8l/SQtgS4YY599HezZGfe2QXlpmmz9s7VF10YwfYZuYPh2usKicpRooUPVk2Zo7HyVic0 3U2msiucxl+IQTHb+2hDbdy2ObHrs+pLU1VGqL7o/MtkHHeSnpx1lJH8+0kw1/toAt9scB7B g8TYZnmat6HsZi8YUKNQ+bghb+xsEOIjw3NbcLPBhe07YjMoidM0cUghcFUa3B+pSvp1AW6o 9rECd2X7v7wF+ia17lnFlWVfA78fwAkYsxna+xhdEpaD2stYnhiiSv79Q6B93RHdoDuExwL/ Pd0IvEj8XPjSrQtjhn25NeGn87dLxqL1vADWLlkn0rv8gRoAhR7RonQYwQbQyMk58sh7GwFA evu3D/r2/+yPGxtT8uVRkAb5ZoZ04NXUioG2yY8GaWj1Zgycw673gtditZIQhUG3gxZ/IvgC dzSD5jxjSk0NwdACZoHPfVGG+4DjEnVIk7lvEioviUJTszwHnX5gRlYzGbfoa6ALf98HW/S7 2YDZJhuspoeqEyd46n6MQh9eHffJb8C9vUDTeavubFwMnwahV2RKzej9DChO6mRWFUqgjhWN y2ai1JQNa7JsNVEBttVh5M6J8vMfrdSk/T0PMqAA5x+qL744tJElQYvTbWE8M6bPP92jIXhN 0uRgsyKnE5rFUN3+baEqeeNCMo0Ht5sQ/bFNbqDYNctjwD+imB8/aDAp4wCOdA+gdBx1yl9z 1Slb55Jp7BprAUBHZ2EgPk4ThcSJBqyfimZQbZGSpUuXNh6BPIZueHeP3R087M7rjWaKWmfm 0qhkOvBYMpNBNXJZVKmvCz95SFf37RMH+P3sIeHex1tcRGzZ6F5ef7qJuUlag5llMFvYoNnp bJQGnarnsmjlwZ52N16I8vxt0gD/7fY8huIeOiEqrNS4SASsvM7+4lM9giS3n5A9qMxV6e4U ljgfzOMWpsfA6y3HiEVSU0WiF5khKAXOfIgX9uZu20qplsyoPENkURY4UziOefDMKYZrVGJj M5vpYFHkSagcpzyGc8+TTLc+yQ9lOcSdcjj+Y7aQ6YJi3KzhYGY9m0zj0AFsoGDZBuCqUrp9 x2SW1+Bdgh6ffMaQdE6/t6ymqlRH4PD2FI5TDsO1z3EYvKlNh6dYFtBqSOuh9Qk45MUlobWP NA4F8rKCuVdBGoV0SeeL/LDZP3BDZ2+ENlXXWy2Os4wuCooDXmshYWQ2DH0miUymgrUzU5jC Cro4NI7Xed4iu76rlpEZfGODcJqWLg65SKIy9EDTWDBU4Dk6HZ6zAPJkNHGnG7zwt5bZx6z+ CAamsv65B71QpUploGv0Zgfk+6A+AG1U7ShkKSiPsB1dqtCzdUaLGK12g9yMVDJJ7ihkq8kt 4KHRBE9rzBfXJfiwiT1OAR6Ux5NWymLCgP4gP8Ou1l8xAVCrqRwXJXDV1q2/jWvKaVZDtQPk wapV8VrQ7jIY3A+cQcWNappFV1n7LG4BMMooHGfVg/LHTWqKRVsphue4NoKLkeRUrnP1/VSI eBsQIU+xEFvfCSHASwghBHgJIYQALyEEeJ9A0Ezb+gN3p0z++uzpZdsS/9eaaesMFtvC96dR Vuy49dqhy/nDn1VQoX5HRyQ8SFC8H/VjuwTvugN3p8Hnm+4dJLtCvOyuPUlaDc/a0hktzJc/ P3Ee7Xh+Gjv3ZELxxDt58iHPCljrNjLUCVJUb3x3fseDnjt0pWDo4IVHrlYq9PXLDB5FH7Up eI/fKJo+Y3iHH+a9GPzLi1Fexx83HTRh8faPcV+UybSsGiDjVi9HXg6XRZM/jZ3NZlBwdP7F syIrdiR+cOx6Yc+6a3s+o8LPhf/ArWAsOkXZwV2YSaeSbetM/jiRMWH1ntvjHjZfagOA2As5 dBVak349ozKcz6IrO/nYp0DCjcZCTqnKLTm3yh80aaavC9+2L1+tM9FkSgPPRcyuupUl6+As YsvAbJAqFTo3PpuuRot4RDymik4jm9U6M+MGpI8A2LOj4y0mndIo4A3pCG5mVAZz2TRDsKdd KgBUG3enrN/Jm8Uz0GwciUSqcrRjVSyd0mWOgEO3PVsu1wnZTKoBTbxeS68MF/GZ8lBv+4yG 8XBEMVLy5f5lcp1jtwAHtLPYqNKZWO4OnEZb/I1mK7lYqrFzEXGqckuVbvAc1duZVwDlsnMT c2Sk2oULcpWBozVY6K5itlypNTG1BjPTgc9UXE2vCPF15udLhCxlRrHCL6Ow2sPPVZAb6CbI JTc4wwJ/gNmFdvbNKK52C3ATFvo483JpFDKOznq7C3UoqFC7dfYTp0Pe9e+9QG3AYlB1UD4y tG+YPZcpDfWxz6prg4pqPR/+NAu5dGN8SnkYh0nVh3qLUqBPGhUlrbDaJ71I4Qnpp0DbNJo9 1Rst1KRsWVC1xiiE9s10smeXpRZWu+84k/02l0XXhUq1mQIOTTVjWIeNcC8ZLCS1RKYVudiz pSwGpZ4flFXpbJq2f7jL5VAfUQJgRC9TGbgHL+fPgP7OKJJqTsJ3RmhTGtoWCf1dP6um0ZsZ 5dU6oYcDt9I2SYG4xwtLju/zkPASiyrV3TASZp9frkYAPbPmrV6vOQiYNpAs3544H0bYFEd7 dlFGkaLDzGEdVs59MfjnpBxZh3fXx6+HCp87dLVgwf8mRUxPyJRGn7hZPAcGRA6TQcn/c0H/ iVAY+ls/xO1AoJMq9DwoqPLX9/uMcRVzqlD6Gw6lzPr9aNrHEgAnVJ4fE+6yMSbC5co76+O3 Aohc2HTq3U7e9ndWzIicNnTR0evLp0cuH9jZdQ/8vh5+xyvkOpHeZPbILlEFjezhsfHrGZHz 0foEABdp0e9Xf4pPqRgBACzCMVxNIZNLvJ14yjVv9Wx02Bt0DGPsF6cOQ8efAMsxf2y0z5oQ L/vTa/Ymbz65ckRnGMy2RQLf77696Nzt0l4Hvxgy6p/zOcN+Ppz6JrRX1tFrhW/88l6fXnfy qqIOXy14w57LqLqTLw+bOjhgzUevhn6Dnh356bGj0HGZH44Jffde4AJo7Rf+fnVjQaW6o4s9 pxIGEnft271e7eIvzpz+7fkt2aXKztBexbmltjr+8r/JnVegTQTvb7i8ETpWJVPqXTV6k2te mbrDy7291y1/o9sSlO6Hv1z5Ir9c5cZj0UjFUm1AuVwb0DfU+cB3b/acAXVCVAxbvPHa1wD8 oQDK8twylf/c0cHzodx70POX7pZ3/N+W65tgYLHteQwd/FsF2Hjjw18u/wyDaQiXScuFPqha Nav7pOwS5bgDl/I7b/yo79ghC4/e+Xh8+Oev9vX5pxZ8GPTd5UkD/H7oHeKcM2Xl2U2xy4eF f/33rdWnEoqngTKTwyAvXza166KknKqg2OuFL8V+NSyaXmupPv8r4eP4u2X9D381dKhtmZzF YsVGLI491mHaTvXJm0VR6Lt0GFEhM/4p+nTz9c/R9f5LecM7z9mbCQ3gjK7hvi5B03cVwX1u 0GAunWb+o4v56PCxnBKlE/q9olrHipy7L/vPExkzLBZEzM3Y4I+PXFy589ZC3Lawx4yN+fwk At6P6BqtH/Z9bYf88JX8vmjRjkprpFfItQL024kbRUNCZ/5TAJpTDI1GgfzIYbN35x6/UTgB /f7u+ks/eUzcZoq9VtAXXR+5kt/TbcI23YmbRb3Q9ZI/biwIn70nF8rqgq7BWertNn4rDuZu Hbpu+IGBTAZwpULdMuOSS8PQd3+dzBjW6939pQaThVl33ze7bn05fHHsBfT3nos50ZIxf+Lz foz7rUqp5yMtX1ipdlZqjWz0+6mEom6BU3eWQtu4o+sRn8Qe/fafpLX35m3rh09iY0cvOX4Y wMVB36EDDdEiqLfWxq3r/9GhK2DFWOj7s7eKI7wmbVcB738FXb+/If5P/9f/1l5MLu2OrvfG 5cZAmxiupVV0Rtfzf72y1GXcVnzzsfRR6BpAGuQ5abt666nMF9D1r0dSZ3afuy8BlBcXXUM/ DO385p5caGu+VKHjQPtlfbLp2gpQQLZyAg7szPBvmVzL7jFvf9qW4+kTjSaLrR5r9yZ/A1z2 JPoblNWvr3199kBdHc8llXQBnJXCoEQWdmDIjF3wt9pWp6nfnDs8Z+3F71B9bWVMrwz2m/K3 AurQCV3rATO93ztw44d9d95G1/XES2+ycEd099gGmsy2TyvATVAII+9rGA3jUCF3X8iZPqyb 20EYlXKpwuAKTlgmmIPK+LvlA5A2grRoSLOAibWte0VmCZSelQXmHK1huJpW0R2IuceYPt5/ V6uNjmijMvDgQ1CBGLSCDCr/wZRBAeugDBeQpQOtbHQQsmwLdrgsqh7tzAeNraVSSDbzY1vx VbvaCSgKGzTZiaHd3G3rPIdGul/u6CFMS8io7G7j3tcLp731QtAyqJPNzILGiusa4HAUKEJT 62Nx0Pq81wcFbIoKcao5TA+dzHnfnDzY51oKgdoRymua80LwCjseQ4nYAWj4UnjGBBYoBB53 4LCo1PSiap+WOBxo8m6geSO/nd3jLaAdth2yTvYshUylF56/XTpmwdiw/znZsWwncUSHuSRC +209GJ83q7YNmNFhzod6hzjZDnsZ2d3jjI8zPxcogm3ln9FkZXUPklydOiTAdqAMaPJU+FwF mmDbqwdgnza2n89WyNdapTQ4R/iJE81W3JKYJQ0DC/oyaHfT/LFhi4Gn2jYveEi4cqTxwbzr bP3MoBpoVHKD1qlpr3HRPlvQgTRgMWy7H0BxjO8S4HDJRcRWQPvTGp7iA9TIDB9TnZbt7C++ C5Tp9tFrBRPQ9Y0MaSfAjmR0L889jTgvaDsSkOdG7w4DIN4FYAnlaiMP+KHztbTKLrNXX+gB moWCzoim0ylCALYOXUM91AIuveEZU426GziZN4wc58//TNhmO1oIs53Xy4RGKMgsVgqBB3mB GbvcXMc2eewAqb7sqBHrV6YhoCGuDI3MBHpCV2lN4s7+DikNH4WGVuJ4kytcEZUyQ12yG0Y6 msi6/lu0dQo6Xe7lyK1fsL7nYm70TwdTVkFnV/u48CtBm7ChHJR7it5IgEdHwECtcLZnNzpn F0ytO7QZA75Pa/g9gPH62r13+tfUGdWJomhQP0zMZ+qrVAZWDee3kiQCpvqeNtAAUFhIm0Le EqBVM2/nXBgD7YnQg8NAIbHoVBMMgK4ApNugPPBmuqC5rsFAScTz2bSKM4klQ8EX+PNyasWg 91/utOTeSFKTaUAiY/r6bAKrMB/o0WKw9i+G+4quAmbKGoHX1kiGxpsLwLkSQAI6Kpmk1urN 1Bd6ea4EbfwzjBjbGZqAWAsakWDafJqNofzrMFl5LHrWunei+rEZVDJcI4zhMNIMMJpooNpw ME/8Ftqi5c3E928esx12CxzKCGW0yoBj3/M7Wqakb67RGvYLdLK1JnZpweh12uWeVeXIutQ5 ZKA9JZ9sur5t0YTwRa8PDvgTnqMBpUrDG7Q33nS+auhIFlAXdJ+5QeV1aPsWtFmjOoDpdoBB qq4HwL1tgI4KbnkVF7IdOJ1KwUDLkl8b6LdgdC+vQ3X9C/1uhjqZwZGaWCLVCFtM594qkeoi K1RsVA/PPWdvlbzk78pPhrqRBnVxPf6w6YAl3vfzoZTPDl0uiLqaWtFv9sigH+4LlaFwxdnE kqiGgf+jV/PHdPS0SwRTiPu58i9fuF06qvZePfpQag8XwbEHDD+Qjp7Cq1Uqveh2TlUEPGdE zyPgot/AAzYFuQuu/H02e3pTcT4oE6LNFGhnanODoykVgDQidC7m6cS7CdxwSt33MNh44GRE 1eX/IAGLVCpV6rkZhQqPusjFlZSKLgjUTZUlOVcWhA5hGdzFzXYuBHjcDuAIOiAgtKSxIJ94 0ICiQ1caT2C4iDlZoPWKj1wtGNNAG2MH4/PHguk/UWc5W1IezQlYPzI68iDQTZBw7HrR6Ib9 W1feHkGSE0B/opKyZX73x99x1DmoHRjNaVMA4N95ZSqv1XvuzAcn/AjUxdCEskD9hc7Ob5QO 0ItqsDCx4DB/CeXBgS6duC9URqdRdPkVqu6zV1/c0CfE8eT1DOmQyykVQ7YsiI5Gv7/7UsjK SV+fvTjhq9N7XhvovwVoBOduvtxz8YSIVaBCrWo9IvKNG1Cjt5DN4GChv8N8RPljo303vLn2 4qGZwzt8GeJpnx13pzQCmZXh3T3OfzQ2bNGk5WfiJn51+jiMzM0V1XpndwdO4eSB/rvBfGVC xVjf705eGh3qvLdXsOMltAvDbK3Bjt5gJjfk70jAFFL0Rqvtuy9f7/rh9G/PnXl91bl90BFX jl4rjABzilMp5CangdBZxQ13cMAATgKTlwQOy9aJA/y+u3SnvB84Kp5iAbOwJrSFkxCY6jos soMklQLcfNWupM+hs45vOpb+GjiwdNA6lJqyWUhNzUBBPnlTBgesWPj7tV138qpW+rkI7oB2 7ThrRNCPiyeGv//Bhst70O6WLoEOVzbGps2DzqS981LIqtowFqJyjdpABw4OshY1v1uhTpZ7 ZinNZL3JbCsTpPPp1FXnzkD/bxrV03M3WEEHtEdx/riwtaOjvA7DwDk8ZeXZuGlDA79i06ly aD+3uS8GrwblYAB6mfLbkdR3FBqD8fXBgXvQWyAanv0R7ifKcHPgFJxKLJ7wycTw+q31SCOh doNutN3r7cS7tjcubx44ZEkxES5nQrzsbe07aYDfxjGfn7oOuFkKiq7eWtp2UqBGhwaePSnG b6enIy8p7m75FCiUBu1pA+JuW3UPHaUe0tV9Z26Z2jcpRzY0r0ztAxwvGxy3a2jyC7ilAThr nIhfc6YvShM62Aq/X3GrjRfCqDnnIGBlgvM2IrNYEQnmCesV7HQBRlclcgQHdXHbBV66d0ah ciBoKlGwt91l0EY59nymGu5JScquehFAZQRHKh6cPxyevYpivpVKA+7pyE2tK2stx8aDPOwS gjyE+ZC2dFAX950ypUEC5eS+/ULwdzmlSm/gYmpw9I7day3KqrR4uJ/4MgC2spYeIe4WWyTV +KUVVPcBTXBi+rDA9bgVr+7Z0TFRrTch0i+H+sUjisKDtgMgXgArMyytqDr0lT4+62HwnoOy 5LpLuOXQLhh0zG1wILPuBXCfTk4XvZ35iXdy5QMKKzVdQTEoIN04qNudYC+70zfSpUPu5Fb1 B2DfWDmz+5vAg21xaqiXFbjgHbgvo0EbYB08hDegLEUypR5zd+DmAHdN+vd3PR7oJryNDvoG B1MKA21PRrEiDAbO4IJKjSvUP6VboCQJaUb4bT9wanlyrnxocZWmo4OQmdszyDEevXYB2vlK XrkqHMob2jvY6ThYSB04cLlQl/odMGwmtdhTwrv9aj+fQ3VnNsPAIsFAlgFQL8P91lBv+wQY FKKUfPnAQHfhJa/ad06Dr8CIvV44dvHEiPnQl7KGat8W+uj/0aFLvx1N/eze8M2z+KlWG2iR b+9L23oqc8LzUN+n+YN8DbD2f81afWHzvb9RGzhnJONDLKZ4GuXinbKIv05mzhjazf0kjHoz eK/vigQMKTigu4m1We1X0ETW+xsu/5Jdouz+z5KBPZqcHkaxtulDArdH+IsynsVGANNaymPT DOgkIBQe6xboED8P+Bp6uxEBkfYraIZNqTXyty+O6Q+UqLKpmCbRSoS0S6l5bx+GNffu6f8T YAAwym0XDppxpwAAAABJRU5ErkJggg== --------------BB95CEE748B6BB4617DD0D31 Content-Type: image/png; name="image002.png" Content-Transfer-Encoding: base64 Content-ID: <> Content-Disposition: inline; filename="image002.png" iVBORw0KGgoAAAANSUhEUgAAABkAAAAZCAIAAABLixI0AAABCklEQVR42mP4////2atPkmrW WkVPt4wiGQF1AfWeufIEaA4D0CDr6BlkmIKMgCYAjWMAmkqhQRAENIeBPK9h9SwDqXr8suZF Fy8KzJnvlDgLTYoEs3Ialj+8fub/22sQdO7kMTLNiihc+PPFFbhBFJm1ev1uuClv7l+4fenU pi37yDTr/MnjEIOOHjqMK7qINQvoEIhZ85Zux6WGZLPmLCHXrJaJ64FhDETfnl+GmPX89jmI yITZm0kzC+gK5LhDRlPnbaGaWTU9a0gzK7t+OdA4IHr74AI8WUFEArLnDVzYj5pFS7OILFcJ mgUqV4ks77umbYQkK2CKw1neA+sPqtVDwHoNSFGlfgQA1a9yQZcDQ9MAAAAASUVORK5CYII= --------------BB95CEE748B6BB4617DD0D31 Content-Type: image/png; name="image003.png" Content-Transfer-Encoding: base64 Content-ID: <> Content-Disposition: inline; filename="image003.png" iVBORw0KGgoAAAANSUhEUgAAABkAAAAZCAIAAABLixI0AAABc0lEQVR42r2Vy0vDQBDG85+m CqIoHgSxqAhexIMHFcGLd8GiHgQR8SSebNpEbZr3O+adVFtFBB9xMCBtYpJGo/DBwrLz25nk m1kkDEOq+7JM9iqXHbS4IApigQAcBJafUWJE4CBARX/NQj+zQyplgKLUELQkFvrnrLSqJ7Bg j9MvFHmf06caPuwsEG4O61yWFwcPgaYbvmuzYUBF6jisaPBnkjJaz2RBzJNHb5BW/+apqHyB Ir36VEsXZ5peFou5FaLThCauXNtRyawhxFg9l6nieTVuklZ/TNdl4P57l4mxJJPP//a8wT96 8cikIOt81omo5oJANU7PZ43VA1wTs0HvAVVN/OvvvbrL6tllNjVpWN/P4t6dk8p69ug53CvQ Q+DyA157S4DAVuuD1ktlTWI+JLV6Yx8J6kPCB+CptZY1bD+OY8EhrwUOm6QcC2rUhsXmBHh9 nnC32uYObWy3zaUrZ+S/Z06Zc7XMeV/mO1Ti+/gBwEF3bTVVXYYAAAAASUVORK5CYII= --------------BB95CEE748B6BB4617DD0D31 Content-Type: image/png; name="image004.png" Content-Transfer-Encoding: base64 Content-ID: <> Content-Disposition: inline; filename="image004.png" iVBORw0KGgoAAAANSUhEUgAAABkAAAAZCAIAAABLixI0AAABSklEQVR42mP4////oQcfneZf Fmo7IUg6AuoC6gWaADSHAUgJt5NjCjICmgA0hwFoKoUGQRDQHAZkryWtv73m6pupJ59pTDpL hmcZ4BzXhVf+w8D+ex/IcBrCrMzNd+BmPf74kyKz1Ceeff75J8SsjsNPKDILiOR6T/svvWYx 6yJ5wY8wS7LrlN3cSxBkMO08UESm5zRcRHfKOaCIy4IrFbseAJHX4qv4zAJqgIfX1lvvgCK+ S67BRVZdeb36ypv/SACYoBT7zpBj1o8/f/9jgPXX3pBjFhC8+vpr2aXXF55/gYv8+/9fa/I5 ks16++03JAGLtJ+8+uorXDxu7S1ywguusv/YU7h40fZ7JJsF9B1cZdXuB3BxIHvUrEFlFjD3 ATVDkNVsUPZW6EOImM1EZHjtyefg4trIaVWIGgU0tFylZnlPzXqIivUjAAFNaCt0eP2wAAAA AElFTkSuQmCC --------------BB95CEE748B6BB4617DD0D31 Content-Type: image/png; name="image005.png" Content-Transfer-Encoding: base64 Content-ID: <> Content-Disposition: inline; filename="image005.png" iVBORw0KGgoAAAANSUhEUgAAABkAAAAZCAIAAABLixI0AAABn0lEQVR42q3V20vCUBwH8P2p KUkPQT50oR5yLCJCo+xCiNJDNi9ZonhJwmmlouQFU3OKpUJZ5qUbRJlU66eDIWK75OD7sO2c 89m57QyhKKpaJD0aDFdI8PkRwVFIoO1DiQQHAcjwP6UnIACHdHo0HEQHHAQfulPMYBFxoG4G WP4dLOXSpt06lpxb1GZMxmGFDErqkeSTSszBYV0H9lnaF06M7o0Zz9bcWznyXc9wWMWghcUK m1boarXUMdwOZSUdGqhjRKXPhYBgC8ZC6FADKrWr5OWwtY/mZdUz3s/7JFw41VO9m7uR9cHD xiXR7pbysiyLYy+FwOtVsK8UxgilR5uzAuYLrKf8aasS7/tUc149lLrWp4VZOULPTDYdx9pk u3rxcRuDFwizrMvj0KyzJ+POhH0779sDiNkWwiy6I03Sz6warEbEvCp4f9EWHZids90lQoua sFHmIS8r78eh0l3CDehfKYUOvmrpViXBYcG43m+inB/2TzMbPVznPnNgmWzKCZtKzhLzgmzQ +SXiuSrmeS/WfwgcRJT/Iwjg/ALN9nSXgJKPyQAAAABJRU5ErkJggg== --------------BB95CEE748B6BB4617DD0D31 Content-Type: image/png; name="image009.png" Content-Transfer-Encoding: base64 Content-ID: <> Content-Disposition: inline; filename="image009.png" iVBORw0KGgoAAAANSUhEUgAAADAAAAAwCAYAAABXAvmHAAAAAXNSR0IArs4c6QAAAAlwSFlz AAAOxAAADsQBlSsOGwAAABl0RVh0U29mdHdhcmUATWljcm9zb2Z0IE9mZmljZX/tNXEAAAqb SURBVGhD7Vl/bFVXHT/n3Hvfe7evv0vZugdFRt3W0rraoQk4zXAyM2Uks+saxIXE/TATNVuy +I9x2GXGxJiQmZjpTIxsonkUIpINMjKE/TOSDtlGS7vECUx4KxuUPlr63u27557j53tf+/pa 3s9CYpbsJIS+e7+/Puf785xr9vX1sU/zMj/NxpPtnwH4f3uwbA9Ex7rqmB2yeive+uRGGh9N rFvKko7b23BivBy5JQPYGetaErbYb4TW97OrjtmfWHNcTU/9tDcy8t5ChdFY6zIz3Ph9Nn11 n2RJYQYbN8mpi38C7fkctHeKYPjXQjlrmNZyzyddB6dc9szWyIlLpQApCcCuY18O2CsSfzfs xrtl8gqDImZY9n1Myi9Gx1be1dtw5tyssp2xlcsqrNARwwq0pJLuMxxphr+rlBV6BO/Wb42c yYCIjrUuE0bgEGQt9ZyrjHHODLtmqy0vroLOe7esHUgVA1ESANE8tQGC73avjkGe9mXKxDgz w/WNeko9jp/P0rNobGVThVV7QJihFpmcIKCXYJTG31X0rILVHgDNN3sjZ0aJnqesJ4xwzVI5 dZl++XJJh2FX3+01X9mAn6/dGABCrOLcyBifFsqZ9iQ54zbf+LGVdcKq2S8su8N/rtyPddD7 GmM26NzjILmJ3gHVftDeB6+Nc/AS7azxabkamA0moLOY8fS+JA+A7t9ae76LyeKMIsOi38e3 t7aK9qPBV0UgvEbLaTzSEylXbtyyNB3zu2IdGwMBcZhJVS2s8BqWYq+C56ttMX3cMKzetFfT HiAdvi7ovGEA5Fn7MF8xccSqalyfDg3FRKCCIR/et5ncufpoYB+MX6fcJPQLydxEz5bICO26 v7ZEBo/3x1p7WCD8GmhMol19VO9LstSjPBl/1AjV3KFSCRgvmGlXM3fy4hH5YcVh1lQcQkke oGQaGmrd8L458UuI/JZmukpLZ9hT7g7HtF4wg1UPUBIKK8ikc/UxVJtDC1X34Fk0tvoxI1T5 Z1QvZoaqHrDZ1Rcg48dCOk9DZht8MOklJw60XfZ+1r52wHdDsVUUwPbtz/K2n7x6E2t0m4RO DWhtVCKoO7Xybja4uRvJWUeVyQxVM8+50tcbObUzn1J61z/avhIFYTvxwIubmavu1zJ1Gjwx zdm7Srtvn2o0v3BqrGt0+LcbP+7re242ZnOKzQvgb7HVvWYg9Ej7k/tWMJctY9yspR1GfDOm PEQtkg3/qxTtZg12/sqeh5uGflFsx3pAs3u0fTV4HgIPosasZYbRJSgHhPEVzkPblDuNciTj 0H2+/+JdH8qU88rmyKloLtk5AURjHd8Lhmte0Yh1jbhMVxuPeXD9woXKwrzU1Ach5T1WzPjZ 90Q7nZrqBG+Lcp2ZDcniRiKjEtVyw8Q/qz1o2d+GTVZvZPAvC3XkBACbn0KIwGA0l0IrXZU8 Jr1tmyIj6HClLaLtj3VsY8I84NfMTGWb4cdvNGXUCpRYADSClZTfT+FtcQB7Yx13cEN0eqgK 2AEIQS4tVDCjB+5n2MErSVZ9rDTT56gSrOqY7U5c4WagHn0iNzt5QhjwMGzhopNs644Mvp9N fI0HJFMPmsFqg+q5ktMDIF4OIU0+kAWLU81mHPVvpj2XhwLJxBOQUZ8rS8lw6BxF+J7HMPUl bgYNmYg/CBW/KggAUB/yk9STSAHjeS68HeQ/xvJUNc68Os1UebYzVofId8Cbl4/Ck3MHEfo8 bNkHb1Ni9BQEEI11dXBTdc50wzdlyD5kpZya/MZBJuNO439likXKg0A85z/HkcEzHTgXu9bV jho7ZPOGNxm37xGG2bl3rKuju+HE4Cz5vBASpuw2glVCKySRYi9taRiY3j3aQdufN0ZRVuXa tQM00JS1iGf3Rx2SwrDABomtkQtOdLTxDwB6jxEMc296shv01wKgeabtI9UtEJByeuKizS79 Y39sXQUTk4UUkJuLjrwFNgC8hQAwtjOxLlynTu9PTuuL6B2NylPdsPW5vpERP2wzHmh7g3UK 02xHttPzPZsiFxLRMbuOpyoLRRDpvw4A4C1sPwuNjwdhy+Xo6JI9sO1JhFF72xteJ0L2xDwA eLGZ6q3nJpgp+MulxQMyQGu0zcWtNG8RBDOiySbY9iTZiAqzGY/nA0DkrDcr6pgci4+c/Lo3 0D1S3ChKYcV4sjhlbgqU4KQ/QpSwTt4jB1b/U4+YNbe0YgRZP8uSCSH0qp8jQR7Xir80G195 MheP51XuPF2oBKvQZ+dTEZjcsxvZFGWdT3vTEz+ArX+8BkBv0+BBPDzIquZE2nZIO9kRjvzw G8xs5/RrtS4ybxRIIeLNqkJznT+rrYTsDKLepndfh7TXs20sOE4nx81G2IzxGYHijyzyArrj fm4EnpgFQQfAkvY6J9EcL4Y29EoX5ZJtos6fHl90pe24S/BH3quWwucBYdwqrECAJkZhhZh2 vWHDYzs8jsmTi/z9oVxENPFqTxnC2uEp2YL5qEmlSKdtJd3UrRCX93hZEIBg3u3kVuZin2mw c9mgEzr3Hyu1fBK/C3To8hDQXmBcmHQCH542U8uHMDbc6x/uoVO4ydv9sMmzCgKAiM8vKHPv bGmIu7tHm+kk4gOgI3h55mZTz/Cme0+cZEdHl78zR+EPi7Ah/yocQhxXJjSFQgGNtKawfOEQ O46m0py2nYcXCwDGhUnGTPOMkxzSQbr8AdLXnb62KdsDu8ZqLUvrlXSo4AYSWKYuWOrSByQI Z9fJzAyjWHCxANBE0rw0lkMm/WnJjz7wxJILyIOb/QMNbCBbyDu59OT1gGRNS1EXInQOoLOw knKIxgtfiGKY47FD6eucxYfQDK8vCzJJNOnoH106hCvHm/2zMWwgWxBhsbIAVEq2QhlWhb8L VEK5/tesAGzY1PxLrkX7IM3on4Ehc2b5urjxDTqtorxWVEq5Aq/KAyCl2WLaQZyL6WyKA45W b2eZSagomK7T8syW0B+ZkZx0pY+yuKgwcdeUdFvw/q2yPCC4vsPfGZQ45SZcJoKZa3ScAa69 nrhOKPNkQhfphG6LbPBtybPy5gCS6ja/QkCGdpNnmtvMsyw+43HNFj2B5jMEF70Zmc23m2fP DafOcCvo2+DbUi4AIF+VrkDUyNjJtfG5UxcEzo0PuD5f9OZn8WbLJF3nePtJ6L4tnYM87011 7outxLp6riaaKQ4x92AHeHb8p7POzwAMXTp7tCoTCnhJBoIkIzOTyAw6uXjIzwWlm/EJqh6f tehDwryVE4A57tyqTLOehjjt+eNo5qbZ5+YYKjL5pwNlmj1HzrN4+TUHo+O+bhokDbPegE2s gpUGQAq32grV+orkFAbBoDecbSSSiz58ARwSPOUUvSDOC1Cj8cLDNIkqIebnVUAOq+kkvgLh AgbLTcSrc8nJqdyukcecePx3Zrj2TnTcvz7cMHIhm1lJvddzJr6DDlfNlX5psR4gXuXJ55mb nCCZ2XJ6obN/tOOHePZdORV/z66VOW//cgLYVDGShLt+5AvMMXPikvXYzqFgB6u7xcZHu5K+ JuYC2RMZ/D0+/O1h46Hk1vaRa0pzT9Pgi+B7MZcNs/IW7f6t7XRVfea6+4G/AWVeimVvxqIB LDZsbjTfZwBu9I6WK+9/9C+o32semRQAAAAASUVORK5CYII= --------------BB95CEE748B6BB4617DD0D31--